| Age | Commit message (Collapse) | Author |
|
Previously, interned values were represented as AIR instructions using
the `interned` tag. Now, the AIR ref directly encodes the InternPool
index. The encoding works as follows:
* If the ref matches one of the static values, it corresponds to the same InternPool index.
* Otherwise, if the MSB is 0, the ref corresponds to an InternPool index.
* Otherwise, if the MSB is 1, the ref corresponds to an AIR instruction index (after removing the MSB).
Note that since most static InternPool indices are low values (the
exceptions being `.none` and `.var_args_param_type`), the first rule is
almost a nop.
|
|
This actually used to be how it worked in stage1, and there was this
issue to change it: #2649
So this commit is a reversal to that idea. One motivation for that issue
was avoiding emitting the panic handler in compilations that do not have
any calls to panic. This commit only resolves the panic handler in the
event of a safety check function being emitted, so it does not have that
flaw.
The other reason given in that issue was for optimizations that elide
safety checks. It's yet to be determined whether that was a good idea or
not; this can get re-explored when we start adding optimization passes
to AIR.
This commit adds these AIR instructions, which are only emitted if
`backendSupportsFeature(.safety_checked_arithmetic)` is true:
* add_safe
* sub_safe
* mul_safe
It removes these nonsensical AIR instructions:
* addwrap_optimized
* subwrap_optimized
* mulwrap_optimized
The safety-checked arithmetic functions push the burden of invoking the
panic handler into the backend. This makes for a messier compiler
implementation, but it reduces the amount of AIR instructions emitted by
Sema, which reduces time spent in the secondary bottleneck of the
compiler. It also generates more compact LLVM IR, reducing time spent in
the primary bottleneck of the compiler.
Finally, it eliminates 1 stack allocation per safety-check which was
being used to store the resulting tuple. These allocations were going to
be annoying when combined with suspension points.
|
|
Most of this migration was performed automatically with `zig fmt`. There
were a few exceptions which I had to manually fix:
* `@alignCast` and `@addrSpaceCast` cannot be automatically rewritten
* `@truncate`'s fixup is incorrect for vectors
* Test cases are not formatted, and their error locations change
|
|
Signed-off-by: Eric Joldasov <bratishkaerik@getgoogleoff.me>
|
|
The Zig language allows the compiler to make this optimization
automatically. We should definitely make the compiler do that, and
revert this commit. However, that will not happen in this branch, and I
want to continue to explore achieving performance parity with
merge-base. So, this commit changes all InternPool parameters to be
passed by const pointer rather than by value.
I measured a 1.03x ± 0.03 speedup vs the previous commit compiling the
(set of passing) behavior tests. Against merge-base, this commit is
1.17x ± 0.04 slower, which is an improvement from the previous
measurement of 1.22x ± 0.02.
Related issue: #13510
Related issue: #14129
Related issue: #15688
|
|
|
|
Some uses have been moved to their own tag, the rest use interned.
Also, finish porting comptime mutation to be more InternPool aware.
|
|
Reinstate some tags that will be needed for comptime init.
|
|
One change worth noting in this commit is that `module.global_error_set`
is no longer kept strictly up-to-date. The previous code reserved
integer error values when dealing with error set types, but this is no
longer needed because the integer values are not needed for semantic
analysis unless `@errorToInt` or `@intToError` are used and therefore
may be assigned lazily.
|
|
* Add some assertions to make sure instructions are not none. I tested
all these with master branch as well and made sure the behavior tests
still passed with the assertions intact (along with a handful of
callsite updates).
* Fix Sema.resolveMaybeUndefValAllowVariablesMaybeRuntime not noticing
that interned values are comptime-known. This was causing all kinds
of chaos.
* Fix print_air writeType calling tag() without checking for ip_index
|
|
Notably, `vector`.
Additionally, all alternate encodings of `pointer`, `optional`, and
`array`.
|
|
This required additionally passing the `InternPool` into some AIR
methods.
Also, implement `Type.isNoReturn` for interned types.
|
|
store:
The value to store may be undefined, in which case the destination
memory region has undefined bytes after this instruction is
evaluated. In such case ignoring this instruction is legal
lowering.
store_safe:
Same as `store`, except if the value to store is undefined, the
memory region should be filled with 0xaa bytes, and any other
safety metadata such as Valgrind integrations should be notified of
this memory region being undefined.
|
|
Also introduce memset_safe AIR tag and support it in C backend and LLVM
backend.
|
|
* Sema: upgrade operands to array pointers if possible when emitting
AIR.
* Implement safety checks for length mismatch and aliasing.
* AIR: make ptrtoint support slice operands. Implement in LLVM backend.
* C backend: implement new `@memset` semantics. `@memcpy` is not done
yet.
|
|
Backends want to avoid emitting unused instructions which do not have
side effects: to that end, they all have `Liveness.isUnused` checks for
many instructions. However, checking this in the backends avoids a lot
of potential optimizations. For instance, if a nested field is loaded,
then the first field access would still be emitted, since its result is
used by the next access (which is then unreferenced).
To elide more instructions, Liveness can track this data instead. For
operands which do not have to be lowered (i.e. are not side effecting
and are not something special like `arg), Liveness can ignore their
operand usages, and push the unused information further up, potentially
marking many more instructions as unreferenced.
In doing this, I also uncovered a bug in the LLVM backend relating to
discarding the result of `@cVaArg`, which this change fixes. A behaviour
test has been added to cover it.
|
|
This code only runs in a debug zig compiler, similar to verifying llvm modules.
|