| Age | Commit message (Collapse) | Author |
|
|
|
When struct types have no field names, the names are implicitly
understood to be strings corresponding to the field indexes in
declaration order. It used to be the case that a NullTerminatedString
would be stored for each field in this case, however, now, callers must
handle the possibility that there are no names stored at all. This
commit introduces `legacyStructFieldName`, a function to fake the
previous behavior. Probably something better could be done by reworking
all the callsites of this function.
|
|
|
|
All of the logic in `Value.elemValue` is quite questionable, but
printing an error is definitely better than crashing. Notably, this
should stop us from hitting crashes when dumping AIR.
|
|
Structs were previously using `SegmentedList` to be given indexes, but
were not actually backed by the InternPool arrays.
After this, the only remaining uses of `SegmentedList` in the compiler
are `Module.Decl` and `Module.Namespace`. Once those last two are
migrated to become backed by InternPool arrays as well, we can introduce
state serialization via writing these arrays to disk all at once.
Unfortunately there are a lot of source code locations that touch the
struct type API, so this commit is still work-in-progress. Once I get it
compiling and passing the test suite, I can provide some interesting
data points such as how it affected the InternPool memory size and
performance comparison against master branch.
I also couldn't resist migrating over a bunch of alignment API over to
use the log2 Alignment type rather than a mismash of u32 and u64 byte
units with 0 meaning something implicitly different and special at every
location. Turns out you can do all the math you need directly on the
log2 representation of alignments.
|
|
Instead of using actual slices for InternPool.Key.AnonStructType, this
commit changes to use Slice types instead, which store a
long-lived index rather than a pointer.
This is a follow-up to 7ef1eb1c27754cb0349fdc10db1f02ff2dddd99b.
|
|
There are a couple concepts here worth understanding:
Key.UnionType - This type is available *before* resolving the union's
fields. The enum tag type, number of fields, and field names, field
types, and field alignments are not available with this.
InternPool.UnionType - This one can be obtained from the above type with
`InternPool.loadUnionType` which asserts that the union's enum tag type
has been resolved. This one has all the information available.
Additionally:
* ZIR: Turn an unused bit into `any_aligned_fields` flag to help
semantic analysis know whether a union has explicit alignment on any
fields (usually not).
* Sema: delete `resolveTypeRequiresComptime` which had the same type
signature and near-duplicate logic to `typeRequiresComptime`.
- Make opaque types not report comptime-only (this was inconsistent
between the two implementations of this function).
* Implement accepted proposal #12556 which is a breaking change.
|
|
The key changes in this commit are:
```diff
- names: []const NullTerminatedString,
+ names: NullTerminatedString.Slice,
- values: []const Index,
+ values: Index.Slice,
```
Which eliminates the slices from `InternPool.Key.EnumType` and replaces
them with structs that contain `start` and `len` indexes. This makes the
lifetime of `EnumType` change from expiring with updates to InternPool,
to expiring when the InternPool is garbage-collected, which is currently
never.
This is gearing up for a larger change I started working on locally
which moves union types into InternPool.
As a bonus, I fixed some unnecessary instances of `@as`.
|
|
Specifically without linking libc.
|
|
Abridged summary:
* Move `Module.Fn` into `InternPool`.
* Delete a lot of confusing and problematic `Sema` logic related to
generic function calls.
This commit removes `Module.Fn` and replaces it with two new
`InternPool.Tag` values:
* `func_decl` - corresponding to a function declared in the source
code. This one contains line/column numbers, zir_body_inst, etc.
* `func_instance` - one for each monomorphization of a generic
function. Contains a reference to the `func_decl` from whence the
instantiation came, along with the `comptime` parameter values (or
types in the case of `anytype`)
Since `InternPool` provides deduplication on these values, these fields
are now deleted from `Module`:
* `monomorphed_func_keys`
* `monomorphed_funcs`
* `align_stack_fns`
Instead of these, Sema logic for generic function instantiation now
unconditionally evaluates the function prototype expression for every
generic callsite. This is technically required in order for type
coercions to work. The previous code had some dubious, probably wrong
hacks to make things work, such as `hashUncoerced`. I'm not 100% sure
how we were able to eliminate that function and still pass all the
behavior tests, but I'm pretty sure things were still broken without
doing type coercion for every generic function call argument.
After the function prototype is evaluated, it produces a deduplicated
`func_instance` `InternPool.Index` which can then be used for the
generic function call.
Some other nice things made by this simplification are the removal of
`comptime_args_fn_inst` and `preallocated_new_func` from `Sema`, and the
messy logic associated with them.
I have not yet been able to measure the perf of this against master
branch. On one hand, it reduces memory usage and pointer chasing of the
most heavily used `InternPool` Tag - function bodies - but on the other
hand, it does evaluate function prototype expressions more than before.
We will soon find out.
|
|
Most of this migration was performed automatically with `zig fmt`. There
were a few exceptions which I had to manually fix:
* `@alignCast` and `@addrSpaceCast` cannot be automatically rewritten
* `@truncate`'s fixup is incorrect for vectors
* Test cases are not formatted, and their error locations change
|
|
Resolves: #5909
|
|
Signed-off-by: Eric Joldasov <bratishkaerik@getgoogleoff.me>
|
|
|
|
|
|
These are frequently invalidated whenever a string is interned, so avoid
creating pointers to `string_bytes` wherever possible. This is an
attempt to fix random CI failures.
|
|
|
|
|
|
All but 2 test cases now pass (tested on x86_64 Linux, native only). The
remaining two signify an issue requiring a larger refactor, which I will
do in a separate commit.
Notable changes:
* Fix uninitialized memory when allocating objects from free lists
* Implement TypedValue printing for pointers
* Fix some TypedValue printing logic
* Work around non-existence of InternPool.remove implementation
|
|
The main motivation for this commit is eliminating Decl.value_arena.
Everything else is dominoes.
Decl.name used to be stored in the GPA, now it is stored in InternPool.
It ended up being simpler to migrate other strings to be interned as
well, such as struct field names, union field names, and a few others.
This ended up requiring a big diff, sorry about that. But the changes
are pretty nice, we finally start to take advantage of InternPool's
existence.
global_error_set and error_name_list are simplified. Now it is a single
ArrayHashMap(NullTerminatedString, void) and the index is the error tag
value.
Module.tmp_hack_arena is re-introduced (it was removed in
eeff407941560ce8eb5b737b2436dfa93cfd3a0c) in order to deal with
comptime_args, optimized_order, and struct and union fields. After
structs and unions get moved into InternPool properly, tmp_hack_arena
can be deleted again.
|
|
This is neither a type nor a value. Simplifies `addStrLit` as well as
the many places that switch on `InternPool.Key`.
This is a partial revert of bec29b9e498e08202679aa29a45dab2a06a69a1e.
|
|
This is a bit odd, because this value doesn't actually exist:
see #15909. This gets all the empty enum/union behavior tests passing.
Also adds an assertion to `Sema.analyzeBodyInner` which would have
helped figure out the issue here much more quickly.
|
|
|
|
|
|
This avoids memory management bugs with the previous implementation.
|
|
|
|
Previously, there were types and values for inferred allocations and a
lot of special-case handling. Now, instead, the special casing is
limited to AIR instructions for these use cases.
Instead of storing data in Value payloads, the data is now stored in AIR
instruction data as well as the previously `void` value type of the
`unresolved_inferred_allocs` hash map.
|
|
Some uses have been moved to their own tag, the rest use interned.
Also, finish porting comptime mutation to be more InternPool aware.
|
|
Reinstate some tags that will be needed for comptime init.
|
|
|
|
|
|
|
|
One change worth noting in this commit is that `module.global_error_set`
is no longer kept strictly up-to-date. The previous code reserved
integer error values when dealing with error set types, but this is no
longer needed because the integer values are not needed for semantic
analysis unless `@errorToInt` or `@intToError` are used and therefore
may be assigned lazily.
|
|
|
|
I'm seeing a new assertion trip: the call to `enumTagFieldIndex` in the
implementation of `@Type` is attempting to query the field index of an
union's enum tag, but the type of the enum tag value provided is not the
same as the union's tag type. Most likely this is a problem with type
coercion, since values are now typed.
Another problem is that I added some hacks in std.builtin because I
didn't see any convenient way to access them from Sema. That should
definitely be cleaned up before merging this branch.
|
|
|
|
Unlike unions and structs, enums are actually *encoded* into the
InternPool directly, rather than using the SegmentedList trick. This
results in them being quite compact, and greatly improved the ergonomics
of using enum types throughout the compiler.
It did however require introducing a new concept to the InternPool which
is an "incomplete" item - something that is added to gain a permanent
Index, but which is then mutated in place. This was necessary because
enum tag values and tag types may reference the namespaces created by
the enum itself, which required constructing the namespace, decl, and
calling analyzeDecl on the decl, which required the decl value, which
required the enum type, which required an InternPool index to be
assigned and for it to be meaningful.
The API for updating enums in place turned out to be quite slick and
efficient - the methods directly populate pre-allocated arrays and
return the information necessary to output the same compilation errors
as before.
|
|
|
|
|
|
|
|
This is a bit nasty, mainly because Type.onePossibleValue is now
errorable, which is a quite viral change.
|
|
|
|
|
|
|
|
|
|
Notably, `vector`.
Additionally, all alternate encodings of `pointer`, `optional`, and
`array`.
|
|
|
|
|
|
Instead of doing everything at once which is a hopelessly large task,
this introduces a piecemeal transition that can be done in small
increments at a time.
This is a minimal changeset that keeps the compiler compiling. It only
uses the InternPool for a small set of types.
Behavior tests are not passing.
Air.Inst.Ref and Zir.Inst.Ref are separated into different enums but
compile-time verified to have the same fields in the same order.
The large set of changes is mainly to deal with the fact that most Type
and Value methods now require a Module to be passed in, so that the
InternPool object can be accessed.
|
|
This commit removes the `field_call_bind` and `field_call_bind_named` ZIR
instructions, replacing them with a `field_call` instruction which does the bind
and call in one.
`field_call_bind` is an unfortunate instruction. It's tied into one very
specific usage pattern - its result can only be used as a callee. This means
that it creates a value of a "pseudo-type" of sorts, `bound_fn` - this type used
to exist in Zig, but now we just hide it from the user and have AstGen ensure
it's only used in one way. This is quite silly - `Type` and `Value` should, as
much as possible, reflect real Zig types and values.
It makes sense to instead encode the `a.b()` syntax as its own ZIR instruction,
so that's what we do here. This commit introduces a new instruction,
`field_call`. It's like `call`, but rather than a callee ref, it contains a ref
to the object pointer (`&a` in `a.b()`) and the string field name (`b`). This
eliminates `bound_fn` from the language, and slightly decreases the size of
generated ZIR - stats below.
This commit does remove a few usages which used to be allowed:
- `@field(a, "b")()`
- `@call(.auto, a.b, .{})`
- `@call(.auto, @field(a, "b"), .{})`
These forms used to work just like `a.b()`, but are no longer allowed. I believe
this is the correct choice for a few reasons:
- `a.b()` is a purely *syntactic* form; for instance, `(a.b)()` is not valid.
This means it is *not* inconsistent to not allow it in these cases; the
special case here isn't "a field access as a callee", but rather this exact
syntactic form.
- The second argument to `@call` looks much more visually distinct from the
callee in standard call syntax. To me, this makes it seem strange for that
argument to not work like a normal expression in this context.
- A more practical argument: it's confusing! `@field` and `@call` are used in
very different contexts to standard function calls: the former normally hints
at some comptime machinery, and the latter that you want more precise control
over parts of a function call. In these contexts, you don't want implicit
arguments adding extra confusion: you want to be very explicit about what
you're doing.
Lastly, some stats. I mentioned before that this change slightly reduces the
size of ZIR - this is due to two instructions (`field_call_bind` then `call`)
being replaced with one (`field_call`). Here are some numbers:
+--------------+----------+----------+--------+
| File | Before | After | Change |
+--------------+----------+----------+--------+
| Sema.zig | 4.72M | 4.53M | -4% |
| AstGen.zig | 1.52M | 1.48M | -3% |
| hash_map.zig | 283.9K | 276.2K | -3% |
| math.zig | 312.6K | 305.3K | -2% |
+--------------+----------+----------+--------+
|