aboutsummaryrefslogtreecommitdiff
path: root/src/libs/netbsd.zig
AgeCommit message (Collapse)Author
2025-10-29compiler: update for introduction of std.IoAndrew Kelley
only thing remaining is using libc dns resolution when linking libc
2025-08-28fix not discarding delimiterAndrew Kelley
perhaps these APIs have the defaults backwards, eh?
2025-08-28compiler: update not to use GenericWriterAndrew Kelley
2025-08-11std.ArrayList: make unmanaged the defaultAndrew Kelley
2025-08-08compiler: improve error reportingmlugg
The functions `Compilation.create` and `Compilation.update` previously returned inferred error sets, which had built up a lot of crap over time. This meant that certain error conditions -- particularly certain filesystem errors -- were not being reported properly (at best the CLI would just print the error name). This was also a problem in sub-compilations, where at times only the error name -- which might just be something like `LinkFailed` -- would be visible. This commit makes the error handling here more disciplined by introducing concrete error sets to these functions (and a few more as a consequence). These error sets are small: errors in `update` are almost all reported via compile errors, and errors in `create` are reported through a new `Compilation.CreateDiagnostic` type, a tagged union of possible error cases. This allows for better error reporting. Sub-compilations also report errors more correctly in several cases, leading to more informative errors in the case of compiler bugs. Also fixes some race conditions in library building by replacing calls to `setMiscFailure` with calls to `lockAndSetMiscFailure`. Compilation of libraries such as libc happens on the thread pool, so the logic must synchronize its access to shared `Compilation` state.
2025-08-06link: prevent deadlock when prelink tasks failmlugg
If an error occured which prevented a prelink task from being queued, then `pending_prelink_tasks` would never be decremented, which could cause deadlocks in some cases. So, instead of calculating ahead of time the number of prelink tasks to expect, we use a simpler strategy which is much like a wait group: we add 1 to a value when we spawn a worker, and in the worker function, `defer` decrementing the value. The initial value is 1, and there's a decrement after all of the workers are spawned, so once it hits 0, prelink is done (be it with a failure or a success).
2025-07-07compiler: fix remaining build failuresAndrew Kelley
2025-06-19Target: pass and use locals by pointer instead of by valueJacob Young
This struct is larger than 256 bytes and code that copies it consistently shows up in profiles of the compiler.
2025-06-12libs: fix caching behaviormlugg
glibc, freebsd, and netbsd all do caching manually, because of the fact that they emit multiple files which they want to cache as a block. Therefore, the individual sub-compilation on a cache miss should be using `CacheMode.none` so that we can specify the output paths for each sub-compilation as being in the shared output directory.
2025-06-12compiler: rework emit paths and cache modesmlugg
Previously, various doc comments heavily disagreed with the implementation on both what lives where on the filesystem at what time, and how that was represented in code. Notably, the combination of emit paths outside the cache and `disable_lld_caching` created a kind of ad-hoc "cache disable" mechanism -- which didn't actually *work* very well, 'most everything still ended up in this cache. There was also a long-standing issue where building using the LLVM backend would put a random object file in your cwd. This commit reworks how emit paths are specified in `Compilation.CreateOptions`, how they are represented internally, and how the cache usage is specified. There are now 3 options for `Compilation.CacheMode`: * `.none`: do not use the cache. The paths we have to emit to are relative to the compiler cwd (they're either user-specified, or defaults inferred from the root name). If we create any temporary files (e.g. the ZCU object when using the LLVM backend) they are emitted to a directory in `local_cache/tmp/`, which is deleted once the update finishes. * `.whole`: cache the compilation based on all inputs, including file contents. All emit paths are computed by the compiler (and will be stored as relative to the local cache directory); it is a CLI error to specify an explicit emit path. Artifacts (including temporary files) are written to a directory under `local_cache/tmp/`, which is later renamed to an appropriate `local_cache/o/`. The caller (who is using `--listen`; e.g. the build system) learns the name of this directory, and can get the artifacts from it. * `.incremental`: similar to `.whole`, but Zig source file contents, and anything else which incremental compilation can handle changes for, is not included in the cache manifest. We don't need to do the dance where the output directory is initially in `tmp/`, because our digest is computed entirely from CLI inputs. To be clear, the difference between `CacheMode.whole` and `CacheMode.incremental` is unchanged. `CacheMode.none` is new (previously it was sort of poorly imitated with `CacheMode.whole`). The defined behavior for temporary/intermediate files is new. `.none` is used for direct CLI invocations like `zig build-exe foo.zig`. The other cache modes are reserved for `--listen`, and the cache mode in use is currently just based on the presence of the `-fincremental` flag. There are two cases in which `CacheMode.whole` is used despite there being no `--listen` flag: `zig test` and `zig run`. Unless an explicit `-femit-bin=xxx` argument is passed on the CLI, these subcommands will use `CacheMode.whole`, so that they can put the output somewhere without polluting the cwd (plus, caching is potentially more useful for direct usage of these subcommands). Users of `--listen` (such as the build system) can now use `std.zig.EmitArtifact.cacheName` to find out what an output will be named. This avoids having to synchronize logic between the compiler and all users of `--listen`.
2025-06-12compiler: get most backends compiling againmlugg
As of this commit, every backend other than self-hosted Wasm and self-hosted SPIR-V compiles and (at least somewhat) functions again. Those two backends are currently disabled with panics. Note that `Zcu.Feature.separate_thread` is *not* enabled for the fixed backends. Avoiding linker references from codegen is a non-trivial task, and can be done after this branch.
2025-06-12compiler: rework backend pipeline to separate codegen and linkmlugg
The idea here is that instead of the linker calling into codegen, instead codegen should run before we touch the linker, and after MIR is produced, it is sent to the linker. Aside from simplifying the call graph (by preventing N linkers from each calling into M codegen backends!), this has the huge benefit that it is possible to parallellize codegen separately from linking. The threading model can look like this: * 1 semantic analysis thread, which generates AIR * N codegen threads, which process AIR into MIR * 1 linker thread, which emits MIR to the binary The codegen threads are also responsible for `Air.Legalize` and `Air.Liveness`; it's more efficient to do this work here instead of blocking the main thread for this trivially parallel task. I have repurposed the `Zcu.Feature.separate_thread` backend feature to indicate support for this 1:N:1 threading pattern. This commit makes the C backend support this feature, since it was relatively easy to divorce from `link.C`: it just required eliminating some shared buffers. Other backends don't currently support this feature. In fact, they don't even compile -- the next few commits will fix them back up.
2025-05-30compiler: Use new merged header paths for glibc and NetBSD libc.Alex Rønne Petersen
2025-05-20compiler: Fix build break due to #23836 being merged before #23913.Alex Rønne Petersen
2025-05-17compiler: Support building NetBSD crt1.o/Scrt1.o and stub shared libraries.Alex Rønne Petersen
Only works for NetBSD 10.1+. Note that we still default to targeting NetBSD 9. Contributes to #2877.