| Age | Commit message (Collapse) | Author |
|
only thing remaining is using libc dns resolution when linking libc
|
|
|
|
please use File.Writer for these use cases
also breaking API changes to std.fs.AtomicFile
|
|
Alignment and fill options only apply to numbers.
Rework the implementation to mainly branch on the format string rather
than the type information. This is more straightforward to maintain and
more straightforward for comptime evaluation.
Enums support being printed as decimal, hexadecimal, octal, and binary.
`formatInteger` is another possible format method that is
unconditionally called when the value type is struct and one of the
integer-printing format specifiers are used.
|
|
|
|
added adapter to AnyWriter and GenericWriter to help bridge the gap
between old and new API
make std.testing.expectFmt work at compile-time
std.fmt no longer has a dependency on std.unicode. Formatted printing
was never properly unicode-aware. Now it no longer pretends to be.
Breakage/deprecations:
* std.fs.File.reader -> std.fs.File.deprecatedReader
* std.fs.File.writer -> std.fs.File.deprecatedWriter
* std.io.GenericReader -> std.io.Reader
* std.io.GenericWriter -> std.io.Writer
* std.io.AnyReader -> std.io.Reader
* std.io.AnyWriter -> std.io.Writer
* std.fmt.format -> std.fmt.deprecatedFormat
* std.fmt.fmtSliceEscapeLower -> std.ascii.hexEscape
* std.fmt.fmtSliceEscapeUpper -> std.ascii.hexEscape
* std.fmt.fmtSliceHexLower -> {x}
* std.fmt.fmtSliceHexUpper -> {X}
* std.fmt.fmtIntSizeDec -> {B}
* std.fmt.fmtIntSizeBin -> {Bi}
* std.fmt.fmtDuration -> {D}
* std.fmt.fmtDurationSigned -> {D}
* {} -> {f} when there is a format method
* format method signature
- anytype -> *std.io.Writer
- inferred error set -> error{WriteFailed}
- options -> (deleted)
* std.fmt.Formatted
- now takes context type explicitly
- no fmt string
|
|
Before:
* std.Target.arm.featureSetHas(target.cpu.features, .has_v7)
* std.Target.x86.featureSetHasAny(target.cpu.features, .{ .sse, .avx, .cmov })
* std.Target.wasm.featureSetHasAll(target.cpu.features, .{ .atomics, .bulk_memory })
After:
* target.cpu.has(.arm, .has_v7)
* target.cpu.hasAny(.x86, &.{ .sse, .avx, .cmov })
* target.cpu.hasAll(.wasm, &.{ .atomics, .bulk_memory })
|
|
This commit makes some big changes to how we track state for Zig source
files. In particular, it changes:
* How `File` tracks its path on-disk
* How AstGen discovers files
* How file-level errors are tracked
* How `builtin.zig` files and modules are created
The original motivation here was to address incremental compilation bugs
with the handling of files, such as #22696. To fix this, a few changes
are necessary.
Just like declarations may become unreferenced on an incremental update,
meaning we suppress analysis errors associated with them, it is also
possible for all imports of a file to be removed on an incremental
update, in which case file-level errors for that file should be
suppressed. As such, after AstGen, the compiler must traverse files
(starting from analysis roots) and discover the set of "live files" for
this update.
Additionally, the compiler's previous handling of retryable file errors
was not very good; the source location the error was reported as was
based only on the first discovered import of that file. This source
location also disappeared on future incremental updates. So, as a part
of the file traversal above, we also need to figure out the source
locations of imports which errors should be reported against.
Another observation I made is that the "file exists in multiple modules"
error was not implemented in a particularly good way (I get to say that
because I wrote it!). It was subject to races, where the order in which
different imports of a file were discovered affects both how errors are
printed, and which module the file is arbitrarily assigned, with the
latter in turn affecting which other files are considered for import.
The thing I realised here is that while the AstGen worker pool is
running, we cannot know for sure which module(s) a file is in; we could
always discover an import later which changes the answer.
So, here's how the AstGen workers have changed. We initially ensure that
`zcu.import_table` contains the root files for all modules in this Zcu,
even if we don't know any imports for them yet. Then, the AstGen
workers do not need to be aware of modules. Instead, they simply ignore
module imports, and only spin off more workers when they see a by-path
import.
During AstGen, we can't use module-root-relative paths, since we don't
know which modules files are in; but we don't want to unnecessarily use
absolute files either, because those are non-portable and can make
`error.NameTooLong` more likely. As such, I have introduced a new
abstraction, `Compilation.Path`. This type is a way of representing a
filesystem path which has a *canonical form*. The path is represented
relative to one of a few special directories: the lib directory, the
global cache directory, or the local cache directory. As a fallback, we
use absolute (or cwd-relative on WASI) paths. This is kind of similar to
`std.Build.Cache.Path` with a pre-defined list of possible
`std.Build.Cache.Directory`, but has stricter canonicalization rules
based on path resolution to make sure deduplicating files works
properly. A `Compilation.Path` can be trivially converted to a
`std.Build.Cache.Path` from a `Compilation`, but is smaller, has a
canonical form, and has a digest which will be consistent across
different compiler processes with the same lib and cache directories
(important when we serialize incremental compilation state in the
future). `Zcu.File` and `Zcu.EmbedFile` both contain a
`Compilation.Path`, which is used to access the file on-disk;
module-relative sub paths are used quite rarely (`EmbedFile` doesn't
even have one now for simplicity).
After the AstGen workers all complete, we know that any file which might
be imported is definitely in `import_table` and up-to-date. So, we
perform a single-threaded graph traversal; similar to what
`resolveReferences` plays for `AnalUnit`s, but for files instead. We
figure out which files are alive, and which module each file is in. If a
file turns out to be in multiple modules, we set a field on `Zcu` to
indicate this error. If a file is in a different module to a prior
update, we set a flag instructing `updateZirRefs` to invalidate all
dependencies on the file. This traversal also discovers "import errors";
these are errors associated with a specific `@import`. With Zig's
current design, there is only one possible error here: "import outside
of module root". This must be identified during this traversal instead
of during AstGen, because it depends on which module the file is in. I
tried also representing "module not found" errors in this same way, but
it turns out to be much more useful to report those in Sema, because of
use cases like optional dependencies where a module import is behind a
comptime-known build option.
For simplicity, `failed_files` now just maps to `?[]u8`, since the
source location is always the whole file. In fact, this allows removing
`LazySrcLoc.Offset.entire_file` completely, slightly simplifying some
error reporting logic. File-level errors are now directly built in the
`std.zig.ErrorBundle.Wip`. If the payload is not `null`, it is the
message for a retryable error (i.e. an error loading the source file),
and will be reported with a "file imported here" note pointing to the
import site discovered during the single-threaded file traversal.
The last piece of fallout here is how `Builtin` works. Rather than
constructing "builtin" modules when creating `Package.Module`s, they are
now constructed on-the-fly by `Zcu`. The map `Zcu.builtin_modules` maps
from digests to `*Package.Module`s. These digests are abstract hashes of
the `Builtin` value; i.e. all of the options which are placed into
"builtin.zig". During the file traversal, we populate `builtin_modules`
as needed, so that when we see this imports in Sema, we just grab the
relevant entry from this map. This eliminates a bunch of awkward state
tracking during construction of the module graph. It's also now clearer
exactly what options the builtin module has, since previously it
inherited some options arbitrarily from the first-created module with
that "builtin" module!
The user-visible effects of this commit are:
* retryable file errors are now consistently reported against the whole
file, with a note pointing to a live import of that file
* some theoretical bugs where imports are wrongly considered distinct
(when the import path moves out of the cwd and then back in) are fixed
* some consistency issues with how file-level errors are reported are
fixed; these errors will now always be printed in the same order
regardless of how the AstGen pass assigns file indices
* incremental updates do not print retryable file errors differently
between updates or depending on file structure/contents
* incremental updates support files changing modules
* incremental updates support files becoming unreferenced
Resolves: #22696
|
|
|
|
Instead, `source`, `tree`, and `zir` should all be optional. This is
precisely what we're actually trying to model here; and `File` isn't
optimized for memory consumption or serializability anyway, so it's fine
to use a couple of extra bytes on actual optionals here.
|
|
The goal here is to support both levels of unwind tables (sync and async) in
zig cc and zig build. Previously, the LLVM backend always used async tables
while zig cc was partially influenced by whatever was Clang's default.
|
|
This commit simply tweaks the generated `builtin.zig` source code to be
more consistent and in line with current conventions.
|
|
Add PIC/PIE tests and fix some bugs + some improvements to the test harness
|
|
(#21938)
|
|
This is necessary since isGnuLibC() is true for hurd, so we need to be able to
represent a glibc version for it.
Also add an Os.TaggedVersionRange.gnuLibCVersion() convenience function.
|
|
|
|
|
|
|
|
* Add the `-ffuzz` and `-fno-fuzz` CLI arguments.
* Detect fuzz testing flags from zig cc.
* Set the correct clang flags when fuzz testing is requested. It can be
combined with TSAN and UBSAN.
* Compilation: build fuzzer library when needed which is currently an
empty zig file.
* Add optforfuzzing to every function in the llvm backend for modules
that have requested fuzzing.
* In ZigLLVMTargetMachineEmitToFile, add the optimization passes for
sanitizer coverage.
* std.mem.eql uses a naive implementation optimized for fuzzing when
builtin.fuzz is true.
Tracked by #20702
|
|
This patch is a pure rename plus only changing the file path in
`@import` sites, so it is expected to not create version control
conflicts, even when rebasing.
|
|
Deprecated aliases that are now compile errors:
- `std.fs.MAX_PATH_BYTES` (renamed to `std.fs.max_path_bytes`)
- `std.mem.tokenize` (split into `tokenizeAny`, `tokenizeSequence`, `tokenizeScalar`)
- `std.mem.split` (split into `splitSequence`, `splitAny`, `splitScalar`)
- `std.mem.splitBackwards` (split into `splitBackwardsSequence`, `splitBackwardsAny`, `splitBackwardsScalar`)
- `std.unicode`
+ `utf16leToUtf8Alloc`, `utf16leToUtf8AllocZ`, `utf16leToUtf8`, `fmtUtf16le` (all renamed to have capitalized `Le`)
+ `utf8ToUtf16LeWithNull` (renamed to `utf8ToUtf16LeAllocZ`)
- `std.zig.CrossTarget` (moved to `std.Target.Query`)
Deprecated `lib/std/std.zig` decls were deleted instead of made a `@compileError` because the `refAllDecls` in the test block would trigger the `@compileError`. The deleted top-level `std` namespaces are:
- `std.rand` (renamed to `std.Random`)
- `std.TailQueue` (renamed to `std.DoublyLinkedList`)
- `std.ChildProcess` (renamed/moved to `std.process.Child`)
This is not exhaustive. Deprecated aliases that I didn't touch:
+ `std.io.*`
+ `std.Build.*`
+ `std.builtin.Mode`
+ `std.zig.c_translation.CIntLiteralRadix`
+ anything in `src/`
|
|
|
|
`{}` for decls
`{p}` for enum fields
`{p_}` for struct fields and in contexts following a `.`
Elsewhere, `{p}` was used since it's equivalent to the old behavior.
|
|
|
|
Part of an effort to ship more of the compiler in source form.
|
|
|
|
This issue already existed in master branch, however, the more
aggressive caching of builtin.zig in this branch made it happen more
often. I added doc comments to AtomicFile to explain when this problem
can occur.
For the compiler's use case, error.AccessDenied can be simply swallowed
because it means the destination file already exists and there is
nothing else to do besides proceed with the AtomicFile cleanup.
I never solved the mystery of why the log statements weren't printing
but those are temporary debugging instruments anyway, and I am already
too many yaks deep to whip out another razor.
closes #14978
|
|
|
|
|
|
it's allocated differently and imported differently
|
|
|
|
implement builtin.zig file population for all modules rather than
assuming there is only one global builtin.zig module.
move some fields from link.File to Compilation
move some fields from Module to Compilation
compute debug_format in global Compilation config resolution
wire up C compilation to the concept of owner modules
make whole cache mode call link.File.createEmpty() instead of
link.File.open()
|
|
Much of the logic from Compilation.create() is extracted into
Compilation.Config.resolve() which accepts many optional settings and
produces concrete settings. This separate step is needed by API users of
Compilation so that they can pass the resolved global settings to the
Module creation function, which itself needs to resolve per-Module
settings.
Since the target and other things are no longer global settings, I did
not want them stored in link.File (in the `options` field). That options
field was already a kludge; those options should be resolved into
concrete settings. This commit also starts to work on that, deleting
link.Options, moving the fields into Compilation and
ObjectFormat-specific structs instead. Some fields were ephemeral and
should not have been stored at all, such as symbol_size_hint.
The link.File object of Compilation is now a `?*link.File` and `null`
when -fno-emit-bin is passed. It is now arena-allocated along with
Compilation itself, avoiding some messy cleanup code that was there
before.
On the command line, it is now possible to configure the standard
library itself by using `--mod std` just like any other module. This
meant that the CLI needed to create the standard library module rather
than having Compilation create it.
There are a lot of changes in this commit and it's still not done. I
didn't realize how quickly this changeset was going to balloon out of
control, and there are still many lines that need to be changed before
it even compiles successfully.
* introduce std.Build.Cache.HashHelper.oneShot
* add error_tracing to std.Build.Module
* extract build.zig file generation into src/Builtin.zig
* each CSourceFile and RcSourceFile now has a Module owner, which
determines some of the C compiler flags.
|