| Age | Commit message (Collapse) | Author |
|
|
|
|
|
Notably, `vector`.
Additionally, all alternate encodings of `pointer`, `optional`, and
`array`.
|
|
|
|
|
|
|
|
This required additionally passing the `InternPool` into some AIR
methods.
Also, implement `Type.isNoReturn` for interned types.
|
|
Instead of doing everything at once which is a hopelessly large task,
this introduces a piecemeal transition that can be done in small
increments at a time.
This is a minimal changeset that keeps the compiler compiling. It only
uses the InternPool for a small set of types.
Behavior tests are not passing.
Air.Inst.Ref and Zir.Inst.Ref are separated into different enums but
compile-time verified to have the same fields in the same order.
The large set of changes is mainly to deal with the fact that most Type
and Value methods now require a Module to be passed in, so that the
InternPool object can be accessed.
|
|
Closes #15911.
|
|
The idea here is that there are two ways we can reference a function at runtime:
* Through a direct call, i.e. where the function is comptime-known
* Through a function pointer
This means we can easily perform a form of rudimentary escape analysis
on functions. If we ever see a `decl_ref` or `ref` of a function, we
have a function pointer, which could "leak" into runtime code, so we
emit the function; but for a plain `decl_val`, there's no need to.
This change means that `comptime { _ = f; }` no longer forces a function
to be emitted, which was used for some things (mainly tests). These use
sites have been replaced with `_ = &f;`, which still triggers analysis
of the function body, since you're taking a pointer to the function.
Resolves: #6256
Resolves: #15353
|
|
|
|
This commit removes the `field_call_bind` and `field_call_bind_named` ZIR
instructions, replacing them with a `field_call` instruction which does the bind
and call in one.
`field_call_bind` is an unfortunate instruction. It's tied into one very
specific usage pattern - its result can only be used as a callee. This means
that it creates a value of a "pseudo-type" of sorts, `bound_fn` - this type used
to exist in Zig, but now we just hide it from the user and have AstGen ensure
it's only used in one way. This is quite silly - `Type` and `Value` should, as
much as possible, reflect real Zig types and values.
It makes sense to instead encode the `a.b()` syntax as its own ZIR instruction,
so that's what we do here. This commit introduces a new instruction,
`field_call`. It's like `call`, but rather than a callee ref, it contains a ref
to the object pointer (`&a` in `a.b()`) and the string field name (`b`). This
eliminates `bound_fn` from the language, and slightly decreases the size of
generated ZIR - stats below.
This commit does remove a few usages which used to be allowed:
- `@field(a, "b")()`
- `@call(.auto, a.b, .{})`
- `@call(.auto, @field(a, "b"), .{})`
These forms used to work just like `a.b()`, but are no longer allowed. I believe
this is the correct choice for a few reasons:
- `a.b()` is a purely *syntactic* form; for instance, `(a.b)()` is not valid.
This means it is *not* inconsistent to not allow it in these cases; the
special case here isn't "a field access as a callee", but rather this exact
syntactic form.
- The second argument to `@call` looks much more visually distinct from the
callee in standard call syntax. To me, this makes it seem strange for that
argument to not work like a normal expression in this context.
- A more practical argument: it's confusing! `@field` and `@call` are used in
very different contexts to standard function calls: the former normally hints
at some comptime machinery, and the latter that you want more precise control
over parts of a function call. In these contexts, you don't want implicit
arguments adding extra confusion: you want to be very explicit about what
you're doing.
Lastly, some stats. I mentioned before that this change slightly reduces the
size of ZIR - this is due to two instructions (`field_call_bind` then `call`)
being replaced with one (`field_call`). Here are some numbers:
+--------------+----------+----------+--------+
| File | Before | After | Change |
+--------------+----------+----------+--------+
| Sema.zig | 4.72M | 4.53M | -4% |
| AstGen.zig | 1.52M | 1.48M | -3% |
| hash_map.zig | 283.9K | 276.2K | -3% |
| math.zig | 312.6K | 305.3K | -2% |
+--------------+----------+----------+--------+
|
|
* Avoid redundant words ("found")
- All compile errors are found by the compiler
* Avoid unnecessary prepositions ("with")
- There is a grammatically correct alternate word order without the
preposition.
|
|
|
|
Closes #15572.
|
|
|
|
|
|
ones are created during re-analysis
In semaDecl, it was possible for a new ArenaAllocators state to replace an existing one that
hadn't been freed yet. Instead of the ref_count (which was made redundant by adding
the allocator parameter to `release`), I now store a pointer to the previous arena, if one exists.
This allows a recursive deinit to happen when the last arena created is destroyed.
|
|
This fixes a bug where resolveStructLayout to was promoting from stale
value_arena state which was then overwrriten when another ArenaAllocator
higher in the call stack saved its state back. This resulted in the memory
for struct_obj.optmized_order overlapping existing allocations.
My initial fix in c7067ef wasn't sufficient, as it only checked if the struct being
resolved had the same owner as the current sema instance. However, it's
possible for resolveStructLayout to be called when the sema instance
has a different owner, but the struct decl's value_arena is currently in
use higher up in the callstack.
This change introduces ValueArena, which holds the arena state as well as tracks
if an arena has already been promoted from it. This allows callers to use the
value_arena storage without needing to be aware of another user of this same storage
higher up in the call stack.
|
|
Thanks to @jacobly0's recent enhancements to the C backend, this stuff
works now.
|
|
|
|
This implements the safety check for error casts. The instruction
generates a jump table with 2 possibilities. The operand is used
as an index into the jump table. For cases where the value does
not exist within the error set, it will generate a jump to the
'false' block. For cases where it does exist, it will generate
a jump to the 'true' block. By calculating the highest and lowest
value we can keep the jump table smaller, as it doesn't need to
contain an index into the entire error set.
|
|
This code only runs in a debug zig compiler, similar to verifying llvm modules.
|
|
|
|
We now only update one lazy symbol in flushModule.
Updating the rest from updateDecl is TBD.
|
|
Closes #15081
|
|
|
|
|
|
|
|
Introduces std.zig.ErrorBundle which is a trivially serializeable set
of compilation errors. This is in the standard library so that both
the compiler and the build runner can use it. The idea is they will
use it to communicate compilation errors over a binary protocol.
The binary encoding of ErrorBundle is a bit problematic - I got a little
too aggressive with compaction. I need to change it in a follow-up
commit to use some indirection in the error message list, otherwise
iteration is too unergonomic. In fact it's so problematic right now that
the logic getAllErrorsAlloc() actually fails to produce a viable
ErrorBundle because it puts SourceLocation data in between the root
level ErrorMessage data.
This commit has a simplification - redundant logic for rendering AST
errors to stderr has been removed in favor of moving the logic for
lowering AST errors into AstGen. So even if we get parse errors, the
errors will get lowered into ZIR before being reported. I believe this
will be useful when working on --autofix. Either way, some redundant
brittle logic was happily deleted.
In Compilation, updateSubCompilation() is improved to properly perform
error reporting when a sub-compilation object fails. It no longer dumps
directly to stderr; instead it populates an ErrorBundle object, which
gets added to the parent one during getAllErrorsAlloc().
In package fetching code, instead of dumping directly to stderr, it now
populates an ErrorBundle object, and gets properly reported at the CLI
layer of abstraction.
|
|
There are no dir components, so you would think that this was
unreachable, however we have observed on macOS two processes racing to
do openat() with O_CREAT manifest in ENOENT.
closes #12138
|
|
Multiple processes can sit waiting for the exclusive lock at the same
time, so we want to recheck whether it needs to be updated whenever
we get an exclusive lock.
This also fixes a race condition between one process truncating the
cache file and another process reading it without atomic locking.
|
|
|
|
- Fix assertion failure if AstGen failed on a multi-module file
- Cap number of per-error reference notes and total multi-module errors each at 5
- Always put "root of package" reference notes first
Resolves: #14499
|
|
|
|
|
|
|
|
|
|
|
|
closes #14553
|
|
This finishes the work started in #14502 where atoms are owned by the
linker themselves. This now makes debug atoms fully owned by dwarf,
and no information is left stored on the decl.
|
|
* std.zig.parse is moved to std.zig.Ast.parse
* the new function has an additional parameter that requires passing
Mode.zig or Mode.zon
* moved parser.zig code to Parse.zig
* added parseZon function next to parseRoot function
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|