| Age | Commit message (Collapse) | Author |
|
|
|
Alignment and fill options only apply to numbers.
Rework the implementation to mainly branch on the format string rather
than the type information. This is more straightforward to maintain and
more straightforward for comptime evaluation.
Enums support being printed as decimal, hexadecimal, octal, and binary.
`formatInteger` is another possible format method that is
unconditionally called when the value type is struct and one of the
integer-printing format specifiers are used.
|
|
prevents footgun when formatted type changes from string to enum
|
|
|
|
|
|
added adapter to AnyWriter and GenericWriter to help bridge the gap
between old and new API
make std.testing.expectFmt work at compile-time
std.fmt no longer has a dependency on std.unicode. Formatted printing
was never properly unicode-aware. Now it no longer pretends to be.
Breakage/deprecations:
* std.fs.File.reader -> std.fs.File.deprecatedReader
* std.fs.File.writer -> std.fs.File.deprecatedWriter
* std.io.GenericReader -> std.io.Reader
* std.io.GenericWriter -> std.io.Writer
* std.io.AnyReader -> std.io.Reader
* std.io.AnyWriter -> std.io.Writer
* std.fmt.format -> std.fmt.deprecatedFormat
* std.fmt.fmtSliceEscapeLower -> std.ascii.hexEscape
* std.fmt.fmtSliceEscapeUpper -> std.ascii.hexEscape
* std.fmt.fmtSliceHexLower -> {x}
* std.fmt.fmtSliceHexUpper -> {X}
* std.fmt.fmtIntSizeDec -> {B}
* std.fmt.fmtIntSizeBin -> {Bi}
* std.fmt.fmtDuration -> {D}
* std.fmt.fmtDurationSigned -> {D}
* {} -> {f} when there is a format method
* format method signature
- anytype -> *std.io.Writer
- inferred error set -> error{WriteFailed}
- options -> (deleted)
* std.fmt.Formatted
- now takes context type explicitly
- no fmt string
|
|
preparing to rearrange std.io namespace into an interface
how to upgrade:
std.io.getStdIn() -> std.fs.File.stdin()
std.io.getStdOut() -> std.fs.File.stdout()
std.io.getStdErr() -> std.fs.File.stderr()
|
|
|
|
Closes #24236.
|
|
This matches what we do for small helper libraries like this in MinGW-w64. It
simplifies the compiler a bit, and also means the build system doesn't have to
treat these library names specially.
Closes #24325.
|
|
Closes #23971.
|
|
This struct is larger than 256 bytes and code that copies it
consistently shows up in profiles of the compiler.
|
|
and also rename `advancedPrint` to `bufferedPrint` in the zig init templates
These are left overs from my previous changes to zig init.
The new templating system removes LITNAME because the new restrictions on package names make it redundant with NAME, and the use of underscores for marking templated identifiers lets us template variable names while still keeping zig fmt happy.
|
|
|
|
Previously, various doc comments heavily disagreed with the
implementation on both what lives where on the filesystem at what time,
and how that was represented in code. Notably, the combination of emit
paths outside the cache and `disable_lld_caching` created a kind of
ad-hoc "cache disable" mechanism -- which didn't actually *work* very
well, 'most everything still ended up in this cache. There was also a
long-standing issue where building using the LLVM backend would put a
random object file in your cwd.
This commit reworks how emit paths are specified in
`Compilation.CreateOptions`, how they are represented internally, and
how the cache usage is specified.
There are now 3 options for `Compilation.CacheMode`:
* `.none`: do not use the cache. The paths we have to emit to are
relative to the compiler cwd (they're either user-specified, or
defaults inferred from the root name). If we create any temporary
files (e.g. the ZCU object when using the LLVM backend) they are
emitted to a directory in `local_cache/tmp/`, which is deleted once
the update finishes.
* `.whole`: cache the compilation based on all inputs, including file
contents. All emit paths are computed by the compiler (and will be
stored as relative to the local cache directory); it is a CLI error to
specify an explicit emit path. Artifacts (including temporary files)
are written to a directory under `local_cache/tmp/`, which is later
renamed to an appropriate `local_cache/o/`. The caller (who is using
`--listen`; e.g. the build system) learns the name of this directory,
and can get the artifacts from it.
* `.incremental`: similar to `.whole`, but Zig source file contents, and
anything else which incremental compilation can handle changes for, is
not included in the cache manifest. We don't need to do the dance
where the output directory is initially in `tmp/`, because our digest
is computed entirely from CLI inputs.
To be clear, the difference between `CacheMode.whole` and
`CacheMode.incremental` is unchanged. `CacheMode.none` is new
(previously it was sort of poorly imitated with `CacheMode.whole`). The
defined behavior for temporary/intermediate files is new.
`.none` is used for direct CLI invocations like `zig build-exe foo.zig`.
The other cache modes are reserved for `--listen`, and the cache mode in
use is currently just based on the presence of the `-fincremental` flag.
There are two cases in which `CacheMode.whole` is used despite there
being no `--listen` flag: `zig test` and `zig run`. Unless an explicit
`-femit-bin=xxx` argument is passed on the CLI, these subcommands will
use `CacheMode.whole`, so that they can put the output somewhere without
polluting the cwd (plus, caching is potentially more useful for direct
usage of these subcommands).
Users of `--listen` (such as the build system) can now use
`std.zig.EmitArtifact.cacheName` to find out what an output will be
named. This avoids having to synchronize logic between the compiler and
all users of `--listen`.
|
|
Similar to the previous commit, this commit untangles LLD integration
from the self-hosted linkers. Despite the big network of functions which
were involved, it turns out what was going on here is quite simple. The
LLD linking logic is actually very self-contained; it requires a few
flags from the `link.File.OpenOptions`, but that's really about it. We
don't need any of the mutable state on `Elf`/`Coff`/`Wasm`, for
instance. There was some legacy code trying to handle support for using
self-hosted codegen with LLD, but that's not a supported use case, so
I've just stripped it out.
For now, I've just pasted the logic for linking the 3 targets we
currently support using LLD for into this new linker implementation,
`link.Lld`; however, it's almost certainly possible to combine some of
the logic and simplify this file a bit. But to be honest, it's not
actually that bad right now.
This commit ends up eliminating the distinction between `flush` and
`flushZcu` (formerly `flushModule`) in linkers, where the latter
previously meant something along the lines of "flush, but if you're
going to be linking with LLD, just flush the ZCU object file, don't
actually link"?. The distinction here doesn't seem like it was properly
defined, and most linkers seem to treat them as essentially identical
anyway. Regardless, all calls to `flushZcu` are gone now, so it's
deleted -- one `flush` to rule them all!
The end result of this commit and the preceding one is that LLVM and LLD
fit into the pipeline much more sanely:
* If we're using LLVM for the ZCU, that state is on `zcu.llvm_object`
* If we're using LLD to link, then the `link.File` is a `link.Lld`
* Calls to "ZCU link functions" (e.g. `updateNav`) lower to calls to the
LLVM object if it's available, or otherwise to the `link.File` if it's
available (neither is available under `-fno-emit-bin`)
* After everything is done, linking is finalized by calling `flush` on
the `link.File`; for `link.Lld` this invokes LLD, for other linkers it
flushes self-hosted linker state
There's one messy thing remaining, and that's how self-hosted function
codegen in a ZCU works; right now, we process AIR with a call sequence
something like this:
* `link.doTask`
* `Zcu.PerThread.linkerUpdateFunc`
* `link.File.updateFunc`
* `link.Elf.updateFunc`
* `link.Elf.ZigObject.updateFunc`
* `codegen.generateFunction`
* `arch.x86_64.CodeGen.generate`
So, we start in the linker, take a scenic detour through `Zcu`, go back
to the linker, into its implementation, and then... right back out, into
code which is generic over the linker implementation, and then dispatch
on the *backend* instead! Of course, within `arch.x86_64.CodeGen`, there
are some more places which switch on the `link` implementation being
used. This is all pretty silly... so it shall be my next target.
|
|
Also closes #23902
|
|
Fuchsia only supports PIE executables, specifically ET_DYN.
https://fuchsia.dev/fuchsia-src/concepts/process/program_loading
|
|
last commit introduced a templated variable name that made zig fmt angry
|
|
This commit introduces a new flag to generate a new Zig project using
`zig init` without comments for users who are already familiar with the
Zig build system.
Additionally, the generated files are now different. Previously we would
generate a set of files that defined a static library and an executable,
which real-life experience has shown to cause confusion to newcomers.
The new template generates one Zig module and one executable both in
order to accommodate the two most common use cases, but also to suggest
that a library could use a CLI tool (e.g. a parser library could use a
CLI tool that provides syntax checking) and vice-versa a CLI tool might
want to expose its core functionality as a Zig module.
All references to C interoperability are removed from the template under
the assumption that if you're tall enough to do C interop, you're also
tall enough to find your way around the build system. Experienced users
will still be able to use the current template and adapt it with minimal
changes in order to perform more advanced operations. As an example, one
only needs to change `b.addExecutable` to `b.addLibrary` to switch from
generating an executable to a dynamic (or static) library.
|
|
In a compiler built with debug extensions, pass `--debug-incremental` to
spawn the "incremental debug server". This is a TCP server exposing a
REPL which allows querying a bunch of compiler state, some of which is
stored only when that flag is passed. Eventually, this will probably
move into `std.zig.Server`/`std.zig.Client`, but this is easier to work
with right now. The easiest way to interact with the server is `telnet`.
|
|
Closes #23813.
|
|
This commit makes some big changes to how we track state for Zig source
files. In particular, it changes:
* How `File` tracks its path on-disk
* How AstGen discovers files
* How file-level errors are tracked
* How `builtin.zig` files and modules are created
The original motivation here was to address incremental compilation bugs
with the handling of files, such as #22696. To fix this, a few changes
are necessary.
Just like declarations may become unreferenced on an incremental update,
meaning we suppress analysis errors associated with them, it is also
possible for all imports of a file to be removed on an incremental
update, in which case file-level errors for that file should be
suppressed. As such, after AstGen, the compiler must traverse files
(starting from analysis roots) and discover the set of "live files" for
this update.
Additionally, the compiler's previous handling of retryable file errors
was not very good; the source location the error was reported as was
based only on the first discovered import of that file. This source
location also disappeared on future incremental updates. So, as a part
of the file traversal above, we also need to figure out the source
locations of imports which errors should be reported against.
Another observation I made is that the "file exists in multiple modules"
error was not implemented in a particularly good way (I get to say that
because I wrote it!). It was subject to races, where the order in which
different imports of a file were discovered affects both how errors are
printed, and which module the file is arbitrarily assigned, with the
latter in turn affecting which other files are considered for import.
The thing I realised here is that while the AstGen worker pool is
running, we cannot know for sure which module(s) a file is in; we could
always discover an import later which changes the answer.
So, here's how the AstGen workers have changed. We initially ensure that
`zcu.import_table` contains the root files for all modules in this Zcu,
even if we don't know any imports for them yet. Then, the AstGen
workers do not need to be aware of modules. Instead, they simply ignore
module imports, and only spin off more workers when they see a by-path
import.
During AstGen, we can't use module-root-relative paths, since we don't
know which modules files are in; but we don't want to unnecessarily use
absolute files either, because those are non-portable and can make
`error.NameTooLong` more likely. As such, I have introduced a new
abstraction, `Compilation.Path`. This type is a way of representing a
filesystem path which has a *canonical form*. The path is represented
relative to one of a few special directories: the lib directory, the
global cache directory, or the local cache directory. As a fallback, we
use absolute (or cwd-relative on WASI) paths. This is kind of similar to
`std.Build.Cache.Path` with a pre-defined list of possible
`std.Build.Cache.Directory`, but has stricter canonicalization rules
based on path resolution to make sure deduplicating files works
properly. A `Compilation.Path` can be trivially converted to a
`std.Build.Cache.Path` from a `Compilation`, but is smaller, has a
canonical form, and has a digest which will be consistent across
different compiler processes with the same lib and cache directories
(important when we serialize incremental compilation state in the
future). `Zcu.File` and `Zcu.EmbedFile` both contain a
`Compilation.Path`, which is used to access the file on-disk;
module-relative sub paths are used quite rarely (`EmbedFile` doesn't
even have one now for simplicity).
After the AstGen workers all complete, we know that any file which might
be imported is definitely in `import_table` and up-to-date. So, we
perform a single-threaded graph traversal; similar to what
`resolveReferences` plays for `AnalUnit`s, but for files instead. We
figure out which files are alive, and which module each file is in. If a
file turns out to be in multiple modules, we set a field on `Zcu` to
indicate this error. If a file is in a different module to a prior
update, we set a flag instructing `updateZirRefs` to invalidate all
dependencies on the file. This traversal also discovers "import errors";
these are errors associated with a specific `@import`. With Zig's
current design, there is only one possible error here: "import outside
of module root". This must be identified during this traversal instead
of during AstGen, because it depends on which module the file is in. I
tried also representing "module not found" errors in this same way, but
it turns out to be much more useful to report those in Sema, because of
use cases like optional dependencies where a module import is behind a
comptime-known build option.
For simplicity, `failed_files` now just maps to `?[]u8`, since the
source location is always the whole file. In fact, this allows removing
`LazySrcLoc.Offset.entire_file` completely, slightly simplifying some
error reporting logic. File-level errors are now directly built in the
`std.zig.ErrorBundle.Wip`. If the payload is not `null`, it is the
message for a retryable error (i.e. an error loading the source file),
and will be reported with a "file imported here" note pointing to the
import site discovered during the single-threaded file traversal.
The last piece of fallout here is how `Builtin` works. Rather than
constructing "builtin" modules when creating `Package.Module`s, they are
now constructed on-the-fly by `Zcu`. The map `Zcu.builtin_modules` maps
from digests to `*Package.Module`s. These digests are abstract hashes of
the `Builtin` value; i.e. all of the options which are placed into
"builtin.zig". During the file traversal, we populate `builtin_modules`
as needed, so that when we see this imports in Sema, we just grab the
relevant entry from this map. This eliminates a bunch of awkward state
tracking during construction of the module graph. It's also now clearer
exactly what options the builtin module has, since previously it
inherited some options arbitrarily from the first-created module with
that "builtin" module!
The user-visible effects of this commit are:
* retryable file errors are now consistently reported against the whole
file, with a note pointing to a live import of that file
* some theoretical bugs where imports are wrongly considered distinct
(when the import path moves out of the cwd and then back in) are fixed
* some consistency issues with how file-level errors are reported are
fixed; these errors will now always be printed in the same order
regardless of how the AstGen pass assigns file indices
* incremental updates do not print retryable file errors differently
between updates or depending on file structure/contents
* incremental updates support files changing modules
* incremental updates support files becoming unreferenced
Resolves: #22696
|
|
Contributes to #23424.
|
|
|
|
|
|
glibc's libc.a depends on the functions provided by libunwind.
|
|
LLVM can only produce assembly files for this target currently.
|
|
* Accept -fsanitize-c=trap|full in addition to the existing form.
* Accept -f(no-)sanitize-trap=undefined in zig cc.
* Change type of std.Build.Module.sanitize_c to std.zig.SanitizeC.
* Add some missing Compilation.Config fields to the cache.
Closes #23216.
|
|
|
|
This is fairly straightforward; the actual compiler changes are limited
to the CLI, since `Compilation` already supports this combination.
A new `std.Build` API is introduced to allow representing this. By
passing the `emit_object` option to `std.Build.addTest`, you get a
`Step.Compile` which emits an object file; you can then use that as you
would any other object, such as either installing it for external use,
or linking it into another step.
A standalone test is added to cover the build system API. It builds a
test into an object, and links it into a final executable, which it then
runs.
Using this build system mechanism prevents the build system from
noticing that you're running a `zig test`, so the build runner and test
runner do not communicate over stdio. However, that's okay, because the
real-world use cases for this feature don't want to do that anyway!
Resolves: #23374
|
|
|
|
Before:
❯ zig cc main.c -target x86_64-linux-musl && musl-ldd ./a.out
musl-ldd: ./a.out: Not a valid dynamic program
❯ zig cc main.c -target x86_64-linux-musl -static && musl-ldd ./a.out
musl-ldd: ./a.out: Not a valid dynamic program
❯ zig cc main.c -target x86_64-linux-musl -dynamic && musl-ldd ./a.out
musl-ldd: ./a.out: Not a valid dynamic program
After:
❯ zig cc main.c -target x86_64-linux-musl && musl-ldd ./a.out
musl-ldd: ./a.out: Not a valid dynamic program
❯ zig cc main.c -target x86_64-linux-musl -static && musl-ldd ./a.out
musl-ldd: ./a.out: Not a valid dynamic program
❯ zig cc main.c -target x86_64-linux-musl -dynamic && musl-ldd ./a.out
/lib/ld-musl-x86_64.so.1 (0x72c10019e000)
libc.so => /lib/ld-musl-x86_64.so.1 (0x72c10019e000)
Closes #11909.
|
|
They are, themselves, static libraries even if the resulting artifact strictly
speaking requires dynamic linking to the corresponding system DLLs to run. Note,
though, that there's no libc-provided dynamic linker on Windows like on POSIX,
so this isn't particularly problematic.
This matches x86_64-w64-mingw32-gcc behavior.
|
|
|
|
std.Build: add build-id option
|
|
it now denotes:
- all supported styles
- what a given style outputs
- what formats a given style supports
|
|
|
|
|
|
`--fetch` flag now has additional optional parameter, which specifies
how lazy dependencies should be fetched:
* `needed` — lazy dependencies are fetched only if they are required
for current build configuration to work. Default and works same
as old `--fetch` flag.
* `all` — lazy dependencies are always fetched. If `--system` flag
is used after that, it's guaranteed that **any** build configuration
will not require additional download of dependencies during build.
Helpful for distro packagers and CI systems:
https://www.github.com/ziglang/zig/issues/14597#issuecomment-1426827495
If none is passed, behaviour is same as if `needed` was passed.
Signed-off-by: Eric Joldasov <bratishkaerik@landless-city.net>
|
|
Closes #22517.
|
|
improve type safety of std.zig.Ast
|
|
|
|
This commits adds the following distinct integer types to std.zig.Ast:
- OptionalTokenIndex
- TokenOffset
- OptionalTokenOffset
- Node.OptionalIndex
- Node.Offset
- Node.OptionalOffset
The `Node.Index` type has also been converted to a distinct type while
`TokenIndex` remains unchanged.
`Ast.Node.Data` has also been changed to a (untagged) union to provide
safety checks.
|
|
|
|
Closes #23066
|
|
This is a better default cache mode until incremental compilation is
enabled by default.
|
|
|
|
|
|
mainly this addresses the following use case:
1. Someone creates a template with build.zig.zon, id field included
(note that zig init does not create this problem since it generates
fresh id every time it runs).
2. User A uses the template, changing package name to "example" but not
id field.
3. User B uses the same template, changing package name also to
"example", also not changing the id field.
Here, both packages have unintentional conflicting logical ids.
By making the field a combination of name checksum + random id, this
accident is avoided. "nonce" is an OK name for this.
Also relaxes errors on remote packages when using `zig fetch`.
|