| Age | Commit message (Collapse) | Author |
|
This commit enhances AstGen to introduce a form of error resilience
which allows valid ZIR to be emitted even when AstGen errors occur.
When a non-fatal AstGen error (e.g. `appendErrorNode`) occurs, ZIR
generation is not affected; the error is added to `astgen.errors` and
ultimately to the errors stored in `extra`, but that doesn't stop us
getting valid ZIR. Fatal AstGen errors (e.g. `failNode`) are a bit
trickier. These errors return `error.AnalysisFail`, which is propagated
up the stack. In theory, any parent expression can catch this error and
handle it, continuing ZIR generation whilst throwing away whatever was
lost. For now, we only do this in one place: when creating declarations.
If a call to `fnDecl`, `comptimeDecl`, `globalVarDecl`, etc, returns
`error.AnalysisFail`, the `declaration` instruction is still created,
but its body simply contains the new `extended(astgen_error())`
instruction, which instructs Sema to terminate semantic analysis with a
transitive error. This means that a fatal AstGen error causes the
innermost declaration containing the error to fail, but the rest of the
file remains intact.
If a source file contains parse errors, or an `error.AnalysisFail`
happens when lowering the top-level struct (e.g. there is an error in
one of its fields, or a name has multiple declarations), then lowering
for the entire file fails. Alongside the existing `Zir.hasCompileErrors`
query, this commit introduces `Zir.loweringFailed`, which returns `true`
only in this case.
The end result here is that files with AstGen failures will almost
always still emit valid ZIR, and hence can undergo semantic analysis on
the parts of the file which are (from AstGen's perspective) valid. This
is a noteworthy improvement to UX, but the main motivation here is
actually incremental compilation. Previously, AstGen failures caused
lots of semantic analysis work to be thrown out, because all `AnalUnit`s
in the file required re-analysis so as to trigger necessary transitive
failures and remove stored compile errors which would no longer make
sense (because a fresh compilation of this code would not emit those
errors, as the units those errors applied to would fail sooner due to
referencing a failed file). Now, this case only applies when a file has
severe top-level errors, which is far less common than something like
having an unused variable.
Lastly, this commit changes a few errors in `AstGen` to become fatal
when they were previously non-fatal and vice versa. If there is still a
reasonable way to continue AstGen and lower to ZIR after an error, it is
non-fatal; otherwise, it is fatal. For instance, `comptime const`, while
redundant syntax, has a clear meaning we can lower; on the other hand,
using an undeclared identifer has no sane lowering, so must trigger a
fatal error.
|
|
This fix doesn't matter at all in the grand scheme of things, but I
think the story behind it is perhaps curious, as it might point at a
design flaw in the Sema's error reporting API. So, a story:
On lobsters, there's a rather heated discussion on the merits on RAII vs
defer. I don't really like participating in heating discussions, but
also sort of can't stop thinking about this.
My own personal experience with Zig's defer and errdefer is that they
are fiddly to get right consistency --- if a program has a lot of
resource management to do, I _always_ mess up at least one
defer/errdefer. I've found my internal peace by just avoiding
spread-out, "pox" resource management, and instead centralizing resource
ownership under one of the following patterns:
* Either the thing is acquired and released in main
* Or main allocates N instances of thing, and then the rest of the code
explicitly juggles this finite pool of N. Notably, this juggling
typically doesn't involve defer/errdefer at all, as, at this level of
precision, there are no `try`s left, so you only code the happy path
* Or there's some sort of arena thing, where a bunch of resources have a
single owner, the user's don' bother cleaning up their resources, and
instead the owner does it once at the end.
So I wanted to make a lobster.rs comment in the vein of "yeah, if your
program is mostly about resource management, then Zig could be kinda a
pain, but that's friction tells you something: perhaps your program
shouldn't be about resource management, and instead it should be doing
what it is supposed to do?". And, as an evidence for my claim, I wanted
to point out some large body of Zig code which doesn't have a lot of
errdefers.
So, I cracked opened Sema.zig, `ctrl+f` for `defer`, saw whopping 400
something occupancies, and my heart skipped a bit. Looking at the
occurrences, _some_ of them were non-resource-related usages of defer.
But a lot of them were the following pattern:
```zig
const msg = try sema.errMsg(src, "comptime control flow inside runtime block", .{});
errdefer msg.destroy(sema.gpa);
```
This is exactly the thing that I know _I_ can't get right consistently!
So, at this point, I made a prediction that at least one of `errdefer`s
is missing. So, I looked at the first few `const msg = try` and of
course found one without `errdefer`.
I am at 0.8 that, even with this PR applied, the claim will still stand
--- there will be `errdefer` missing. So it feels like some API
re-design is in order, to make sure individual error messages are not
resources.
Could Sema just own all partially-constructed error messages, and, at a
few known safe-points:
* if the control flow is normal, assert that there are no in-progress
error messages
* if we are throwing an error, go and release messages immediately?
I am unlikely to do the actual refactor here, but I think it's worth
highlighting the overall pattern here.
PS: I am only 0.9 sure that what I've found is indeed a bug! I don't
understand the code, I did a dumb text search, so I _could_ have made a
fool of myself here :P
|
|
|
|
|
|
Previously, stepping from the single statement within the loop would
always exit the loop because all of the code unrolled from the loop is
associated with the same line and treated by the debugger as one line.
|
|
Thus leaving the design space for this alignment value open, e.g. for packing.
|
|
|
|
An empty struct that coerces to an empty array should not force
`align(1)` on the resulting slice type.
|
|
spirv: miscellaneous vulkan + zig stuff
|
|
It's an FQN, not an actual file name.
|
|
|
|
|
|
|
|
|
|
spirv: push constants and small fixes
|
|
- Rename GPU address spaces to match with SPIR-V spec.
- Emit `Block` Decoration for Uniform/PushConstant variables.
- Don't emit `OpTypeForwardPointer` for non-opencl targets.
(there's still a false-positive about recursive structs)
Signed-off-by: Ali Cheraghi <alichraghi@proton.me>
|
|
This commit reworks how anonymous struct literals and tuples work.
Previously, an untyped anonymous struct literal
(e.g. `const x = .{ .a = 123 }`) was given an "anonymous struct type",
which is a special kind of struct which coerces using structural
equivalence. This mechanism was a holdover from before we used
RLS / result types as the primary mechanism of type inference. This
commit changes the language so that the type assigned here is a "normal"
struct type. It uses a form of equivalence based on the AST node and the
type's structure, much like a reified (`@Type`) type.
Additionally, tuples have been simplified. The distinction between
"simple" and "complex" tuple types is eliminated. All tuples, even those
explicitly declared using `struct { ... }` syntax, use structural
equivalence, and do not undergo staged type resolution. Tuples are very
restricted: they cannot have non-`auto` layouts, cannot have aligned
fields, and cannot have default values with the exception of `comptime`
fields. Tuples currently do not have optimized layout, but this can be
changed in the future.
This change simplifies the language, and fixes some problematic
coercions through pointers which led to unintuitive behavior.
Resolves: #16865
|
|
spirv: vulkan setup
|
|
Also, start using labeled switch statements when dispatching
maybe-runtime instructions like condbr to comptime-only variants like
condbr_inline.
This can't be merged until we get a zig1.wasm update due to #21385.
Resolves: #21405
|
|
Under some architecture/operating system combinations it is forbidden
to return a pointer from a merge, as these pointers must point to a
location at compile time. This adds a check for those cases when
returning a pointer from a block merge.
|
|
fix callconv resolution for varargs
|
|
Some improvements to the compiler's handling of function alignment
|
|
using `.C` in Sema is incorrect since it will be resolved under the target that Zig was compiled with, not the target build configuration. This is easily solved by just calling `cCallingConvention` on the target to resolve it.
|
|
Closes #21159
|
|
these tasks have some shared data dependencies so they cannot be done
simultaneously. Future work should untangle these data dependencies so
that more can be done in parallel.
for now this commit ensures correctness by making linker input parsing
and codegen tasks part of the same queue.
|
|
* Compilation.objects changes to Compilation.link_inputs which stores
objects, archives, windows resources, shared objects, and strings
intended to be put directly into the dynamic section. Order is now
preserved between all of these kinds of linker inputs. If it is
determined the order does not matter for a particular kind of linker
input, that item should be moved to a different array.
* rename system_libs to windows_libs
* untangle library lookup from CLI types
* when doing library lookup, instead of using access syscalls, go ahead
and open the files and keep the handles around for passing to the
cache system and the linker.
* during library lookup and cache file hashing, use positioned reads to
avoid affecting the file seek position.
* library directories are opened in the CLI and converted to Directory
objects, warnings emitted for those that cannot be opened.
|
|
Add `is_dll_import` to @extern, to support `__declspec(dllimport)` with the MSVC ABI
|
|
It wouldn't make sense to have passe `.export` here, and that was
in fact a compile error - so simply make this a bool instead.
|
|
comptime scope.
Add a note about thread local / dll import being the cause.
|
|
|
|
minFunctionAlignment() is something we can know ahead of time for any given
target because it's a matter of ABI. However, defaultFunctionAlignment() is a
matter of optimization and every backend can do it differently depending on any
number of factors. For example, LLVM will base the choice on the CPU model in
its aarch64 backend. So just don't use this value in the frontend.
|
|
|
|
Using `@FieldType` (#21702).
|
|
|
|
|
|
This also includes some compiler and std changes to correct error
messages which weren't properly updated before.
|
|
This commit finishes implementing #21209 by removing the
`@setAlignStack` builtin in favour of `CallingConvention` payloads. The
x86_64 backend is updated to use the stack alignment given in the
calling convention (the LLVM backend was already updated in a previous
commit).
Resolves: #21209
|
|
The old `CallingConvention` type is replaced with the new
`NewCallingConvention`. References to `NewCallingConvention` in the
compiler are updated accordingly. In addition, a few parts of the
standard library are updated to use the new type correctly.
|
|
This commit begins implementing accepted proposal #21209 by making
`std.builtin.CallingConvention` a tagged union.
The stage1 dance here is a little convoluted. This commit introduces the
new type as `NewCallingConvention`, keeping the old `CallingConvention`
around. The compiler uses `std.builtin.NewCallingConvention`
exclusively, but when fetching the type from `std` when running the
compiler (e.g. with `getBuiltinType`), the name `CallingConvention` is
used. This allows a prior build of Zig to be used to build this commit.
The next commit will update `zig1.wasm`, and then the compiler and
standard library can be updated to completely replace
`CallingConvention` with `NewCallingConvention`.
The second half of #21209 is to remove `@setAlignStack`, which will be
implemented in another commit after updating `zig1.wasm`.
|
|
These are really answering questions about the Zig compiler's capacity to
provide a libc/libc++ implementation. As such, std.zig.target seems like a more
fitting place for these.
|
|
|
|
The re-analysis here is a little coarse; it'd be nice in the future to
have a way for an AstGen failure to preserve *all* analysis which
depends on the last success, and just hide the compile errors which
depend on it somehow. But I'm not sure how we'd achieve that, so this
works fine for now.
Resolves: #21223
|
|
This not only simplifies the error bundling logic, but also improves
efficiency by allowing the result to be cached between, for instance,
multiple calls to `totalErrorCount`.
|
|
coercing `undefined`
Just switches logic around in coerceExtra to check for returning in a noreturn function before coercing undefined to anything
|
|
Resolves: #20433
|
|
Resolves: #20365
|
|
|
|
closes #11650
|
|
* Adds new cpu architectures propeller1 and propeller2.
These cpu architectures allow targeting the Parallax Propeller 1 and Propeller 2, which are both very special microcontrollers with 512 registers and 8 cpu cores.
Resolves #21559
* Adds std.elf.EM.PROPELLER and std.elf.EM.PROPELLER2
* Fixes missing switch prongs in src/codegen/llvm.zig
* Fixes order in std.Target.Arch
---------
Co-authored-by: Felix "xq" Queißner <git@random-projects.net>
|
|
better names, return error instead of panicking, better diagnostics, use
the standard APIs for resolving values
|