| Age | Commit message (Collapse) | Author |
|
Resolves: #24415
|
|
std.Io: delete GenericReader, AnyReader, FixedBufferStream; and related API breakage
|
|
This reverts commit b4fd57a9c114748afb9ba0a04bede61089a02ddf.
https://github.com/llvm/llvm-project/pull/149743
|
|
This was fixed in LLVM 21, in particular for targets older than v68.
|
|
|
|
LLVM 21 added support for this.
|
|
LLVM 21 added support for this.
|
|
|
|
|
|
and delete deprecated alias std.io
|
|
closes #25067
|
|
Co-authored-by: Alex Rønne Petersen <alex@alexrp.com>
|
|
The big endian RISC-V effort is mostly driven by MIPS (the company) which is
pivoting to RISC-V, and presumably needs a big endian variant to fill the niche
that big endian MIPS (the ISA) did.
GCC already supports these targets, but LLVM support will only appear in 22;
this commit just adds the necessary target knowledge and checks on our end.
|
|
|
|
two small fixes
|
|
Sema: Improve comptime arithmetic undef handling
|
|
The LLVM backend lowers unions where all fields are zero-bit as
equivalent to their backing enum, and expects them to have the same
by-ref-ness in at least one place in the backend, probably more.
Resolves: #23577
|
|
Resolves: #23533
|
|
|
|
This commit expands on the foundations laid by https://github.com/ziglang/zig/pull/23177
and moves even more `Sema`-only functionality from `Value`
to `Sema.arith`. Specifically all shift and bitwise operations,
`@truncate`, `@bitReverse` and `@byteSwap` have been moved and
adapted to the new rules around `undefined`.
Especially the comptime shift operations have been basically
rewritten, fixing many open issues in the process.
New rules applied to operators:
* `<<`, `@shlExact`, `@shlWithOverflow`, `>>`, `@shrExact`: compile error if any operand is undef
* `<<|`, `~`, `^`, `@truncate`, `@bitReverse`, `@byteSwap`: return undef if any operand is undef
* `&`, `|`: Return undef if both operands are undef, turn undef into actual `0xAA` bytes otherwise
Additionally this commit canonicalizes the representation of
aggregates with all-undefined members in the `InternPool` by
disallowing them and enforcing the usage of a single typed
`undef` value instead. This reduces the amount of edge cases
and fixes a bunch of bugs related to partially undefined vecs.
List of operations directly affected by this patch:
* `<<`, `<<|`, `@shlExact`, `@shlWithOverflow`
* `>>`, `@shrExact`
* `&`, `|`, `~`, `^` and their atomic rmw + reduce pendants
* `@truncate`, `@bitReverse`, `@byteSwap`
|
|
|
|
|
|
This commit replaces the "fuzzer" UI, previously accessed with the
`--fuzz` and `--port` flags, with a more interesting web UI which allows
more interactions with the Zig build system. Most notably, it allows
accessing the data emitted by a new "time report" system, which allows
users to see which parts of Zig programs take the longest to compile.
The option to expose the web UI is `--webui`. By default, it will listen
on `[::1]` on a random port, but any IPv6 or IPv4 address can be
specified with e.g. `--webui=[::1]:8000` or `--webui=127.0.0.1:8000`.
The options `--fuzz` and `--time-report` both imply `--webui` if not
given. Currently, `--webui` is incompatible with `--watch`; specifying
both will cause `zig build` to exit with a fatal error.
When the web UI is enabled, the build runner spawns the web server as
soon as the configure phase completes. The frontend code consists of one
HTML file, one JavaScript file, two CSS files, and a few Zig source
files which are built into a WASM blob on-demand -- this is all very
similar to the old fuzzer UI. Also inherited from the fuzzer UI is that
the build system communicates with web clients over a WebSocket
connection.
When the build finishes, if `--webui` was passed (i.e. if the web server
is running), the build runner does not terminate; it continues running
to serve web requests, allowing interactive control of the build system.
In the web interface is an overall "status" indicating whether a build
is currently running, and also a list of all steps in this build. There
are visual indicators (colors and spinners) for in-progress, succeeded,
and failed steps. There is a "Rebuild" button which will cause the build
system to reset the state of every step (note that this does not affect
caching) and evaluate the step graph again.
If `--time-report` is passed to `zig build`, a new section of the
interface becomes visible, which associates every build step with a
"time report". For most steps, this is just a simple "time taken" value.
However, for `Compile` steps, the compiler communicates with the build
system to provide it with much more interesting information: time taken
for various pipeline phases, with a per-declaration and per-file
breakdown, sorted by slowest declarations/files first. This feature is
still in its early stages: the data can be a little tricky to
understand, and there is no way to, for instance, sort by different
properties, or filter to certain files. However, it has already given us
some interesting statistics, and can be useful for spotting, for
instance, particularly complex and slow compile-time logic.
Additionally, if a compilation uses LLVM, its time report includes the
"LLVM pass timing" information, which was previously accessible with the
(now removed) `-ftime-report` compiler flag.
To make time reports more useful, ZIR and compilation caches are ignored
by the Zig compiler when they are enabled -- in other words, `Compile`
steps *always* run, even if their result should be cached. This means
that the flag can be used to analyze a project's compile time without
having to repeatedly clear cache directory, for instance. However, when
using `-fincremental`, updates other than the first will only show you
the statistics for what changed on that particular update. Notably, this
gives us a fairly nice way to see exactly which declarations were
re-analyzed by an incremental update.
If `--fuzz` is passed to `zig build`, another section of the web
interface becomes visible, this time exposing the fuzzer. This is quite
similar to the fuzzer UI this commit replaces, with only a few cosmetic
tweaks. The interface is closer than before to supporting multiple fuzz
steps at a time (in line with the overall strategy for this build UI,
the goal will be for all of the fuzz steps to be accessible in the same
interface), but still doesn't actually support it. The fuzzer UI looks
quite different under the hood: as a result, various bugs are fixed,
although other bugs remain. For instance, viewing the source code of any
file other than the root of the main module is completely broken (as on
master) due to some bogus file-to-module assignment logic in the fuzzer
UI.
Implementation notes:
* The `lib/build-web/` directory holds the client side of the web UI.
* The general server logic is in `std.Build.WebServer`.
* Fuzzing-specific logic is in `std.Build.Fuzz`.
* `std.Build.abi` is the new home of `std.Build.Fuzz.abi`, since it now
relates to the build system web UI in general.
* The build runner now has an **actual** general-purpose allocator,
because thanks to `--watch` and `--webui`, the process can be
arbitrarily long-lived. The gpa is `std.heap.DebugAllocator`, but the
arena remains backed by `std.heap.page_allocator` for efficiency. I
fixed several crashes caused by conflation of `gpa` and `arena` in the
build runner and `std.Build`, but there may still be some I have
missed.
* The I/O logic in `std.Build.WebServer` is pretty gnarly; there are a
*lot* of threads involved. I anticipate this situation improving
significantly once the `std.Io` interface (with concurrency support)
is introduced.
|
|
Additionally, disable failing big-endian atomic test
also improve test paramaters to catch this when condition is removed
also some other cleanups
|
|
|
|
|
|
Workaround for #24383
|
|
|
|
until now these were stringly typed.
it's kinda obvious when you think about it.
|
|
* delete dead code
* don't access stack trace too early
* revert unintended edit
|
|
|
|
* LLVM: Pass correct tid to emit
* Store stack trace type in Zcu
* Don't use pt.errorIntType in LLVM backend
|
|
|
|
added adapter to AnyWriter and GenericWriter to help bridge the gap
between old and new API
make std.testing.expectFmt work at compile-time
std.fmt no longer has a dependency on std.unicode. Formatted printing
was never properly unicode-aware. Now it no longer pretends to be.
Breakage/deprecations:
* std.fs.File.reader -> std.fs.File.deprecatedReader
* std.fs.File.writer -> std.fs.File.deprecatedWriter
* std.io.GenericReader -> std.io.Reader
* std.io.GenericWriter -> std.io.Writer
* std.io.AnyReader -> std.io.Reader
* std.io.AnyWriter -> std.io.Writer
* std.fmt.format -> std.fmt.deprecatedFormat
* std.fmt.fmtSliceEscapeLower -> std.ascii.hexEscape
* std.fmt.fmtSliceEscapeUpper -> std.ascii.hexEscape
* std.fmt.fmtSliceHexLower -> {x}
* std.fmt.fmtSliceHexUpper -> {X}
* std.fmt.fmtIntSizeDec -> {B}
* std.fmt.fmtIntSizeBin -> {Bi}
* std.fmt.fmtDuration -> {D}
* std.fmt.fmtDurationSigned -> {D}
* {} -> {f} when there is a format method
* format method signature
- anytype -> *std.io.Writer
- inferred error set -> error{WriteFailed}
- options -> (deleted)
* std.fmt.Formatted
- now takes context type explicitly
- no fmt string
|
|
remove `async` and `await` keywords; remove `usingnamespace`
|
|
|
|
|
|
Also remove `@frameSize`, closing #3654.
While the other machinery might remain depending on #23446, it is
settled that there will not be `async`/ `await` keywords in the
language.
|
|
Closes #24236.
|
|
|
|
this backend was abandoned before it was completed, and it is not worth
salvaging.
|
|
this backend was abandoned before it was completed, and it is not worth
salvaging.
|
|
|
|
|
|
|
|
Now that codegen has no references to linker state this is much easier.
Closes #24153
|
|
This struct is larger than 256 bytes and code that copies it
consistently shows up in profiles of the compiler.
|
|
This safety check was completely broken; it triggered unchecked illegal
behavior *in order to implement the safety check*. You definitely can't
do that! Instead, we must explicitly check the boundaries. This is a
tiny bit fiddly, because we need to make sure we do floating-point
rounding in the correct direction, and also handle the fact that the
operation truncates so the boundary works differently for min vs max.
Instead of implementing this safety check in Sema, there are now
dedicated AIR instructions for safety-checked intfromfloat (two
instructions; which one is used depends on the float mode). Currently,
no backend directly implements them; instead, a `Legalize.Feature` is
added which expands the safety check, and this feature is enabled for
all backends we currently test, including the LLVM backend.
The `u0` case is still handled in Sema, because Sema needs to check for
that anyway due to the comptime-known result. The old safety check here
was also completely broken and has therefore been rewritten. In that
case, we just check for 'abs(input) < 1.0'.
I've added a bunch of test coverage for the boundary cases of
`@intFromFloat`, both for successes (in `test/behavior/cast.zig`) and
failures (in `test/cases/safety/`).
Resolves: #24161
|
|
|
|
The idea here is that instead of the linker calling into codegen,
instead codegen should run before we touch the linker, and after MIR is
produced, it is sent to the linker. Aside from simplifying the call
graph (by preventing N linkers from each calling into M codegen
backends!), this has the huge benefit that it is possible to
parallellize codegen separately from linking. The threading model can
look like this:
* 1 semantic analysis thread, which generates AIR
* N codegen threads, which process AIR into MIR
* 1 linker thread, which emits MIR to the binary
The codegen threads are also responsible for `Air.Legalize` and
`Air.Liveness`; it's more efficient to do this work here instead of
blocking the main thread for this trivially parallel task.
I have repurposed the `Zcu.Feature.separate_thread` backend feature to
indicate support for this 1:N:1 threading pattern. This commit makes the
C backend support this feature, since it was relatively easy to divorce
from `link.C`: it just required eliminating some shared buffers. Other
backends don't currently support this feature. In fact, they don't even
compile -- the next few commits will fix them back up.
|