| Age | Commit message (Collapse) | Author |
|
|
|
The goal of this commit is to get rid of some "unused command line argument"
warnings that Clang would give for various file types previously. This cleanup
also has the side effect of making the order of flags more understandable,
especially as it pertains to include paths.
Since a lot of code was shuffled around in this commit, I recommend reviewing
the old and new versions of the function side-by-side rather than trying to make
sense of the diff.
|
|
|
|
|
|
Clang seems to treat them as linker input without this.
|
|
|
|
Better unwind table support + unwind protection in `_start()` and `clone()`
|
|
The previous commit cast doubt upon the initial report about macOS
kernel behavior, identifying another reason that ENOENT could be
returned from file creation.
However, it is demonstrable that ENOENT can be returned for both cases:
1. create file race
2. handle refers to deleted directory
This commit re-introduces the workaround for the file creation race on
macOS however it does not unconditionally retry - it first tries again
with O_EXCL to disambiguate the error condition that has occurred.
|
|
Previous commits
2b0929929d67e222ca6a9523a3a594ed456c4a51
4ea2f441df36cec61e1017f4d795d4037326c98c
had this text:
> There are no dir components, so you would think that this was
> unreachable, however we have observed on macOS two processes racing to
> do openat() with O_CREAT manifest in ENOENT.
This appears to have been a misunderstanding based on the issue
report #12138 and corresponding PR #12139 in which the steps to
reproduce removed the cache directory in a loop which also executed
detached Zig compiler processes.
There is no evidence for the macOS kernel bug however the ENOENT is
easily explained by the removal of the cache directory.
This commit reverts those commits, ultimately reporting the ENOENT as an
error rather than repeating the create file operation. However this
commit also adds an explicit error set to `std.Build.Cache.hit` as well
as changing the `failed_file_index` to a proper diagnostic field that
fully communicates what failed, leading to more informative error
messages on failure to check the cache.
The equivalent failure when occuring for AstGen performs a fatal process
kill, reasoning being that the compiler has an invariant of the cache
directory not being yanked out from underneath it while executing. This
could be made a more granular error in the future but I suspect such
thing is not valuable to pursue.
Related to #18340 but does not solve it.
|
|
The goal here is to support both levels of unwind tables (sync and async) in
zig cc and zig build. Previously, the LLVM backend always used async tables
while zig cc was partially influenced by whatever was Clang's default.
|
|
|
|
compiler: allow semantic analysis of files with AstGen errors
|
|
|
|
The previous commit exposed some bugs in incremental compilation. This
commit fixes those, and adds a little more logging for debugging
incremental compilation.
Also, allow `ast-check -t` to dump ZIR when there are non-fatal AstGen
errors.
|
|
These are produced by rustc: https://rustc-dev-guide.rust-lang.org/backend/libs-and-metadata.html#rlib
|
|
Add PIC/PIE tests and fix some bugs + some improvements to the test harness
|
|
to help understand where a spurious failure is occurring
|
|
This is necessary since isGnuLibC() is true for hurd, so we need to be able to
represent a glibc version for it.
Also add an Os.TaggedVersionRange.gnuLibCVersion() convenience function.
|
|
Fixes musl libc.so compilation with zig cc.
|
|
This is supposed to define the UNICODE macro; it's not just a linker option.
Closes #21978.
|
|
|
|
|
|
This looks to be a refactoring leftover.
|
|
Closes #21831.
|
|
This option, by its very nature, needs to be attached to a module. If it isn't,
the code in a module could break at random when compiled into an application
that doesn't have this option set.
After this change, skip_linker_dependencies no longer implies no_builtin in the
LLVM backend.
|
|
|
|
addCCArgs() will then pass the appropriate flag to Clang.
|
|
Let's not implicitly rely on whatever Clang's default is.
|
|
`std.Target.Cpu.Model`: Further refinements to `generic()` and `baseline()`
|
|
This commit reworks how anonymous struct literals and tuples work.
Previously, an untyped anonymous struct literal
(e.g. `const x = .{ .a = 123 }`) was given an "anonymous struct type",
which is a special kind of struct which coerces using structural
equivalence. This mechanism was a holdover from before we used
RLS / result types as the primary mechanism of type inference. This
commit changes the language so that the type assigned here is a "normal"
struct type. It uses a form of equivalence based on the AST node and the
type's structure, much like a reified (`@Type`) type.
Additionally, tuples have been simplified. The distinction between
"simple" and "complex" tuple types is eliminated. All tuples, even those
explicitly declared using `struct { ... }` syntax, use structural
equivalence, and do not undergo staged type resolution. Tuples are very
restricted: they cannot have non-`auto` layouts, cannot have aligned
fields, and cannot have default values with the exception of `comptime`
fields. Tuples currently do not have optimized layout, but this can be
changed in the future.
This change simplifies the language, and fixes some problematic
coercions through pointers which led to unintuitive behavior.
Resolves: #16865
|
|
|
|
|
|
which, in this branch causes a miscompilation because it would get sent
to the linker.
|
|
these tasks have some shared data dependencies so they cannot be done
simultaneously. Future work should untangle these data dependencies so
that more can be done in parallel.
for now this commit ensures correctness by making linker input parsing
and codegen tasks part of the same queue.
|
|
don't wait for AstGen and C source files to complete before starting to
build compiler_rt and libfuzzer
|
|
If the "is darwin" check is moved below the libc_installation check
below, error.LibCInstallationMissingCrtDir is returned from
lci.resolveCrtPaths().
This should be revisited because it makes sense to check
libc_installation first even on darwin.
Anyway for now this more closely matches logic from master branch.
|
|
This test does not pass in master branch either if you flip the object
order around.
|
|
and don't look for glibc files on windows
|
|
|
|
|
|
|
|
|
|
|
|
* Compilation.objects changes to Compilation.link_inputs which stores
objects, archives, windows resources, shared objects, and strings
intended to be put directly into the dynamic section. Order is now
preserved between all of these kinds of linker inputs. If it is
determined the order does not matter for a particular kind of linker
input, that item should be moved to a different array.
* rename system_libs to windows_libs
* untangle library lookup from CLI types
* when doing library lookup, instead of using access syscalls, go ahead
and open the files and keep the handles around for passing to the
cache system and the linker.
* during library lookup and cache file hashing, use positioned reads to
avoid affecting the file seek position.
* library directories are opened in the CLI and converted to Directory
objects, warnings emitted for those that cannot be opened.
|
|
along with the relevant logic, making the libraries within subject to
the same search criteria as all the other libraries.
this unfortunately means doing file system access on all .so files when
targeting ELF to determine if they are linker scripts, however, I have a
plan to address this.
|
|
|
|
The re-analysis here is a little coarse; it'd be nice in the future to
have a way for an AstGen failure to preserve *all* analysis which
depends on the last success, and just hide the compile errors which
depend on it somehow. But I'm not sure how we'd achieve that, so this
works fine for now.
Resolves: #21223
|
|
This not only simplifies the error bundling logic, but also improves
efficiency by allowing the result to be cached between, for instance,
multiple calls to `totalErrorCount`.
|
|
Make shared_objects a StringArrayHashMap so that deduping does not
need to happen in flush. That deduping code also was using an O(N^2)
algorithm, which is not allowed in this codebase. There is another
violation of this rule in resolveSymbols but this commit does not
address it.
This required reworking shared object parsing, breaking it into
independent components so that we could access soname earlier.
Shared object parsing had a few problems that I noticed and fixed in
this commit:
* Many instances of incorrect use of align(1).
* `shnum * @sizeOf(elf.Elf64_Shdr)` can overflow based on user data.
* `@divExact` can cause illegal behavior based on user data.
* Strange versyms logic that wasn't present in mold nor lld. The logic
was not commented and there is no git blame information in ziglang/zig
nor kubkon/zld. I changed it to match mold and lld instead.
* Use of ArrayList for slices of memory that are never resized.
* finding DT_VERDEFNUM in a different loop than finding DT_SONAME.
Ultimately I think we should follow mold's lead and ignore this
integer, relying on null termination instead.
* Doing logic based on VER_FLG_BASE rather than ignoring it like mold
and LLD do. No comment explaining why the behavior is different.
* Mutating the original ELF symbols rather than only storing the mangled
name on the new Symbol struct.
I noticed something that I didn't try to address in this commit: Symbol
stores a lot of redundant information that is already present in the ELF
symbols. I suspect that the codebase could benefit from reworking Symbol
to not store redundant information.
Additionally:
* Add some type safety to std.elf.
* Eliminate 1-3 file system reads for determining the kind of input
files, by taking advantage of file name extension and handling error
codes properly.
* Move more error handling methods to link.Diags and make them
infallible and thread-safe
* Make the data dependencies obvious in the parameters of
parseSharedObject. It's now clear that the first two steps (Header and
Parsed) can be done during the main Compilation pipeline, rather than
waiting for flush().
|
|
By organizing linker diagnostics into this struct, it becomes possible
to share more code between linker backends, and more importantly it
becomes possible to pass only the Diag struct to some functions, rather
than passing the entire linker state object in. This makes data
dependencies more obvious, making it easier to rearrange code and to
multithread.
Also fix MachO code abusing an atomic variable. Not only was it using
the wrong atomic operation, it is unnecessary additional state since
the state is already being protected by a mutex.
|