| Age | Commit message (Collapse) | Author |
|
The previous float-parsing method was lacking in a lot of areas. This
commit introduces a state-of-the art implementation that is both
accurate and fast to std.
Code is derived from working repo https://github.com/tiehuis/zig-parsefloat.
This includes more test-cases and performance numbers that are present
in this commit.
* Accuracy
The primary testing regime has been using test-data found at
https://github.com/tiehuis/parse-number-fxx-test-data. This is a fork of
upstream with support for f128 test-cases added. This data has been
verified against other independent implementations and represents
accurate round-to-even IEEE-754 floating point semantics.
* Performance
Compared to the existing parseFloat implementation there is ~5-10x
performance improvement using the above corpus. (f128 parsing excluded
in below measurements).
** Old
$ time ./test_all_fxx_data
3520298/5296694 succeeded (1776396 fail)
________________________________________________________
Executed in 28.68 secs fish external
usr time 28.48 secs 0.00 micros 28.48 secs
sys time 0.08 secs 694.00 micros 0.08 secs
** This Implementation
$ time ./test_all_fxx_data
5296693/5296694 succeeded (1 fail)
________________________________________________________
Executed in 4.54 secs fish external
usr time 4.37 secs 515.00 micros 4.37 secs
sys time 0.10 secs 171.00 micros 0.10 secs
Further performance numbers can be seen using the
https://github.com/tiehuis/simple_fastfloat_benchmark/ repository, which
compares against some other well-known string-to-float conversion
functions. A breakdown can be found here:
https://github.com/tiehuis/zig-parsefloat/blob/0d9f020f1a37ca88bf889703b397c1c41779f090/PERFORMANCE.md#commit-b15406a0d2e18b50a4b62fceb5a6a3bb60ca5706
In summary, we are within 20% of the C++ reference implementation and
have about ~600-700MB/s throughput on a Intel I5-6500 3.5Ghz.
* F128 Support
Finally, f128 is now completely supported with full accuracy. This does
use a slower path which is possible to improve in future.
* Behavioural Changes
There are a few behavioural changes to note.
- `parseHexFloat` is now redundant and these are now supported directly
in `parseFloat`.
- We implement round-to-even in all parsing routines. This is as
specified by IEEE-754. Previous code used different rounding
mechanisms (standard was round-to-zero, hex-parsing looked to use
round-up) so there may be subtle differences.
Closes #2207.
Fixes #11169.
|
|
|
|
This also addresses a nit from #10133 where IntT might be a confusing
name because it might imply signed integer (iX, not uX). We settled on
TBits for math/float.zig so I've applied that change here too.
When I originally wrote ldexp() I copied the name from parse_hex_float.
|
|
* fold a couple separate operations into one
* use const instead of var
* naming conventions
|
|
|
|
We already have a LICENSE file that covers the Zig Standard Library. We
no longer need to remind everyone that the license is MIT in every single
file.
Previously this was introduced to clarify the situation for a fork of
Zig that made Zig's LICENSE file harder to find, and replaced it with
their own license that required annual payments to their company.
However that fork now appears to be dead. So there is no need to
reinforce the copyright notice in every single file.
|
|
|
|
Should be good enough to unblock progress on the stage2 compiler.
Unifying this parser and the regular one (and perhaps rewrite it, #2207)
is left as an exercise for the reader.
|