| Age | Commit message (Collapse) | Author |
|
The re-analysis here is a little coarse; it'd be nice in the future to
have a way for an AstGen failure to preserve *all* analysis which
depends on the last success, and just hide the compile errors which
depend on it somehow. But I'm not sure how we'd achieve that, so this
works fine for now.
Resolves: #21223
|
|
implements #17969
|
|
|
|
|
|
|
|
The compiler actually doesn't need any functional changes for this: Sema
does reification based on the tag indices of `std.builtin.Type` already!
So, no zig1.wasm update is necessary.
This change is necessary to disallow name clashes between fields and
decls on a type, which is a prerequisite of #9938.
|
|
Implements the accepted proposal to introduce `@branchHint`. This
builtin is permitted as the first statement of a block if that block is
the direct body of any of the following:
* a function (*not* a `test`)
* either branch of an `if`
* the RHS of a `catch` or `orelse`
* a `switch` prong
* an `or` or `and` expression
It lowers to the ZIR instruction `extended(branch_hint(...))`. When Sema
encounters this instruction, it sets `sema.branch_hint` appropriately,
and `zirCondBr` etc are expected to reset this value as necessary. The
state is on `Sema` rather than `Block` to make it automatically
propagate up non-conditional blocks without special handling. If
`@panic` is reached, the branch hint is set to `.cold` if none was
already set; similarly, error branches get a hint of `.unlikely` if no
hint is explicitly provided. If a condition is comptime-known, `cold`
hints from the taken branch are allowed to propagate up, but other hints
are discarded. This is because a `likely`/`unlikely` hint just indicates
the direction this branch is likely to go, which is redundant
information when the branch is known at comptime; but `cold` hints
indicate that control flow is unlikely to ever reach this branch,
meaning if the branch is always taken from its parent, then the parent
is also unlikely to ever be reached.
This branch information is stored in AIR `cond_br` and `switch_br`. In
addition, `try` and `try_ptr` instructions have variants `try_cold` and
`try_ptr_cold` which indicate that the error case is cold (rather than
just unlikely); this is reachable through e.g. `errdefer unreachable` or
`errdefer @panic("")`.
A new API `unwrapSwitch` is introduced to `Air` to make it more
convenient to access `switch_br` instructions. In time, I plan to update
all AIR instructions to be accessed via an `unwrap` method which returns
a convenient tagged union a la `InternPool.indexToKey`.
The LLVM backend lowers branch hints for conditional branches and
switches as follows:
* If any branch is marked `unpredictable`, the instruction is marked
`!unpredictable`.
* Any branch which is marked as `cold` gets a
`llvm.assume(i1 true) [ "cold"() ]` call to mark the code path cold.
* If any branch is marked `likely` or `unlikely`, branch weight metadata
is attached with `!prof`. Likely branches get a weight of 2000, and
unlikely branches a weight of 1. In `switch` statements, un-annotated
branches get a weight of 1000 as a "middle ground" hint, since there
could be likely *and* unlikely *and* un-annotated branches.
For functions, a `cold` hint corresponds to the `cold` function
attribute, and other hints are currently ignored -- as far as I can tell
LLVM doesn't really have a way to lower them. (Ideally, we would want
the branch hint given in the function to propagate to call sites.)
The compiler and standard library do not yet use this new builtin.
Resolves: #21148
|
|
- Don't create an `inner_sema` in `unionFields`
- Remove assertions of the sema owner, when we literally just set it
|
|
before this, calls to `resolveTypeFieldsStruct` (now renamed to the more correct `resolveStructFieldTypes`) would just throw away the sema that `resolveStructInner` created and create its own. There is no reason to do this, and we fix it to preserve the sema through it all.
|
|
|
|
In a `memoized_call`, store how many backwards braches the call
performs. Add this to `sema.branch_count` when using a memoized call. If
this exceeds the quota, perform a non-memoized call to get a correct
"exceeded X backwards branches" error.
Also, do not memoize calls which do `@setEvalBranchQuota` or similar, as
this affects global state which must apply to the caller.
Change some eval branch quotas so that the compiler itself still builds correctly.
This commit manually changes a file in Aro which is automatically
generated. The sources which generate the file are not in this repo.
Upstream Aro should make the suitable changes on their end before the
next sync of Aro sources into the Zig repo.
|
|
This replaces the constant `Zir.Inst.Ref` tags (and the analagous tags
in `Air.Inst.Ref`, `InternPool.Index`) referring to types in
`std.builtin` with a ZIR instruction `extended(builtin_type(...))` which
instructs Sema to fetch such a type, effectively as if it were a
shorthand for the ZIR for `@import("std").builtin.xyz`.
Previously, this was achieved through constant tags in `Ref`. The
analagous `InternPool` indices began as `simple_type` values, and were
later rewritten to the correct type information. This system was kind of
brittle, and more importantly, isn't compatible with incremental
compilation of std, since incremental compilation relies on the ability
to recreate types at different indices when they change. Replacing the
old system with this instruction slightly increases the size of ZIR, but
it simplifies logic and allows incremental compilation to work correctly
on the standard library.
This shouldn't have a significant impact on ZIR size or compiler
performance, but I will take measurements in the PR to confirm this.
|
|
|
|
Without this, incremental updates which would change inferred error sets
fail, since they assume the IES is resolved and equals the old set,
resulting in false positive compile errors when e.g. coercing to an IES.
|
|
|
|
Another big commit, sorry! This commit makes all fixes necessary for
incremental updates of the compiler itself (specifically, adding a
breakpoint to `zirCompileLog`) to succeed, at least on the frontend.
The biggest change here is a reform to how types are handled. It works
like this:
* When a type is first created in `zirStructDecl` etc, its namespace is
scanned. If the type requires resolution, an `interned` dependency is
declared for the containing `AnalUnit`.
* `zirThis` also declared an `interned` dependency for its `AnalUnit` on
the namespace's owner type.
* If the type's namespace changes, the surrounding source declaration
changes hash, so `zirStructDecl` etc will be hit again. We check
whether the namespace has been scanned this generation, and re-scan it
if not.
* Namespace lookups also check whether the namespace in question
requires a re-scan based on the generation. This is because there's no
guarantee that the `zirStructDecl` is re-analyzed before the namespace
lookup is re-analyzed.
* If a type's structure (essentially its fields) change, then the type's
`Cau` is considered outdated. When the type is re-analyzed due to
being outdated, or the `zirStructDecl` is re-analyzed by being
transitively outdated, or a corresponding `zirThis` is re-analyzed by
being transitively outdated, the struct type is recreated at a new
`InternPool` index. The namespace's owner is updated (but not
re-scanned, since that is handled by the mechanisms above), and the
old type, while remaining a valid `Index`, is removed from the map
metadata so it will never be found by lookups. `zirStructDecl` and
`zirThis` store an `interned` dependency on the *new* type.
|
|
When a type becomes outdated, there will still be lingering references
to the old index -- for instance, any declaration whose value was that
type holds a reference to that index. These references may live for an
arbitrarily long time in some cases. So, we can't just remove the type
from the pool -- the old `Index` must remain valid!
Instead, we want to preserve the old `Index`, but avoid it from ever
appearing in lookups. (It's okay if analysis of something referencing
the old `Index` does weird stuff -- such analysis are guaranteed by the
incremental compilation model to always be unreferenced.) So, we use the
new `InternPool.putKeyReplace` to replace the shard entry for this index
with the newly-created index.
|
|
This commit makes more progress towards incremental compilation, fixing
some crashes in the frontend. Notably, it fixes the regressions introduced
by #20964. It also cleans up the "outdated file root" mechanism, by
virtue of deleting it: we now detect outdated file roots just after
updating ZIR refs, and re-scan their namespaces.
|
|
This is in preparation for incremental and actually being able to debug
executables built by the x86_64 backend.
|
|
Eliding the namespace when a container type has no decls was an
experiment in saving memory, but it ended up causing more trouble than
it was worth in various places. So, take the small memory hit for
reified types, and just give every container type a namespace.
|
|
The type `Zcu.Decl` in the compiler is problematic: over time it has
gained many responsibilities. Every source declaration, container type,
generic instantiation, and `@extern` has a `Decl`. The functions of
these `Decl`s are in some cases entirely disjoint.
After careful analysis, I determined that the two main responsibilities
of `Decl` are as follows:
* A `Decl` acts as the "subject" of semantic analysis at comptime. A
single unit of analysis is either a runtime function body, or a
`Decl`. It registers incremental dependencies, tracks analysis errors,
etc.
* A `Decl` acts as a "global variable": a pointer to it is consistent,
and it may be lowered to a specific symbol by the codegen backend.
This commit eliminates `Decl` and introduces new types to model these
responsibilities: `Cau` (Comptime Analysis Unit) and `Nav` (Named
Addressable Value).
Every source declaration, and every container type requiring resolution
(so *not* including `opaque`), has a `Cau`. For a source declaration,
this `Cau` performs the resolution of its value. (When #131 is
implemented, it is unsolved whether type and value resolution will share
a `Cau` or have two distinct `Cau`s.) For a type, this `Cau` is the
context in which type resolution occurs.
Every non-`comptime` source declaration, every generic instantiation,
and every distinct `extern` has a `Nav`. These are sent to codegen/link:
the backends by definition do not care about `Cau`s.
This commit has some minor technically-breaking changes surrounding
`usingnamespace`. I don't think they'll impact anyone, since the changes
are fixes around semantics which were previously inconsistent (the
behavior changed depending on hashmap iteration order!).
Aside from that, this changeset has no significant user-facing changes.
Instead, it is an internal refactor which makes it easier to correctly
model the responsibilities of different objects, particularly regarding
incremental compilation. The performance impact should be negligible,
but I will take measurements before merging this work into `master`.
Co-authored-by: Jacob Young <jacobly0@users.noreply.github.com>
Co-authored-by: Jakub Konka <kubkon@jakubkonka.com>
|
|
This is needed to ensure that start code does not try to access thread
local storage before it has set up thread local storage.
|
|
`ip.get` specifically doesn't allow `extern_func` keys to access it.
|
|
InternPool: enable separate codegen/linking thread
|
|
Let's see what happens :)
|
|
@mlugg keeps stealing my bits!
|
|
|
|
|
|
|
|
This allows the mutate mutex to only be locked during actual grows,
which are rare. For the lists that didn't previously have a mutex, this
change has little effect since grows are rare and there is zero
contention on a mutex that is only ever locked by one thread. This
change allows `extra` to be mutated without racing with a grow.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
This is now possible after moving `File.Index` to `*File` mapping into
intern pool.
|
|
|
|
|
|
|
|
This avoids needing to mutate the intern pool from backends.
|
|
|
|
|
|
|
|
|
|
|
|
This allows them to be atomically replaced.
|
|
This reduces the cost of the new data structure until the multi-threaded
behavior is actually used.
|
|
|
|
|