| Age | Commit message (Collapse) | Author |
|
This is redundant because `storePtr2` will coerce to the return type
which (in `Sema.coerceInMemoryAllowedErrorSets`) will add errors to the
current function's IES if necessary.
|
|
The previous commit uncovered this existing OPV bug by triggering this
logic more frequently.
|
|
This logic predates certain Sema enhancements whose behavior it
essentially tries to emulate in one specific case in a problematic way.
In particular, this logic handled initializing comptime-known `const`s
through RLS, which was reworked a few years back in 644041b to not rely
on this logic, and catching runtime fields in comptime-only
initializers, which has since been *correctly* fixed with better checks
in `Sema.storePtr2`. That made the highly complex logic in
`validateStructInit`, `validateUnionInit`, and `zirValidatePtrArrayInit`
entirely redundant. Worse, it was also causing some tracked bugs, as
well as a bug which I have identified and fixed in this PR (a
corresponding behavior test is added).
This commit simplifies union initialization by bringing the runtime
logic more in line with the comptime logic: the tag is now always
populated by `Sema.unionFieldPtr` based on `initializing`, where this
previously happened only in the comptime case (with `validateUnionInit`
instead handling it in the runtime case). Notably, this means that
backends are now able to consider getting a pointer to an inactive union
field as Illegal Behavior, because the `set_union_tag` instruction now
appears *before* the `struct_field_ptr` instruction as you would
probably expect it to.
Resolves: #24520
Resolves: #24595
|
|
Resolves: #24569
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
until now these were stringly typed.
it's kinda obvious when you think about it.
|
|
Add an additional check before emitting `.loop_switch_br` instead
of `.switch_br` in a tagged switch statement for whether any of the
continues referencing its tag are actually runtime reachable.
This fixes triggering an assertion in Liveness caused by the invalid
assumption that every tagged switch must be a loop if its tag is
referenced in any way even if this reference is not runtime reachable.
|
|
* delete dead code
* don't access stack trace too early
* revert unintended edit
|
|
|
|
* LLVM: Pass correct tid to emit
* Store stack trace type in Zcu
* Don't use pt.errorIntType in LLVM backend
|
|
|
|
Introduces `std.fmt.alt` which is a helper for calling alternate format
methods besides one named "format".
|
|
prevents footgun when formatted type changes from string to enum
|
|
|
|
|
|
|
|
added adapter to AnyWriter and GenericWriter to help bridge the gap
between old and new API
make std.testing.expectFmt work at compile-time
std.fmt no longer has a dependency on std.unicode. Formatted printing
was never properly unicode-aware. Now it no longer pretends to be.
Breakage/deprecations:
* std.fs.File.reader -> std.fs.File.deprecatedReader
* std.fs.File.writer -> std.fs.File.deprecatedWriter
* std.io.GenericReader -> std.io.Reader
* std.io.GenericWriter -> std.io.Writer
* std.io.AnyReader -> std.io.Reader
* std.io.AnyWriter -> std.io.Writer
* std.fmt.format -> std.fmt.deprecatedFormat
* std.fmt.fmtSliceEscapeLower -> std.ascii.hexEscape
* std.fmt.fmtSliceEscapeUpper -> std.ascii.hexEscape
* std.fmt.fmtSliceHexLower -> {x}
* std.fmt.fmtSliceHexUpper -> {X}
* std.fmt.fmtIntSizeDec -> {B}
* std.fmt.fmtIntSizeBin -> {Bi}
* std.fmt.fmtDuration -> {D}
* std.fmt.fmtDurationSigned -> {D}
* {} -> {f} when there is a format method
* format method signature
- anytype -> *std.io.Writer
- inferred error set -> error{WriteFailed}
- options -> (deleted)
* std.fmt.Formatted
- now takes context type explicitly
- no fmt string
|
|
closes #20663
|
|
|
|
Also remove `@frameSize`, closing #3654.
While the other machinery might remain depending on #23446, it is
settled that there will not be `async`/ `await` keywords in the
language.
|
|
Closes #23971.
|
|
produces better Air for backends
|
|
prevents crashes in backends; improves codegen; provides more
comptime-ness.
|
|
|
|
|
|
This struct is larger than 256 bytes and code that copies it
consistently shows up in profiles of the compiler.
|
|
There will be more call sites to `preparePanicId` as we transition away
from safety checks in Sema towards safety checked instructions; it's
silly for them to all have this clunky usage.
|
|
This safety check was completely broken; it triggered unchecked illegal
behavior *in order to implement the safety check*. You definitely can't
do that! Instead, we must explicitly check the boundaries. This is a
tiny bit fiddly, because we need to make sure we do floating-point
rounding in the correct direction, and also handle the fact that the
operation truncates so the boundary works differently for min vs max.
Instead of implementing this safety check in Sema, there are now
dedicated AIR instructions for safety-checked intfromfloat (two
instructions; which one is used depends on the float mode). Currently,
no backend directly implements them; instead, a `Legalize.Feature` is
added which expands the safety check, and this feature is enabled for
all backends we currently test, including the LLVM backend.
The `u0` case is still handled in Sema, because Sema needs to check for
that anyway due to the comptime-known result. The old safety check here
was also completely broken and has therefore been rewritten. In that
case, we just check for 'abs(input) < 1.0'.
I've added a bunch of test coverage for the boundary cases of
`@intFromFloat`, both for successes (in `test/behavior/cast.zig`) and
failures (in `test/cases/safety/`).
Resolves: #24161
|
|
These conversion routines accept a `round` argument to control how the
result is rounded and return whether the result is exact. Most callers
wanted this functionality and had hacks around it being missing.
Also delete `std.math.big.rational` because it was only being used for
float conversion, and using rationals for that is a lot more complex
than necessary. It also required an allocator, whereas the new integer
routines only need to be passed enough memory to store the result.
|
|
|
|
compiler: threaded codegen (and more goodies)
|
|
* Sema: allow binary operations and boolean not on vectors of bool
* langref: Clarify use of operators on vectors (`and` and `or` not allowed)
closes #24093
|
|
Update the estimated total items for the codegen and link progress nodes
earlier. Rather than waiting for the main thread to dispatch the tasks,
we can add the item to the estimated total as soon as we queue the main
task. The only difference is we need to complete it even in error cases.
|
|
|
|
|
|
When the name strategy is `.parent`, the DWARF info really wants to know
what `Nav` we were named after to emit a more optimal hierarchy.
|
|
* The `codegen_nav`, `codegen_func`, `codegen_type` tasks are renamed to
`link_nav`, `link_func`, and `link_type`, to more accurately reflect
their purpose of sending data to the *linker*. Currently, `link_func`
remains responsible for codegen; this will change in an upcoming
commit.
* Don't go on a pointless detour through `PerThread` when linking ZCU
functions/`Nav`s; so, the `linkerUpdateNav` etc logic now lives in
`link.zig`. Currently, `linkerUpdateFunc` is an exception, because it
has broader responsibilities including codegen, but this will be
solved in an upcoming commit.
|
|
|
|
|
|
Before:
* std.Target.arm.featureSetHas(target.cpu.features, .has_v7)
* std.Target.x86.featureSetHasAny(target.cpu.features, .{ .sse, .avx, .cmov })
* std.Target.wasm.featureSetHasAll(target.cpu.features, .{ .atomics, .bulk_memory })
After:
* target.cpu.has(.arm, .has_v7)
* target.cpu.hasAny(.x86, &.{ .sse, .avx, .cmov })
* target.cpu.hasAll(.wasm, &.{ .atomics, .bulk_memory })
|
|
`castTruncatedData` was a poorly worded error (all shrinking casts
"truncate bits", it's just that we assume those bits to be zext/sext of
the other bits!), and `negativeToUnsigned` was a pointless distinction
which forced the compiler to emit worse code (since two separate safety
checks were required for casting e.g. 'i32' to 'u16') and wasn't even
implemented correctly. This commit combines those safety panics into one
function, `integerOutOfBounds`. The name maybe isn't perfect, but that's
not hugely important; what matters is the new default message, which is
clearer than the old ones: "integer does not fit in destination type".
|
|
Runtime `@shuffle` has two cases which backends generally want to handle
differently for efficiency:
* One runtime vector operand; some result elements may be comptime-known
* Two runtime vector operands; some result elements may be undefined
The latter case happens if both vectors given to `@shuffle` are
runtime-known and they are both used (i.e. the mask refers to them).
Otherwise, if the result is not entirely comptime-known, we are in the
former case. `Sema` now diffentiates these two cases in the AIR so that
backends can easily handle them however they want to. Note that this
*doesn't* really involve Sema doing any more work than it would
otherwise need to, so there's not really a negative here!
Most existing backends have their lowerings for `@shuffle` migrated in
this commit. The LLVM backend uses new lowerings suggested by Jacob as
ones which it will handle effectively. The x86_64 backend has not yet
been migrated; for now there's a panic in there. Jacob will implement
that before this is merged anywhere.
|
|
This adds 4 `Legalize.Feature`s:
* `expand_intcast_safe`
* `expand_add_safe`
* `expand_sub_safe`
* `expand_mul_safe`
These do pretty much what they say on the tin. This logic was previously
in Sema, used when `Zcu.Feature.safety_checked_instructions` was not
supported by the backend. That `Zcu.Feature` has been removed in favour
of this legalization.
|
|
Backends can instead ask legalization on a per-instruction basis.
|