aboutsummaryrefslogtreecommitdiff
path: root/src/codegen/spirv/CodeGen.zig
diff options
context:
space:
mode:
Diffstat (limited to 'src/codegen/spirv/CodeGen.zig')
-rw-r--r--src/codegen/spirv/CodeGen.zig6188
1 files changed, 6188 insertions, 0 deletions
diff --git a/src/codegen/spirv/CodeGen.zig b/src/codegen/spirv/CodeGen.zig
new file mode 100644
index 0000000000..fa52c226bd
--- /dev/null
+++ b/src/codegen/spirv/CodeGen.zig
@@ -0,0 +1,6188 @@
+const std = @import("std");
+const Allocator = std.mem.Allocator;
+const Target = std.Target;
+const Signedness = std.builtin.Signedness;
+const assert = std.debug.assert;
+const log = std.log.scoped(.codegen);
+
+const Zcu = @import("../../Zcu.zig");
+const Type = @import("../../Type.zig");
+const Value = @import("../../Value.zig");
+const Air = @import("../../Air.zig");
+const InternPool = @import("../../InternPool.zig");
+const Section = @import("Section.zig");
+const Assembler = @import("Assembler.zig");
+
+const spec = @import("spec.zig");
+const Opcode = spec.Opcode;
+const Word = spec.Word;
+const Id = spec.Id;
+const IdRange = spec.IdRange;
+const StorageClass = spec.StorageClass;
+
+const Module = @import("Module.zig");
+const Decl = Module.Decl;
+const Repr = Module.Repr;
+const InternMap = Module.InternMap;
+const PtrTypeMap = Module.PtrTypeMap;
+
+const CodeGen = @This();
+
+pub fn legalizeFeatures(_: *const std.Target) *const Air.Legalize.Features {
+ return comptime &.initMany(&.{
+ .expand_intcast_safe,
+ .expand_int_from_float_safe,
+ .expand_int_from_float_optimized_safe,
+ .expand_add_safe,
+ .expand_sub_safe,
+ .expand_mul_safe,
+ });
+}
+
+pub const zig_call_abi_ver = 3;
+
+const ControlFlow = union(enum) {
+ const Structured = struct {
+ /// This type indicates the way that a block is terminated. The
+ /// state of a particular block is used to track how a jump from
+ /// inside the block must reach the outside.
+ const Block = union(enum) {
+ const Incoming = struct {
+ src_label: Id,
+ /// Instruction that returns an u32 value of the
+ /// `Air.Inst.Index` that control flow should jump to.
+ next_block: Id,
+ };
+
+ const SelectionMerge = struct {
+ /// Incoming block from the `then` label.
+ /// Note that hte incoming block from the `else` label is
+ /// either given by the next element in the stack.
+ incoming: Incoming,
+ /// The label id of the cond_br's merge block.
+ /// For the top-most element in the stack, this
+ /// value is undefined.
+ merge_block: Id,
+ };
+
+ /// For a `selection` type block, we cannot use early exits, and we
+ /// must generate a 'merge ladder' of OpSelection instructions. To that end,
+ /// we keep a stack of the merges that still must be closed at the end of
+ /// a block.
+ ///
+ /// This entire structure basically just resembles a tree like
+ /// a x
+ /// \ /
+ /// b o merge
+ /// \ /
+ /// c o merge
+ /// \ /
+ /// o merge
+ /// /
+ /// o jump to next block
+ selection: struct {
+ /// In order to know which merges we still need to do, we need to keep
+ /// a stack of those.
+ merge_stack: std.ArrayListUnmanaged(SelectionMerge) = .empty,
+ },
+ /// For a `loop` type block, we can early-exit the block by
+ /// jumping to the loop exit node, and we don't need to generate
+ /// an entire stack of merges.
+ loop: struct {
+ /// The next block to jump to can be determined from any number
+ /// of conditions that jump to the loop exit.
+ merges: std.ArrayListUnmanaged(Incoming) = .empty,
+ /// The label id of the loop's merge block.
+ merge_block: Id,
+ },
+
+ fn deinit(block: *Structured.Block, gpa: Allocator) void {
+ switch (block.*) {
+ .selection => |*merge| merge.merge_stack.deinit(gpa),
+ .loop => |*merge| merge.merges.deinit(gpa),
+ }
+ block.* = undefined;
+ }
+ };
+ /// This determines how exits from the current block must be handled.
+ block_stack: std.ArrayListUnmanaged(*Structured.Block) = .empty,
+ block_results: std.AutoHashMapUnmanaged(Air.Inst.Index, Id) = .empty,
+ };
+
+ const Unstructured = struct {
+ const Incoming = struct {
+ src_label: Id,
+ break_value_id: Id,
+ };
+
+ const Block = struct {
+ label: ?Id = null,
+ incoming_blocks: std.ArrayListUnmanaged(Incoming) = .empty,
+ };
+
+ /// We need to keep track of result ids for block labels, as well as the 'incoming'
+ /// blocks for a block.
+ blocks: std.AutoHashMapUnmanaged(Air.Inst.Index, *Block) = .empty,
+ };
+
+ structured: Structured,
+ unstructured: Unstructured,
+
+ pub fn deinit(cg: *ControlFlow, gpa: Allocator) void {
+ switch (cg.*) {
+ .structured => |*cf| {
+ cf.block_stack.deinit(gpa);
+ cf.block_results.deinit(gpa);
+ },
+ .unstructured => |*cf| {
+ cf.blocks.deinit(gpa);
+ },
+ }
+ cg.* = undefined;
+ }
+};
+
+pt: Zcu.PerThread,
+air: Air,
+liveness: Air.Liveness,
+owner_nav: InternPool.Nav.Index,
+module: *Module,
+control_flow: ControlFlow,
+base_line: u32,
+block_label: Id = .none,
+next_arg_index: u32 = 0,
+args: std.ArrayListUnmanaged(Id) = .empty,
+inst_results: std.AutoHashMapUnmanaged(Air.Inst.Index, Id) = .empty,
+id_scratch: std.ArrayListUnmanaged(Id) = .empty,
+prologue: Section = .{},
+body: Section = .{},
+error_msg: ?*Zcu.ErrorMsg = null,
+
+pub fn deinit(cg: *CodeGen) void {
+ const gpa = cg.module.gpa;
+ cg.control_flow.deinit(gpa);
+ cg.args.deinit(gpa);
+ cg.inst_results.deinit(gpa);
+ cg.id_scratch.deinit(gpa);
+ cg.prologue.deinit(gpa);
+ cg.body.deinit(gpa);
+}
+
+const Error = error{ CodegenFail, OutOfMemory };
+
+pub fn genNav(cg: *CodeGen, do_codegen: bool) Error!void {
+ const gpa = cg.module.gpa;
+ const zcu = cg.module.zcu;
+ const ip = &zcu.intern_pool;
+ const target = zcu.getTarget();
+
+ const nav = ip.getNav(cg.owner_nav);
+ const val = zcu.navValue(cg.owner_nav);
+ const ty = val.typeOf(zcu);
+
+ if (!do_codegen and !ty.hasRuntimeBits(zcu)) return;
+
+ const spv_decl_index = try cg.module.resolveNav(ip, cg.owner_nav);
+ const decl = cg.module.declPtr(spv_decl_index);
+ const result_id = decl.result_id;
+ decl.begin_dep = cg.module.decl_deps.items.len;
+
+ switch (decl.kind) {
+ .func => {
+ const fn_info = zcu.typeToFunc(ty).?;
+ const return_ty_id = try cg.resolveFnReturnType(.fromInterned(fn_info.return_type));
+ const is_test = zcu.test_functions.contains(cg.owner_nav);
+
+ const func_result_id = if (is_test) cg.module.allocId() else result_id;
+ const prototype_ty_id = try cg.resolveType(ty, .direct);
+ try cg.prologue.emit(gpa, .OpFunction, .{
+ .id_result_type = return_ty_id,
+ .id_result = func_result_id,
+ .function_type = prototype_ty_id,
+ // Note: the backend will never be asked to generate an inline function
+ // (this is handled in sema), so we don't need to set function_control here.
+ .function_control = .{},
+ });
+
+ comptime assert(zig_call_abi_ver == 3);
+ try cg.args.ensureUnusedCapacity(gpa, fn_info.param_types.len);
+ for (fn_info.param_types.get(ip)) |param_ty_index| {
+ const param_ty: Type = .fromInterned(param_ty_index);
+ if (!param_ty.hasRuntimeBitsIgnoreComptime(zcu)) continue;
+
+ const param_type_id = try cg.resolveType(param_ty, .direct);
+ const arg_result_id = cg.module.allocId();
+ try cg.prologue.emit(gpa, .OpFunctionParameter, .{
+ .id_result_type = param_type_id,
+ .id_result = arg_result_id,
+ });
+ cg.args.appendAssumeCapacity(arg_result_id);
+ }
+
+ // TODO: This could probably be done in a better way...
+ const root_block_id = cg.module.allocId();
+
+ // The root block of a function declaration should appear before OpVariable instructions,
+ // so it is generated into the function's prologue.
+ try cg.prologue.emit(gpa, .OpLabel, .{
+ .id_result = root_block_id,
+ });
+ cg.block_label = root_block_id;
+
+ const main_body = cg.air.getMainBody();
+ switch (cg.control_flow) {
+ .structured => {
+ _ = try cg.genStructuredBody(.selection, main_body);
+ // We always expect paths to here to end, but we still need the block
+ // to act as a dummy merge block.
+ try cg.body.emit(gpa, .OpUnreachable, {});
+ },
+ .unstructured => {
+ try cg.genBody(main_body);
+ },
+ }
+ try cg.body.emit(gpa, .OpFunctionEnd, {});
+ // Append the actual code into the functions section.
+ try cg.module.sections.functions.append(gpa, cg.prologue);
+ try cg.module.sections.functions.append(gpa, cg.body);
+
+ // Temporarily generate a test kernel declaration if this is a test function.
+ if (is_test) {
+ try cg.generateTestEntryPoint(nav.fqn.toSlice(ip), spv_decl_index, func_result_id);
+ }
+
+ try cg.module.debugName(func_result_id, nav.fqn.toSlice(ip));
+ },
+ .global => {
+ const maybe_init_val: ?Value = switch (ip.indexToKey(val.toIntern())) {
+ .func => unreachable,
+ .variable => |variable| .fromInterned(variable.init),
+ .@"extern" => null,
+ else => val,
+ };
+ assert(maybe_init_val == null); // TODO
+
+ const storage_class = cg.module.storageClass(nav.getAddrspace());
+ assert(storage_class != .generic); // These should be instance globals
+
+ const ty_id = try cg.resolveType(ty, .indirect);
+ const ptr_ty_id = try cg.module.ptrType(ty_id, storage_class);
+
+ try cg.module.sections.globals.emit(gpa, .OpVariable, .{
+ .id_result_type = ptr_ty_id,
+ .id_result = result_id,
+ .storage_class = storage_class,
+ });
+
+ switch (target.os.tag) {
+ .vulkan, .opengl => {
+ if (ty.zigTypeTag(zcu) == .@"struct") {
+ switch (storage_class) {
+ .uniform, .push_constant => try cg.module.decorate(ty_id, .block),
+ else => {},
+ }
+ }
+
+ switch (ip.indexToKey(ty.toIntern())) {
+ .func_type, .opaque_type => {},
+ else => {
+ try cg.module.decorate(ptr_ty_id, .{
+ .array_stride = .{ .array_stride = @intCast(ty.abiSize(zcu)) },
+ });
+ },
+ }
+ },
+ else => {},
+ }
+
+ if (std.meta.stringToEnum(spec.BuiltIn, nav.fqn.toSlice(ip))) |builtin| {
+ try cg.module.decorate(result_id, .{ .built_in = .{ .built_in = builtin } });
+ }
+
+ try cg.module.debugName(result_id, nav.fqn.toSlice(ip));
+ },
+ .invocation_global => {
+ const maybe_init_val: ?Value = switch (ip.indexToKey(val.toIntern())) {
+ .func => unreachable,
+ .variable => |variable| .fromInterned(variable.init),
+ .@"extern" => null,
+ else => val,
+ };
+
+ const ty_id = try cg.resolveType(ty, .indirect);
+ const ptr_ty_id = try cg.module.ptrType(ty_id, .function);
+
+ if (maybe_init_val) |init_val| {
+ // TODO: Combine with resolveAnonDecl?
+ const void_ty_id = try cg.resolveType(.void, .direct);
+ const initializer_proto_ty_id = try cg.module.functionType(void_ty_id, &.{});
+
+ const initializer_id = cg.module.allocId();
+ try cg.prologue.emit(gpa, .OpFunction, .{
+ .id_result_type = try cg.resolveType(.void, .direct),
+ .id_result = initializer_id,
+ .function_control = .{},
+ .function_type = initializer_proto_ty_id,
+ });
+
+ const root_block_id = cg.module.allocId();
+ try cg.prologue.emit(gpa, .OpLabel, .{
+ .id_result = root_block_id,
+ });
+ cg.block_label = root_block_id;
+
+ const val_id = try cg.constant(ty, init_val, .indirect);
+ try cg.body.emit(gpa, .OpStore, .{
+ .pointer = result_id,
+ .object = val_id,
+ });
+
+ try cg.body.emit(gpa, .OpReturn, {});
+ try cg.body.emit(gpa, .OpFunctionEnd, {});
+ try cg.module.sections.functions.append(gpa, cg.prologue);
+ try cg.module.sections.functions.append(gpa, cg.body);
+
+ try cg.module.debugNameFmt(initializer_id, "initializer of {f}", .{nav.fqn.fmt(ip)});
+
+ try cg.module.sections.globals.emit(gpa, .OpExtInst, .{
+ .id_result_type = ptr_ty_id,
+ .id_result = result_id,
+ .set = try cg.module.importInstructionSet(.zig),
+ .instruction = .{ .inst = 0 }, // TODO: Put this definition somewhere...
+ .id_ref_4 = &.{initializer_id},
+ });
+ } else {
+ try cg.module.sections.globals.emit(gpa, .OpExtInst, .{
+ .id_result_type = ptr_ty_id,
+ .id_result = result_id,
+ .set = try cg.module.importInstructionSet(.zig),
+ .instruction = .{ .inst = 0 }, // TODO: Put this definition somewhere...
+ .id_ref_4 = &.{},
+ });
+ }
+ },
+ }
+
+ cg.module.declPtr(spv_decl_index).end_dep = cg.module.decl_deps.items.len;
+}
+
+pub fn fail(cg: *CodeGen, comptime format: []const u8, args: anytype) Error {
+ @branchHint(.cold);
+ const zcu = cg.module.zcu;
+ const src_loc = zcu.navSrcLoc(cg.owner_nav);
+ assert(cg.error_msg == null);
+ cg.error_msg = try Zcu.ErrorMsg.create(zcu.gpa, src_loc, format, args);
+ return error.CodegenFail;
+}
+
+pub fn todo(cg: *CodeGen, comptime format: []const u8, args: anytype) Error {
+ return cg.fail("TODO (SPIR-V): " ++ format, args);
+}
+
+/// This imports the "default" extended instruction set for the target
+/// For OpenCL, OpenCL.std.100. For Vulkan and OpenGL, GLSL.std.450.
+fn importExtendedSet(cg: *CodeGen) !Id {
+ const target = cg.module.zcu.getTarget();
+ return switch (target.os.tag) {
+ .opencl, .amdhsa => try cg.module.importInstructionSet(.@"OpenCL.std"),
+ .vulkan, .opengl => try cg.module.importInstructionSet(.@"GLSL.std.450"),
+ else => unreachable,
+ };
+}
+
+/// Fetch the result-id for a previously generated instruction or constant.
+fn resolve(cg: *CodeGen, inst: Air.Inst.Ref) !Id {
+ const pt = cg.pt;
+ const zcu = cg.module.zcu;
+ const ip = &zcu.intern_pool;
+ if (try cg.air.value(inst, pt)) |val| {
+ const ty = cg.typeOf(inst);
+ if (ty.zigTypeTag(zcu) == .@"fn") {
+ const fn_nav = switch (zcu.intern_pool.indexToKey(val.ip_index)) {
+ .@"extern" => |@"extern"| @"extern".owner_nav,
+ .func => |func| func.owner_nav,
+ else => unreachable,
+ };
+ const spv_decl_index = try cg.module.resolveNav(ip, fn_nav);
+ try cg.module.decl_deps.append(cg.module.gpa, spv_decl_index);
+ return cg.module.declPtr(spv_decl_index).result_id;
+ }
+
+ return try cg.constant(ty, val, .direct);
+ }
+ const index = inst.toIndex().?;
+ return cg.inst_results.get(index).?; // Assertion means instruction does not dominate usage.
+}
+
+fn resolveUav(cg: *CodeGen, val: InternPool.Index) !Id {
+ const gpa = cg.module.gpa;
+
+ // TODO: This cannot be a function at this point, but it should probably be handled anyway.
+
+ const zcu = cg.module.zcu;
+ const ty: Type = .fromInterned(zcu.intern_pool.typeOf(val));
+ const ty_id = try cg.resolveType(ty, .indirect);
+
+ const spv_decl_index = blk: {
+ const entry = try cg.module.uav_link.getOrPut(gpa, .{ val, .function });
+ if (entry.found_existing) {
+ try cg.addFunctionDep(entry.value_ptr.*, .function);
+ return cg.module.declPtr(entry.value_ptr.*).result_id;
+ }
+
+ const spv_decl_index = try cg.module.allocDecl(.invocation_global);
+ try cg.addFunctionDep(spv_decl_index, .function);
+ entry.value_ptr.* = spv_decl_index;
+ break :blk spv_decl_index;
+ };
+
+ // TODO: At some point we will be able to generate this all constant here, but then all of
+ // constant() will need to be implemented such that it doesn't generate any at-runtime code.
+ // NOTE: Because this is a global, we really only want to initialize it once. Therefore the
+ // constant lowering of this value will need to be deferred to an initializer similar to
+ // other globals.
+
+ const result_id = cg.module.declPtr(spv_decl_index).result_id;
+
+ {
+ // Save the current state so that we can temporarily generate into a different function.
+ // TODO: This should probably be made a little more robust.
+ const func_prologue = cg.prologue;
+ const func_body = cg.body;
+ const block_label = cg.block_label;
+ defer {
+ cg.prologue = func_prologue;
+ cg.body = func_body;
+ cg.block_label = block_label;
+ }
+
+ cg.prologue = .{};
+ cg.body = .{};
+ defer {
+ cg.prologue.deinit(gpa);
+ cg.body.deinit(gpa);
+ }
+
+ const void_ty_id = try cg.resolveType(.void, .direct);
+ const initializer_proto_ty_id = try cg.module.functionType(void_ty_id, &.{});
+
+ const initializer_id = cg.module.allocId();
+ try cg.prologue.emit(gpa, .OpFunction, .{
+ .id_result_type = try cg.resolveType(.void, .direct),
+ .id_result = initializer_id,
+ .function_control = .{},
+ .function_type = initializer_proto_ty_id,
+ });
+ const root_block_id = cg.module.allocId();
+ try cg.prologue.emit(gpa, .OpLabel, .{
+ .id_result = root_block_id,
+ });
+ cg.block_label = root_block_id;
+
+ const val_id = try cg.constant(ty, .fromInterned(val), .indirect);
+ try cg.body.emit(gpa, .OpStore, .{
+ .pointer = result_id,
+ .object = val_id,
+ });
+
+ try cg.body.emit(gpa, .OpReturn, {});
+ try cg.body.emit(gpa, .OpFunctionEnd, {});
+
+ try cg.module.sections.functions.append(gpa, cg.prologue);
+ try cg.module.sections.functions.append(gpa, cg.body);
+
+ try cg.module.debugNameFmt(initializer_id, "initializer of __anon_{d}", .{@intFromEnum(val)});
+
+ const fn_decl_ptr_ty_id = try cg.module.ptrType(ty_id, .function);
+ try cg.module.sections.globals.emit(gpa, .OpExtInst, .{
+ .id_result_type = fn_decl_ptr_ty_id,
+ .id_result = result_id,
+ .set = try cg.module.importInstructionSet(.zig),
+ .instruction = .{ .inst = 0 }, // TODO: Put this definition somewhere...
+ .id_ref_4 = &.{initializer_id},
+ });
+ }
+
+ return result_id;
+}
+
+fn addFunctionDep(cg: *CodeGen, decl_index: Module.Decl.Index, storage_class: StorageClass) !void {
+ const gpa = cg.module.gpa;
+ const target = cg.module.zcu.getTarget();
+ if (target.cpu.has(.spirv, .v1_4)) {
+ try cg.module.decl_deps.append(gpa, decl_index);
+ } else {
+ // Before version 1.4, the interface’s storage classes are limited to the Input and Output
+ if (storage_class == .input or storage_class == .output) {
+ try cg.module.decl_deps.append(gpa, decl_index);
+ }
+ }
+}
+
+/// Start a new SPIR-V block, Emits the label of the new block, and stores which
+/// block we are currently generating.
+/// Note that there is no such thing as nested blocks like in ZIR or AIR, so we don't need to
+/// keep track of the previous block.
+fn beginSpvBlock(cg: *CodeGen, label: Id) !void {
+ try cg.body.emit(cg.module.gpa, .OpLabel, .{ .id_result = label });
+ cg.block_label = label;
+}
+
+/// Return the amount of bits in the largest supported integer type. This is either 32 (always supported), or 64 (if
+/// the Int64 capability is enabled).
+/// Note: The extension SPV_INTEL_arbitrary_precision_integers allows any integer size (at least up to 32 bits).
+/// In theory that could also be used, but since the spec says that it only guarantees support up to 32-bit ints there
+/// is no way of knowing whether those are actually supported.
+/// TODO: Maybe this should be cached?
+fn largestSupportedIntBits(cg: *CodeGen) u16 {
+ const target = cg.module.zcu.getTarget();
+ if (target.cpu.has(.spirv, .int64) or target.cpu.arch == .spirv64) {
+ return 64;
+ }
+ return 32;
+}
+
+const ArithmeticTypeInfo = struct {
+ const Class = enum {
+ bool,
+ /// A regular, **native**, integer.
+ /// This is only returned when the backend supports this int as a native type (when
+ /// the relevant capability is enabled).
+ integer,
+ /// A regular float. These are all required to be natively supported. Floating points
+ /// for which the relevant capability is not enabled are not emulated.
+ float,
+ /// An integer of a 'strange' size (which' bit size is not the same as its backing
+ /// type. **Note**: this may **also** include power-of-2 integers for which the
+ /// relevant capability is not enabled), but still within the limits of the largest
+ /// natively supported integer type.
+ strange_integer,
+ /// An integer with more bits than the largest natively supported integer type.
+ composite_integer,
+ };
+
+ /// A classification of the inner type.
+ /// These scenarios will all have to be handled slightly different.
+ class: Class,
+ /// The number of bits in the inner type.
+ /// This is the actual number of bits of the type, not the size of the backing integer.
+ bits: u16,
+ /// The number of bits required to store the type.
+ /// For `integer` and `float`, this is equal to `bits`.
+ /// For `strange_integer` and `bool` this is the size of the backing integer.
+ /// For `composite_integer` this is the elements count.
+ backing_bits: u16,
+ /// Null if this type is a scalar, or the length of the vector otherwise.
+ vector_len: ?u32,
+ /// Whether the inner type is signed. Only relevant for integers.
+ signedness: std.builtin.Signedness,
+};
+
+fn arithmeticTypeInfo(cg: *CodeGen, ty: Type) ArithmeticTypeInfo {
+ const zcu = cg.module.zcu;
+ const target = cg.module.zcu.getTarget();
+ var scalar_ty = ty.scalarType(zcu);
+ if (scalar_ty.zigTypeTag(zcu) == .@"enum") {
+ scalar_ty = scalar_ty.intTagType(zcu);
+ }
+ const vector_len = if (ty.isVector(zcu)) ty.vectorLen(zcu) else null;
+ return switch (scalar_ty.zigTypeTag(zcu)) {
+ .bool => .{
+ .bits = 1, // Doesn't matter for this class.
+ .backing_bits = cg.module.backingIntBits(1).@"0",
+ .vector_len = vector_len,
+ .signedness = .unsigned, // Technically, but doesn't matter for this class.
+ .class = .bool,
+ },
+ .float => .{
+ .bits = scalar_ty.floatBits(target),
+ .backing_bits = scalar_ty.floatBits(target), // TODO: F80?
+ .vector_len = vector_len,
+ .signedness = .signed, // Technically, but doesn't matter for this class.
+ .class = .float,
+ },
+ .int => blk: {
+ const int_info = scalar_ty.intInfo(zcu);
+ // TODO: Maybe it's useful to also return this value.
+ const backing_bits, const big_int = cg.module.backingIntBits(int_info.bits);
+ break :blk .{
+ .bits = int_info.bits,
+ .backing_bits = backing_bits,
+ .vector_len = vector_len,
+ .signedness = int_info.signedness,
+ .class = class: {
+ if (big_int) break :class .composite_integer;
+ break :class if (backing_bits == int_info.bits) .integer else .strange_integer;
+ },
+ };
+ },
+ .@"enum" => unreachable,
+ .vector => unreachable,
+ else => unreachable, // Unhandled arithmetic type
+ };
+}
+
+/// Checks whether the type can be directly translated to SPIR-V vectors
+fn isSpvVector(cg: *CodeGen, ty: Type) bool {
+ const zcu = cg.module.zcu;
+ const target = cg.module.zcu.getTarget();
+ if (ty.zigTypeTag(zcu) != .vector) return false;
+
+ // TODO: This check must be expanded for types that can be represented
+ // as integers (enums / packed structs?) and types that are represented
+ // by multiple SPIR-V values.
+ const scalar_ty = ty.scalarType(zcu);
+ switch (scalar_ty.zigTypeTag(zcu)) {
+ .bool,
+ .int,
+ .float,
+ => {},
+ else => return false,
+ }
+
+ const elem_ty = ty.childType(zcu);
+ const len = ty.vectorLen(zcu);
+
+ if (elem_ty.isNumeric(zcu) or elem_ty.toIntern() == .bool_type) {
+ if (len > 1 and len <= 4) return true;
+ if (target.cpu.has(.spirv, .vector16)) return (len == 8 or len == 16);
+ }
+
+ return false;
+}
+
+/// Emits a bool constant in a particular representation.
+fn constBool(cg: *CodeGen, value: bool, repr: Repr) !Id {
+ return switch (repr) {
+ .indirect => cg.constInt(.u1, @intFromBool(value)),
+ .direct => cg.module.constBool(value),
+ };
+}
+
+/// Emits an integer constant.
+/// This function, unlike Module.constInt, takes care to bitcast
+/// the value to an unsigned int first for Kernels.
+fn constInt(cg: *CodeGen, ty: Type, value: anytype) !Id {
+ const zcu = cg.module.zcu;
+ const target = cg.module.zcu.getTarget();
+ const scalar_ty = ty.scalarType(zcu);
+ const int_info = scalar_ty.intInfo(zcu);
+ // Use backing bits so that negatives are sign extended
+ const backing_bits, const big_int = cg.module.backingIntBits(int_info.bits);
+ assert(backing_bits != 0); // u0 is comptime
+
+ const result_ty_id = try cg.resolveType(scalar_ty, .indirect);
+ const signedness: Signedness = switch (@typeInfo(@TypeOf(value))) {
+ .int => |int| int.signedness,
+ .comptime_int => if (value < 0) .signed else .unsigned,
+ else => unreachable,
+ };
+ if (@sizeOf(@TypeOf(value)) >= 4 and big_int) {
+ const value64: u64 = switch (signedness) {
+ .signed => @bitCast(@as(i64, @intCast(value))),
+ .unsigned => @as(u64, @intCast(value)),
+ };
+ assert(backing_bits == 64);
+ return cg.constructComposite(result_ty_id, &.{
+ try cg.constInt(.u32, @as(u32, @truncate(value64))),
+ try cg.constInt(.u32, @as(u32, @truncate(value64 << 32))),
+ });
+ }
+
+ const final_value: spec.LiteralContextDependentNumber = switch (target.os.tag) {
+ .opencl, .amdhsa => blk: {
+ const value64: u64 = switch (signedness) {
+ .signed => @bitCast(@as(i64, @intCast(value))),
+ .unsigned => @as(u64, @intCast(value)),
+ };
+
+ // Manually truncate the value to the right amount of bits.
+ const truncated_value = if (backing_bits == 64)
+ value64
+ else
+ value64 & (@as(u64, 1) << @intCast(backing_bits)) - 1;
+
+ break :blk switch (backing_bits) {
+ 1...32 => .{ .uint32 = @truncate(truncated_value) },
+ 33...64 => .{ .uint64 = truncated_value },
+ else => unreachable,
+ };
+ },
+ else => switch (backing_bits) {
+ 1...32 => if (signedness == .signed) .{ .int32 = @intCast(value) } else .{ .uint32 = @intCast(value) },
+ 33...64 => if (signedness == .signed) .{ .int64 = value } else .{ .uint64 = value },
+ else => unreachable,
+ },
+ };
+
+ const result_id = try cg.module.constant(result_ty_id, final_value);
+
+ if (!ty.isVector(zcu)) return result_id;
+ return cg.constructCompositeSplat(ty, result_id);
+}
+
+pub fn constructComposite(cg: *CodeGen, result_ty_id: Id, constituents: []const Id) !Id {
+ const gpa = cg.module.gpa;
+ const result_id = cg.module.allocId();
+ try cg.body.emit(gpa, .OpCompositeConstruct, .{
+ .id_result_type = result_ty_id,
+ .id_result = result_id,
+ .constituents = constituents,
+ });
+ return result_id;
+}
+
+/// Construct a composite at runtime with all lanes set to the same value.
+/// ty must be an aggregate type.
+fn constructCompositeSplat(cg: *CodeGen, ty: Type, constituent: Id) !Id {
+ const gpa = cg.module.gpa;
+ const zcu = cg.module.zcu;
+ const n: usize = @intCast(ty.arrayLen(zcu));
+
+ const scratch_top = cg.id_scratch.items.len;
+ defer cg.id_scratch.shrinkRetainingCapacity(scratch_top);
+
+ const constituents = try cg.id_scratch.addManyAsSlice(gpa, n);
+ @memset(constituents, constituent);
+
+ const result_ty_id = try cg.resolveType(ty, .direct);
+ return cg.constructComposite(result_ty_id, constituents);
+}
+
+/// This function generates a load for a constant in direct (ie, non-memory) representation.
+/// When the constant is simple, it can be generated directly using OpConstant instructions.
+/// When the constant is more complicated however, it needs to be constructed using multiple values. This
+/// is done by emitting a sequence of instructions that initialize the value.
+//
+/// This function should only be called during function code generation.
+fn constant(cg: *CodeGen, ty: Type, val: Value, repr: Repr) Error!Id {
+ const gpa = cg.module.gpa;
+
+ // Note: Using intern_map can only be used with constants that DO NOT generate any runtime code!!
+ // Ideally that should be all constants in the future, or it should be cleaned up somehow. For
+ // now, only use the intern_map on case-by-case basis by breaking to :cache.
+ if (cg.module.intern_map.get(.{ val.toIntern(), repr })) |id| {
+ return id;
+ }
+
+ const pt = cg.pt;
+ const zcu = cg.module.zcu;
+ const target = cg.module.zcu.getTarget();
+ const result_ty_id = try cg.resolveType(ty, repr);
+ const ip = &zcu.intern_pool;
+
+ log.debug("lowering constant: ty = {f}, val = {f}, key = {s}", .{ ty.fmt(pt), val.fmtValue(pt), @tagName(ip.indexToKey(val.toIntern())) });
+ if (val.isUndefDeep(zcu)) {
+ return cg.module.constUndef(result_ty_id);
+ }
+
+ const cacheable_id = cache: {
+ switch (ip.indexToKey(val.toIntern())) {
+ .int_type,
+ .ptr_type,
+ .array_type,
+ .vector_type,
+ .opt_type,
+ .anyframe_type,
+ .error_union_type,
+ .simple_type,
+ .struct_type,
+ .tuple_type,
+ .union_type,
+ .opaque_type,
+ .enum_type,
+ .func_type,
+ .error_set_type,
+ .inferred_error_set_type,
+ => unreachable, // types, not values
+
+ .undef => unreachable, // handled above
+
+ .variable,
+ .@"extern",
+ .func,
+ .enum_literal,
+ .empty_enum_value,
+ => unreachable, // non-runtime values
+
+ .simple_value => |simple_value| switch (simple_value) {
+ .undefined,
+ .void,
+ .null,
+ .empty_tuple,
+ .@"unreachable",
+ => unreachable, // non-runtime values
+
+ .false, .true => break :cache try cg.constBool(val.toBool(), repr),
+ },
+ .int => {
+ if (ty.isSignedInt(zcu)) {
+ break :cache try cg.constInt(ty, val.toSignedInt(zcu));
+ } else {
+ break :cache try cg.constInt(ty, val.toUnsignedInt(zcu));
+ }
+ },
+ .float => {
+ const lit: spec.LiteralContextDependentNumber = switch (ty.floatBits(target)) {
+ 16 => .{ .uint32 = @as(u16, @bitCast(val.toFloat(f16, zcu))) },
+ 32 => .{ .float32 = val.toFloat(f32, zcu) },
+ 64 => .{ .float64 = val.toFloat(f64, zcu) },
+ 80, 128 => unreachable, // TODO
+ else => unreachable,
+ };
+ break :cache try cg.module.constant(result_ty_id, lit);
+ },
+ .err => |err| {
+ const value = try pt.getErrorValue(err.name);
+ break :cache try cg.constInt(ty, value);
+ },
+ .error_union => |error_union| {
+ // TODO: Error unions may be constructed with constant instructions if the payload type
+ // allows it. For now, just generate it here regardless.
+ const err_ty = ty.errorUnionSet(zcu);
+ const payload_ty = ty.errorUnionPayload(zcu);
+ const err_val_id = switch (error_union.val) {
+ .err_name => |err_name| try cg.constInt(
+ err_ty,
+ try pt.getErrorValue(err_name),
+ ),
+ .payload => try cg.constInt(err_ty, 0),
+ };
+ const eu_layout = cg.errorUnionLayout(payload_ty);
+ if (!eu_layout.payload_has_bits) {
+ // We use the error type directly as the type.
+ break :cache err_val_id;
+ }
+
+ const payload_val_id = switch (error_union.val) {
+ .err_name => try cg.constant(payload_ty, .undef, .indirect),
+ .payload => |p| try cg.constant(payload_ty, .fromInterned(p), .indirect),
+ };
+
+ var constituents: [2]Id = undefined;
+ var types: [2]Type = undefined;
+ if (eu_layout.error_first) {
+ constituents[0] = err_val_id;
+ constituents[1] = payload_val_id;
+ types = .{ err_ty, payload_ty };
+ } else {
+ constituents[0] = payload_val_id;
+ constituents[1] = err_val_id;
+ types = .{ payload_ty, err_ty };
+ }
+
+ const comp_ty_id = try cg.resolveType(ty, .direct);
+ return try cg.constructComposite(comp_ty_id, &constituents);
+ },
+ .enum_tag => {
+ const int_val = try val.intFromEnum(ty, pt);
+ const int_ty = ty.intTagType(zcu);
+ break :cache try cg.constant(int_ty, int_val, repr);
+ },
+ .ptr => return cg.constantPtr(val),
+ .slice => |slice| {
+ const ptr_id = try cg.constantPtr(.fromInterned(slice.ptr));
+ const len_id = try cg.constant(.usize, .fromInterned(slice.len), .indirect);
+ const comp_ty_id = try cg.resolveType(ty, .direct);
+ return try cg.constructComposite(comp_ty_id, &.{ ptr_id, len_id });
+ },
+ .opt => {
+ const payload_ty = ty.optionalChild(zcu);
+ const maybe_payload_val = val.optionalValue(zcu);
+
+ if (!payload_ty.hasRuntimeBits(zcu)) {
+ break :cache try cg.constBool(maybe_payload_val != null, .indirect);
+ } else if (ty.optionalReprIsPayload(zcu)) {
+ // Optional representation is a nullable pointer or slice.
+ if (maybe_payload_val) |payload_val| {
+ return try cg.constant(payload_ty, payload_val, .indirect);
+ } else {
+ break :cache try cg.module.constNull(result_ty_id);
+ }
+ }
+
+ // Optional representation is a structure.
+ // { Payload, Bool }
+
+ const has_pl_id = try cg.constBool(maybe_payload_val != null, .indirect);
+ const payload_id = if (maybe_payload_val) |payload_val|
+ try cg.constant(payload_ty, payload_val, .indirect)
+ else
+ try cg.module.constUndef(try cg.resolveType(payload_ty, .indirect));
+
+ const comp_ty_id = try cg.resolveType(ty, .direct);
+ return try cg.constructComposite(comp_ty_id, &.{ payload_id, has_pl_id });
+ },
+ .aggregate => |aggregate| switch (ip.indexToKey(ty.ip_index)) {
+ inline .array_type, .vector_type => |array_type, tag| {
+ const elem_ty: Type = .fromInterned(array_type.child);
+
+ const scratch_top = cg.id_scratch.items.len;
+ defer cg.id_scratch.shrinkRetainingCapacity(scratch_top);
+ const constituents = try cg.id_scratch.addManyAsSlice(gpa, @intCast(ty.arrayLenIncludingSentinel(zcu)));
+
+ const child_repr: Repr = switch (tag) {
+ .array_type => .indirect,
+ .vector_type => .direct,
+ else => unreachable,
+ };
+
+ switch (aggregate.storage) {
+ .bytes => |bytes| {
+ // TODO: This is really space inefficient, perhaps there is a better
+ // way to do it?
+ for (constituents, bytes.toSlice(constituents.len, ip)) |*constituent, byte| {
+ constituent.* = try cg.constInt(elem_ty, byte);
+ }
+ },
+ .elems => |elems| {
+ for (constituents, elems) |*constituent, elem| {
+ constituent.* = try cg.constant(elem_ty, .fromInterned(elem), child_repr);
+ }
+ },
+ .repeated_elem => |elem| {
+ @memset(constituents, try cg.constant(elem_ty, .fromInterned(elem), child_repr));
+ },
+ }
+
+ const comp_ty_id = try cg.resolveType(ty, .direct);
+ return cg.constructComposite(comp_ty_id, constituents);
+ },
+ .struct_type => {
+ const struct_type = zcu.typeToStruct(ty).?;
+
+ if (struct_type.layout == .@"packed") {
+ // TODO: composite int
+ // TODO: endianness
+ const bits: u16 = @intCast(ty.bitSize(zcu));
+ const bytes = std.mem.alignForward(u16, cg.module.backingIntBits(bits).@"0", 8) / 8;
+ var limbs: [8]u8 = undefined;
+ @memset(&limbs, 0);
+ val.writeToPackedMemory(ty, pt, limbs[0..bytes], 0) catch unreachable;
+ const backing_ty: Type = .fromInterned(struct_type.backingIntTypeUnordered(ip));
+ return try cg.constInt(backing_ty, @as(u64, @bitCast(limbs)));
+ }
+
+ var types = std.ArrayList(Type).init(gpa);
+ defer types.deinit();
+
+ var constituents = std.ArrayList(Id).init(gpa);
+ defer constituents.deinit();
+
+ var it = struct_type.iterateRuntimeOrder(ip);
+ while (it.next()) |field_index| {
+ const field_ty: Type = .fromInterned(struct_type.field_types.get(ip)[field_index]);
+ if (!field_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
+ // This is a zero-bit field - we only needed it for the alignment.
+ continue;
+ }
+
+ // TODO: Padding?
+ const field_val = try val.fieldValue(pt, field_index);
+ const field_id = try cg.constant(field_ty, field_val, .indirect);
+
+ try types.append(field_ty);
+ try constituents.append(field_id);
+ }
+
+ const comp_ty_id = try cg.resolveType(ty, .direct);
+ return try cg.constructComposite(comp_ty_id, constituents.items);
+ },
+ .tuple_type => return cg.todo("implement tuple types", .{}),
+ else => unreachable,
+ },
+ .un => |un| {
+ if (un.tag == .none) {
+ assert(ty.containerLayout(zcu) == .@"packed"); // TODO
+ const int_ty = try pt.intType(.unsigned, @intCast(ty.bitSize(zcu)));
+ return try cg.constInt(int_ty, Value.toUnsignedInt(.fromInterned(un.val), zcu));
+ }
+ const active_field = ty.unionTagFieldIndex(.fromInterned(un.tag), zcu).?;
+ const union_obj = zcu.typeToUnion(ty).?;
+ const field_ty: Type = .fromInterned(union_obj.field_types.get(ip)[active_field]);
+ const payload = if (field_ty.hasRuntimeBitsIgnoreComptime(zcu))
+ try cg.constant(field_ty, .fromInterned(un.val), .direct)
+ else
+ null;
+ return try cg.unionInit(ty, active_field, payload);
+ },
+ .memoized_call => unreachable,
+ }
+ };
+
+ try cg.module.intern_map.putNoClobber(gpa, .{ val.toIntern(), repr }, cacheable_id);
+
+ return cacheable_id;
+}
+
+fn constantPtr(cg: *CodeGen, ptr_val: Value) !Id {
+ const pt = cg.pt;
+ const zcu = cg.module.zcu;
+ const gpa = cg.module.gpa;
+
+ if (ptr_val.isUndef(zcu)) {
+ const result_ty = ptr_val.typeOf(zcu);
+ const result_ty_id = try cg.resolveType(result_ty, .direct);
+ return cg.module.constUndef(result_ty_id);
+ }
+
+ var arena = std.heap.ArenaAllocator.init(gpa);
+ defer arena.deinit();
+
+ const derivation = try ptr_val.pointerDerivation(arena.allocator(), pt);
+ return cg.derivePtr(derivation);
+}
+
+fn derivePtr(cg: *CodeGen, derivation: Value.PointerDeriveStep) !Id {
+ const gpa = cg.module.gpa;
+ const pt = cg.pt;
+ const zcu = cg.module.zcu;
+ switch (derivation) {
+ .comptime_alloc_ptr, .comptime_field_ptr => unreachable,
+ .int => |int| {
+ const result_ty_id = try cg.resolveType(int.ptr_ty, .direct);
+ // TODO: This can probably be an OpSpecConstantOp Bitcast, but
+ // that is not implemented by Mesa yet. Therefore, just generate it
+ // as a runtime operation.
+ const result_ptr_id = cg.module.allocId();
+ const value_id = try cg.constInt(.usize, int.addr);
+ try cg.body.emit(gpa, .OpConvertUToPtr, .{
+ .id_result_type = result_ty_id,
+ .id_result = result_ptr_id,
+ .integer_value = value_id,
+ });
+ return result_ptr_id;
+ },
+ .nav_ptr => |nav| {
+ const result_ptr_ty = try pt.navPtrType(nav);
+ return cg.constantNavRef(result_ptr_ty, nav);
+ },
+ .uav_ptr => |uav| {
+ const result_ptr_ty: Type = .fromInterned(uav.orig_ty);
+ return cg.constantUavRef(result_ptr_ty, uav);
+ },
+ .eu_payload_ptr => @panic("TODO"),
+ .opt_payload_ptr => @panic("TODO"),
+ .field_ptr => |field| {
+ const parent_ptr_id = try cg.derivePtr(field.parent.*);
+ const parent_ptr_ty = try field.parent.ptrType(pt);
+ return cg.structFieldPtr(field.result_ptr_ty, parent_ptr_ty, parent_ptr_id, field.field_idx);
+ },
+ .elem_ptr => |elem| {
+ const parent_ptr_id = try cg.derivePtr(elem.parent.*);
+ const parent_ptr_ty = try elem.parent.ptrType(pt);
+ const index_id = try cg.constInt(.usize, elem.elem_idx);
+ return cg.ptrElemPtr(parent_ptr_ty, parent_ptr_id, index_id);
+ },
+ .offset_and_cast => |oac| {
+ const parent_ptr_id = try cg.derivePtr(oac.parent.*);
+ const parent_ptr_ty = try oac.parent.ptrType(pt);
+ const result_ty_id = try cg.resolveType(oac.new_ptr_ty, .direct);
+ const child_size = oac.new_ptr_ty.childType(zcu).abiSize(zcu);
+
+ if (parent_ptr_ty.childType(zcu).isVector(zcu) and oac.byte_offset % child_size == 0) {
+ // Vector element ptr accesses are derived as offset_and_cast.
+ // We can just use OpAccessChain.
+ return cg.accessChain(
+ result_ty_id,
+ parent_ptr_id,
+ &.{@intCast(@divExact(oac.byte_offset, child_size))},
+ );
+ }
+
+ if (oac.byte_offset == 0) {
+ // Allow changing the pointer type child only to restructure arrays.
+ // e.g. [3][2]T to T is fine, as is [2]T -> [2][1]T.
+ const result_ptr_id = cg.module.allocId();
+ try cg.body.emit(gpa, .OpBitcast, .{
+ .id_result_type = result_ty_id,
+ .id_result = result_ptr_id,
+ .operand = parent_ptr_id,
+ });
+ return result_ptr_id;
+ }
+
+ return cg.fail("cannot perform pointer cast: '{f}' to '{f}'", .{
+ parent_ptr_ty.fmt(pt),
+ oac.new_ptr_ty.fmt(pt),
+ });
+ },
+ }
+}
+
+fn constantUavRef(
+ cg: *CodeGen,
+ ty: Type,
+ uav: InternPool.Key.Ptr.BaseAddr.Uav,
+) !Id {
+ // TODO: Merge this function with constantDeclRef.
+
+ const zcu = cg.module.zcu;
+ const ip = &zcu.intern_pool;
+ const ty_id = try cg.resolveType(ty, .direct);
+ const uav_ty: Type = .fromInterned(ip.typeOf(uav.val));
+
+ switch (ip.indexToKey(uav.val)) {
+ .func => unreachable, // TODO
+ .@"extern" => assert(!ip.isFunctionType(uav_ty.toIntern())),
+ else => {},
+ }
+
+ // const is_fn_body = decl_ty.zigTypeTag(zcu) == .@"fn";
+ if (!uav_ty.isFnOrHasRuntimeBitsIgnoreComptime(zcu)) {
+ // Pointer to nothing - return undefined
+ return cg.module.constUndef(ty_id);
+ }
+
+ // Uav refs are always generic.
+ assert(ty.ptrAddressSpace(zcu) == .generic);
+ const uav_ty_id = try cg.resolveType(uav_ty, .indirect);
+ const decl_ptr_ty_id = try cg.module.ptrType(uav_ty_id, .generic);
+ const ptr_id = try cg.resolveUav(uav.val);
+
+ if (decl_ptr_ty_id != ty_id) {
+ // Differing pointer types, insert a cast.
+ const casted_ptr_id = cg.module.allocId();
+ try cg.body.emit(cg.module.gpa, .OpBitcast, .{
+ .id_result_type = ty_id,
+ .id_result = casted_ptr_id,
+ .operand = ptr_id,
+ });
+ return casted_ptr_id;
+ } else {
+ return ptr_id;
+ }
+}
+
+fn constantNavRef(cg: *CodeGen, ty: Type, nav_index: InternPool.Nav.Index) !Id {
+ const zcu = cg.module.zcu;
+ const ip = &zcu.intern_pool;
+ const ty_id = try cg.resolveType(ty, .direct);
+ const nav = ip.getNav(nav_index);
+ const nav_ty: Type = .fromInterned(nav.typeOf(ip));
+
+ switch (nav.status) {
+ .unresolved => unreachable,
+ .type_resolved => {}, // this is not a function or extern
+ .fully_resolved => |r| switch (ip.indexToKey(r.val)) {
+ .func => {
+ // TODO: Properly lower function pointers. For now we are going to hack around it and
+ // just generate an empty pointer. Function pointers are represented by a pointer to usize.
+ return try cg.module.constUndef(ty_id);
+ },
+ .@"extern" => if (ip.isFunctionType(nav_ty.toIntern())) @panic("TODO"),
+ else => {},
+ },
+ }
+
+ if (!nav_ty.isFnOrHasRuntimeBitsIgnoreComptime(zcu)) {
+ // Pointer to nothing - return undefined.
+ return cg.module.constUndef(ty_id);
+ }
+
+ const spv_decl_index = try cg.module.resolveNav(ip, nav_index);
+ const spv_decl = cg.module.declPtr(spv_decl_index);
+ const spv_decl_result_id = spv_decl.result_id;
+ assert(spv_decl.kind != .func);
+
+ const storage_class = cg.module.storageClass(nav.getAddrspace());
+ try cg.addFunctionDep(spv_decl_index, storage_class);
+
+ const nav_ty_id = try cg.resolveType(nav_ty, .indirect);
+ const decl_ptr_ty_id = try cg.module.ptrType(nav_ty_id, storage_class);
+
+ if (decl_ptr_ty_id != ty_id) {
+ // Differing pointer types, insert a cast.
+ const casted_ptr_id = cg.module.allocId();
+ try cg.body.emit(cg.module.gpa, .OpBitcast, .{
+ .id_result_type = ty_id,
+ .id_result = casted_ptr_id,
+ .operand = spv_decl_result_id,
+ });
+ return casted_ptr_id;
+ }
+
+ return spv_decl_result_id;
+}
+
+// Turn a Zig type's name into a cache reference.
+fn resolveTypeName(cg: *CodeGen, ty: Type) ![]const u8 {
+ const gpa = cg.module.gpa;
+ var aw: std.io.Writer.Allocating = .init(gpa);
+ defer aw.deinit();
+ ty.print(&aw.writer, cg.pt) catch |err| switch (err) {
+ error.WriteFailed => return error.OutOfMemory,
+ };
+ return try aw.toOwnedSlice();
+}
+
+/// Generate a union type. Union types are always generated with the
+/// most aligned field active. If the tag alignment is greater
+/// than that of the payload, a regular union (non-packed, with both tag and
+/// payload), will be generated as follows:
+/// struct {
+/// tag: TagType,
+/// payload: MostAlignedFieldType,
+/// payload_padding: [payload_size - @sizeOf(MostAlignedFieldType)]u8,
+/// padding: [padding_size]u8,
+/// }
+/// If the payload alignment is greater than that of the tag:
+/// struct {
+/// payload: MostAlignedFieldType,
+/// payload_padding: [payload_size - @sizeOf(MostAlignedFieldType)]u8,
+/// tag: TagType,
+/// padding: [padding_size]u8,
+/// }
+/// If any of the fields' size is 0, it will be omitted.
+fn resolveUnionType(cg: *CodeGen, ty: Type) !Id {
+ const gpa = cg.module.gpa;
+ const zcu = cg.module.zcu;
+ const ip = &zcu.intern_pool;
+ const union_obj = zcu.typeToUnion(ty).?;
+
+ if (union_obj.flagsUnordered(ip).layout == .@"packed") {
+ return try cg.module.intType(.unsigned, @intCast(ty.bitSize(zcu)));
+ }
+
+ const layout = cg.unionLayout(ty);
+ if (!layout.has_payload) {
+ // No payload, so represent this as just the tag type.
+ return try cg.resolveType(.fromInterned(union_obj.enum_tag_ty), .indirect);
+ }
+
+ var member_types: [4]Id = undefined;
+ var member_names: [4][]const u8 = undefined;
+
+ const u8_ty_id = try cg.resolveType(.u8, .direct);
+
+ if (layout.tag_size != 0) {
+ const tag_ty_id = try cg.resolveType(.fromInterned(union_obj.enum_tag_ty), .indirect);
+ member_types[layout.tag_index] = tag_ty_id;
+ member_names[layout.tag_index] = "(tag)";
+ }
+
+ if (layout.payload_size != 0) {
+ const payload_ty_id = try cg.resolveType(layout.payload_ty, .indirect);
+ member_types[layout.payload_index] = payload_ty_id;
+ member_names[layout.payload_index] = "(payload)";
+ }
+
+ if (layout.payload_padding_size != 0) {
+ const len_id = try cg.constInt(.u32, layout.payload_padding_size);
+ const payload_padding_ty_id = try cg.module.arrayType(len_id, u8_ty_id);
+ member_types[layout.payload_padding_index] = payload_padding_ty_id;
+ member_names[layout.payload_padding_index] = "(payload padding)";
+ }
+
+ if (layout.padding_size != 0) {
+ const len_id = try cg.constInt(.u32, layout.padding_size);
+ const padding_ty_id = try cg.module.arrayType(len_id, u8_ty_id);
+ member_types[layout.padding_index] = padding_ty_id;
+ member_names[layout.padding_index] = "(padding)";
+ }
+
+ const result_id = try cg.module.structType(
+ member_types[0..layout.total_fields],
+ member_names[0..layout.total_fields],
+ null,
+ .none,
+ );
+
+ const type_name = try cg.resolveTypeName(ty);
+ defer gpa.free(type_name);
+ try cg.module.debugName(result_id, type_name);
+
+ return result_id;
+}
+
+fn resolveFnReturnType(cg: *CodeGen, ret_ty: Type) !Id {
+ const zcu = cg.module.zcu;
+ if (!ret_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
+ // If the return type is an error set or an error union, then we make this
+ // anyerror return type instead, so that it can be coerced into a function
+ // pointer type which has anyerror as the return type.
+ if (ret_ty.isError(zcu)) {
+ return cg.resolveType(.anyerror, .direct);
+ } else {
+ return cg.resolveType(.void, .direct);
+ }
+ }
+
+ return try cg.resolveType(ret_ty, .direct);
+}
+
+fn resolveType(cg: *CodeGen, ty: Type, repr: Repr) Error!Id {
+ const gpa = cg.module.gpa;
+ const pt = cg.pt;
+ const zcu = cg.module.zcu;
+ const ip = &zcu.intern_pool;
+ const target = cg.module.zcu.getTarget();
+
+ log.debug("resolveType: ty = {f}", .{ty.fmt(pt)});
+
+ switch (ty.zigTypeTag(zcu)) {
+ .noreturn => {
+ assert(repr == .direct);
+ return try cg.module.voidType();
+ },
+ .void => switch (repr) {
+ .direct => return try cg.module.voidType(),
+ .indirect => return try cg.module.opaqueType("void"),
+ },
+ .bool => switch (repr) {
+ .direct => return try cg.module.boolType(),
+ .indirect => return try cg.resolveType(.u1, .indirect),
+ },
+ .int => {
+ const int_info = ty.intInfo(zcu);
+ if (int_info.bits == 0) {
+ assert(repr == .indirect);
+ return try cg.module.opaqueType("u0");
+ }
+ return try cg.module.intType(int_info.signedness, int_info.bits);
+ },
+ .@"enum" => return try cg.resolveType(ty.intTagType(zcu), repr),
+ .float => {
+ const bits = ty.floatBits(target);
+ const supported = switch (bits) {
+ 16 => target.cpu.has(.spirv, .float16),
+ 32 => true,
+ 64 => target.cpu.has(.spirv, .float64),
+ else => false,
+ };
+
+ if (!supported) {
+ return cg.fail(
+ "floating point width of {} bits is not supported for the current SPIR-V feature set",
+ .{bits},
+ );
+ }
+
+ return try cg.module.floatType(bits);
+ },
+ .array => {
+ const elem_ty = ty.childType(zcu);
+ const elem_ty_id = try cg.resolveType(elem_ty, .indirect);
+ const total_len = std.math.cast(u32, ty.arrayLenIncludingSentinel(zcu)) orelse {
+ return cg.fail("array type of {} elements is too large", .{ty.arrayLenIncludingSentinel(zcu)});
+ };
+
+ if (!elem_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
+ assert(repr == .indirect);
+ return try cg.module.opaqueType("zero-sized-array");
+ } else if (total_len == 0) {
+ // The size of the array would be 0, but that is not allowed in SPIR-V.
+ // This path can be reached for example when there is a slicing of a pointer
+ // that produces a zero-length array. In all cases where this type can be generated,
+ // this should be an indirect path.
+ assert(repr == .indirect);
+ // In this case, we have an array of a non-zero sized type. In this case,
+ // generate an array of 1 element instead, so that ptr_elem_ptr instructions
+ // can be lowered to ptrAccessChain instead of manually performing the math.
+ const len_id = try cg.constInt(.u32, 1);
+ return try cg.module.arrayType(len_id, elem_ty_id);
+ } else {
+ const total_len_id = try cg.constInt(.u32, total_len);
+ const result_id = try cg.module.arrayType(total_len_id, elem_ty_id);
+ switch (target.os.tag) {
+ .vulkan, .opengl => {
+ try cg.module.decorate(result_id, .{
+ .array_stride = .{
+ .array_stride = @intCast(elem_ty.abiSize(zcu)),
+ },
+ });
+ },
+ else => {},
+ }
+ return result_id;
+ }
+ },
+ .vector => {
+ const elem_ty = ty.childType(zcu);
+ const elem_ty_id = try cg.resolveType(elem_ty, repr);
+ const len = ty.vectorLen(zcu);
+ if (cg.isSpvVector(ty)) return try cg.module.vectorType(len, elem_ty_id);
+ const len_id = try cg.constInt(.u32, len);
+ return try cg.module.arrayType(len_id, elem_ty_id);
+ },
+ .@"fn" => switch (repr) {
+ .direct => {
+ const fn_info = zcu.typeToFunc(ty).?;
+
+ comptime assert(zig_call_abi_ver == 3);
+ assert(!fn_info.is_var_args);
+ switch (fn_info.cc) {
+ .auto,
+ .spirv_kernel,
+ .spirv_fragment,
+ .spirv_vertex,
+ .spirv_device,
+ => {},
+ else => unreachable,
+ }
+
+ const return_ty_id = try cg.resolveFnReturnType(.fromInterned(fn_info.return_type));
+
+ const scratch_top = cg.id_scratch.items.len;
+ defer cg.id_scratch.shrinkRetainingCapacity(scratch_top);
+ const param_ty_ids = try cg.id_scratch.addManyAsSlice(gpa, fn_info.param_types.len);
+
+ var param_index: usize = 0;
+ for (fn_info.param_types.get(ip)) |param_ty_index| {
+ const param_ty: Type = .fromInterned(param_ty_index);
+ if (!param_ty.hasRuntimeBitsIgnoreComptime(zcu)) continue;
+
+ param_ty_ids[param_index] = try cg.resolveType(param_ty, .direct);
+ param_index += 1;
+ }
+
+ return try cg.module.functionType(return_ty_id, param_ty_ids[0..param_index]);
+ },
+ .indirect => {
+ // TODO: Represent function pointers properly.
+ // For now, just use an usize type.
+ return try cg.resolveType(.usize, .indirect);
+ },
+ },
+ .pointer => {
+ const ptr_info = ty.ptrInfo(zcu);
+
+ const child_ty: Type = .fromInterned(ptr_info.child);
+ const child_ty_id = try cg.resolveType(child_ty, .indirect);
+ const storage_class = cg.module.storageClass(ptr_info.flags.address_space);
+ const ptr_ty_id = try cg.module.ptrType(child_ty_id, storage_class);
+
+ if (ptr_info.flags.size != .slice) {
+ return ptr_ty_id;
+ }
+
+ const size_ty_id = try cg.resolveType(.usize, .direct);
+ return try cg.module.structType(
+ &.{ ptr_ty_id, size_ty_id },
+ &.{ "ptr", "len" },
+ null,
+ .none,
+ );
+ },
+ .@"struct" => {
+ const struct_type = switch (ip.indexToKey(ty.toIntern())) {
+ .tuple_type => |tuple| {
+ const scratch_top = cg.id_scratch.items.len;
+ defer cg.id_scratch.shrinkRetainingCapacity(scratch_top);
+ const member_types = try cg.id_scratch.addManyAsSlice(gpa, tuple.values.len);
+
+ var member_index: usize = 0;
+ for (tuple.types.get(ip), tuple.values.get(ip)) |field_ty, field_val| {
+ if (field_val != .none or !Type.fromInterned(field_ty).hasRuntimeBits(zcu)) continue;
+
+ member_types[member_index] = try cg.resolveType(.fromInterned(field_ty), .indirect);
+ member_index += 1;
+ }
+
+ const result_id = try cg.module.structType(
+ member_types[0..member_index],
+ null,
+ null,
+ .none,
+ );
+ const type_name = try cg.resolveTypeName(ty);
+ defer gpa.free(type_name);
+ try cg.module.debugName(result_id, type_name);
+ return result_id;
+ },
+ .struct_type => ip.loadStructType(ty.toIntern()),
+ else => unreachable,
+ };
+
+ if (struct_type.layout == .@"packed") {
+ return try cg.resolveType(.fromInterned(struct_type.backingIntTypeUnordered(ip)), .direct);
+ }
+
+ var member_types = std.ArrayList(Id).init(gpa);
+ defer member_types.deinit();
+
+ var member_names = std.ArrayList([]const u8).init(gpa);
+ defer member_names.deinit();
+
+ var member_offsets = std.ArrayList(u32).init(gpa);
+ defer member_offsets.deinit();
+
+ var it = struct_type.iterateRuntimeOrder(ip);
+ while (it.next()) |field_index| {
+ const field_ty: Type = .fromInterned(struct_type.field_types.get(ip)[field_index]);
+ if (!field_ty.hasRuntimeBitsIgnoreComptime(zcu)) continue;
+
+ const field_name = struct_type.fieldName(ip, field_index).unwrap() orelse
+ try ip.getOrPutStringFmt(zcu.gpa, pt.tid, "{d}", .{field_index}, .no_embedded_nulls);
+ try member_types.append(try cg.resolveType(field_ty, .indirect));
+ try member_names.append(field_name.toSlice(ip));
+ try member_offsets.append(@intCast(ty.structFieldOffset(field_index, zcu)));
+ }
+
+ const result_id = try cg.module.structType(
+ member_types.items,
+ member_names.items,
+ member_offsets.items,
+ ty.toIntern(),
+ );
+
+ const type_name = try cg.resolveTypeName(ty);
+ defer gpa.free(type_name);
+ try cg.module.debugName(result_id, type_name);
+
+ return result_id;
+ },
+ .optional => {
+ const payload_ty = ty.optionalChild(zcu);
+ if (!payload_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
+ // Just use a bool.
+ // Note: Always generate the bool with indirect format, to save on some sanity
+ // Perform the conversion to a direct bool when the field is extracted.
+ return try cg.resolveType(.bool, .indirect);
+ }
+
+ const payload_ty_id = try cg.resolveType(payload_ty, .indirect);
+ if (ty.optionalReprIsPayload(zcu)) {
+ // Optional is actually a pointer or a slice.
+ return payload_ty_id;
+ }
+
+ const bool_ty_id = try cg.resolveType(.bool, .indirect);
+
+ return try cg.module.structType(
+ &.{ payload_ty_id, bool_ty_id },
+ &.{ "payload", "valid" },
+ null,
+ .none,
+ );
+ },
+ .@"union" => return try cg.resolveUnionType(ty),
+ .error_set => {
+ const err_int_ty = try pt.errorIntType();
+ return try cg.resolveType(err_int_ty, repr);
+ },
+ .error_union => {
+ const payload_ty = ty.errorUnionPayload(zcu);
+ const err_ty = ty.errorUnionSet(zcu);
+ const error_ty_id = try cg.resolveType(err_ty, .indirect);
+
+ const eu_layout = cg.errorUnionLayout(payload_ty);
+ if (!eu_layout.payload_has_bits) {
+ return error_ty_id;
+ }
+
+ const payload_ty_id = try cg.resolveType(payload_ty, .indirect);
+
+ var member_types: [2]Id = undefined;
+ var member_names: [2][]const u8 = undefined;
+ if (eu_layout.error_first) {
+ // Put the error first
+ member_types = .{ error_ty_id, payload_ty_id };
+ member_names = .{ "error", "payload" };
+ // TODO: ABI padding?
+ } else {
+ // Put the payload first.
+ member_types = .{ payload_ty_id, error_ty_id };
+ member_names = .{ "payload", "error" };
+ // TODO: ABI padding?
+ }
+
+ return try cg.module.structType(&member_types, &member_names, null, .none);
+ },
+ .@"opaque" => {
+ const type_name = try cg.resolveTypeName(ty);
+ defer gpa.free(type_name);
+ return try cg.module.opaqueType(type_name);
+ },
+
+ .null,
+ .undefined,
+ .enum_literal,
+ .comptime_float,
+ .comptime_int,
+ .type,
+ => unreachable, // Must be comptime.
+
+ .frame, .@"anyframe" => unreachable, // TODO
+ }
+}
+
+const ErrorUnionLayout = struct {
+ payload_has_bits: bool,
+ error_first: bool,
+
+ fn errorFieldIndex(cg: @This()) u32 {
+ assert(cg.payload_has_bits);
+ return if (cg.error_first) 0 else 1;
+ }
+
+ fn payloadFieldIndex(cg: @This()) u32 {
+ assert(cg.payload_has_bits);
+ return if (cg.error_first) 1 else 0;
+ }
+};
+
+fn errorUnionLayout(cg: *CodeGen, payload_ty: Type) ErrorUnionLayout {
+ const zcu = cg.module.zcu;
+
+ const error_align = Type.abiAlignment(.anyerror, zcu);
+ const payload_align = payload_ty.abiAlignment(zcu);
+
+ const error_first = error_align.compare(.gt, payload_align);
+ return .{
+ .payload_has_bits = payload_ty.hasRuntimeBitsIgnoreComptime(zcu),
+ .error_first = error_first,
+ };
+}
+
+const UnionLayout = struct {
+ /// If false, this union is represented
+ /// by only an integer of the tag type.
+ has_payload: bool,
+ tag_size: u32,
+ tag_index: u32,
+ /// Note: This is the size of the payload type itcg, NOT the size of the ENTIRE payload.
+ /// Use `has_payload` instead!!
+ payload_ty: Type,
+ payload_size: u32,
+ payload_index: u32,
+ payload_padding_size: u32,
+ payload_padding_index: u32,
+ padding_size: u32,
+ padding_index: u32,
+ total_fields: u32,
+};
+
+fn unionLayout(cg: *CodeGen, ty: Type) UnionLayout {
+ const zcu = cg.module.zcu;
+ const ip = &zcu.intern_pool;
+ const layout = ty.unionGetLayout(zcu);
+ const union_obj = zcu.typeToUnion(ty).?;
+
+ var union_layout: UnionLayout = .{
+ .has_payload = layout.payload_size != 0,
+ .tag_size = @intCast(layout.tag_size),
+ .tag_index = undefined,
+ .payload_ty = undefined,
+ .payload_size = undefined,
+ .payload_index = undefined,
+ .payload_padding_size = undefined,
+ .payload_padding_index = undefined,
+ .padding_size = @intCast(layout.padding),
+ .padding_index = undefined,
+ .total_fields = undefined,
+ };
+
+ if (union_layout.has_payload) {
+ const most_aligned_field = layout.most_aligned_field;
+ const most_aligned_field_ty: Type = .fromInterned(union_obj.field_types.get(ip)[most_aligned_field]);
+ union_layout.payload_ty = most_aligned_field_ty;
+ union_layout.payload_size = @intCast(most_aligned_field_ty.abiSize(zcu));
+ } else {
+ union_layout.payload_size = 0;
+ }
+
+ union_layout.payload_padding_size = @intCast(layout.payload_size - union_layout.payload_size);
+
+ const tag_first = layout.tag_align.compare(.gte, layout.payload_align);
+ var field_index: u32 = 0;
+
+ if (union_layout.tag_size != 0 and tag_first) {
+ union_layout.tag_index = field_index;
+ field_index += 1;
+ }
+
+ if (union_layout.payload_size != 0) {
+ union_layout.payload_index = field_index;
+ field_index += 1;
+ }
+
+ if (union_layout.payload_padding_size != 0) {
+ union_layout.payload_padding_index = field_index;
+ field_index += 1;
+ }
+
+ if (union_layout.tag_size != 0 and !tag_first) {
+ union_layout.tag_index = field_index;
+ field_index += 1;
+ }
+
+ if (union_layout.padding_size != 0) {
+ union_layout.padding_index = field_index;
+ field_index += 1;
+ }
+
+ union_layout.total_fields = field_index;
+
+ return union_layout;
+}
+
+/// This structure represents a "temporary" value: Something we are currently
+/// operating on. It typically lives no longer than the function that
+/// implements a particular AIR operation. These are used to easier
+/// implement vectorizable operations (see Vectorization and the build*
+/// functions), and typically are only used for vectors of primitive types.
+const Temporary = struct {
+ /// The type of the temporary. This is here mainly
+ /// for easier bookkeeping. Because we will never really
+ /// store Temporaries, they only cause extra stack space,
+ /// therefore no real storage is wasted.
+ ty: Type,
+ /// The value that this temporary holds. This is not necessarily
+ /// a value that is actually usable, or a single value: It is virtual
+ /// until materialize() is called, at which point is turned into
+ /// the usual SPIR-V representation of `cg.ty`.
+ value: Temporary.Value,
+
+ const Value = union(enum) {
+ singleton: Id,
+ exploded_vector: IdRange,
+ };
+
+ fn init(ty: Type, singleton: Id) Temporary {
+ return .{ .ty = ty, .value = .{ .singleton = singleton } };
+ }
+
+ fn materialize(temp: Temporary, cg: *CodeGen) !Id {
+ const gpa = cg.module.gpa;
+ const zcu = cg.module.zcu;
+ switch (temp.value) {
+ .singleton => |id| return id,
+ .exploded_vector => |range| {
+ assert(temp.ty.isVector(zcu));
+ assert(temp.ty.vectorLen(zcu) == range.len);
+
+ const scratch_top = cg.id_scratch.items.len;
+ defer cg.id_scratch.shrinkRetainingCapacity(scratch_top);
+ const constituents = try cg.id_scratch.addManyAsSlice(gpa, range.len);
+ for (constituents, 0..range.len) |*id, i| {
+ id.* = range.at(i);
+ }
+
+ const result_ty_id = try cg.resolveType(temp.ty, .direct);
+ return cg.constructComposite(result_ty_id, constituents);
+ },
+ }
+ }
+
+ fn vectorization(temp: Temporary, cg: *CodeGen) Vectorization {
+ return .fromType(temp.ty, cg);
+ }
+
+ fn pun(temp: Temporary, new_ty: Type) Temporary {
+ return .{
+ .ty = new_ty,
+ .value = temp.value,
+ };
+ }
+
+ /// 'Explode' a temporary into separate elements. This turns a vector
+ /// into a bag of elements.
+ fn explode(temp: Temporary, cg: *CodeGen) !IdRange {
+ const zcu = cg.module.zcu;
+
+ // If the value is a scalar, then this is a no-op.
+ if (!temp.ty.isVector(zcu)) {
+ return switch (temp.value) {
+ .singleton => |id| .{ .base = @intFromEnum(id), .len = 1 },
+ .exploded_vector => |range| range,
+ };
+ }
+
+ const ty_id = try cg.resolveType(temp.ty.scalarType(zcu), .direct);
+ const n = temp.ty.vectorLen(zcu);
+ const results = cg.module.allocIds(n);
+
+ const id = switch (temp.value) {
+ .singleton => |id| id,
+ .exploded_vector => |range| return range,
+ };
+
+ for (0..n) |i| {
+ const indexes = [_]u32{@intCast(i)};
+ try cg.body.emit(cg.module.gpa, .OpCompositeExtract, .{
+ .id_result_type = ty_id,
+ .id_result = results.at(i),
+ .composite = id,
+ .indexes = &indexes,
+ });
+ }
+
+ return results;
+ }
+};
+
+/// Initialize a `Temporary` from an AIR value.
+fn temporary(cg: *CodeGen, inst: Air.Inst.Ref) !Temporary {
+ return .{
+ .ty = cg.typeOf(inst),
+ .value = .{ .singleton = try cg.resolve(inst) },
+ };
+}
+
+/// This union describes how a particular operation should be vectorized.
+/// That depends on the operation and number of components of the inputs.
+const Vectorization = union(enum) {
+ /// This is an operation between scalars.
+ scalar,
+ /// This operation is unrolled into separate operations.
+ /// Inputs may still be SPIR-V vectors, for example,
+ /// when the operation can't be vectorized in SPIR-V.
+ /// Value is number of components.
+ unrolled: u32,
+
+ /// Derive a vectorization from a particular type
+ fn fromType(ty: Type, cg: *CodeGen) Vectorization {
+ const zcu = cg.module.zcu;
+ if (!ty.isVector(zcu)) return .scalar;
+ return .{ .unrolled = ty.vectorLen(zcu) };
+ }
+
+ /// Given two vectorization methods, compute a "unification": a fallback
+ /// that works for both, according to the following rules:
+ /// - Scalars may broadcast
+ /// - SPIR-V vectorized operations will unroll
+ /// - Prefer scalar > unrolled
+ fn unify(a: Vectorization, b: Vectorization) Vectorization {
+ if (a == .scalar and b == .scalar) return .scalar;
+ if (a == .unrolled or b == .unrolled) {
+ if (a == .unrolled and b == .unrolled) assert(a.components() == b.components());
+ if (a == .unrolled) return .{ .unrolled = a.components() };
+ return .{ .unrolled = b.components() };
+ }
+ unreachable;
+ }
+
+ /// Query the number of components that inputs of this operation have.
+ /// Note: for broadcasting scalars, this returns the number of elements
+ /// that the broadcasted vector would have.
+ fn components(vec: Vectorization) u32 {
+ return switch (vec) {
+ .scalar => 1,
+ .unrolled => |n| n,
+ };
+ }
+
+ /// Turns `ty` into the result-type of the entire operation.
+ /// `ty` may be a scalar or vector, it doesn't matter.
+ fn resultType(vec: Vectorization, cg: *CodeGen, ty: Type) !Type {
+ const pt = cg.pt;
+ const zcu = cg.module.zcu;
+ const scalar_ty = ty.scalarType(zcu);
+ return switch (vec) {
+ .scalar => scalar_ty,
+ .unrolled => |n| try pt.vectorType(.{ .len = n, .child = scalar_ty.toIntern() }),
+ };
+ }
+
+ /// Before a temporary can be used, some setup may need to be one. This function implements
+ /// this setup, and returns a new type that holds the relevant information on how to access
+ /// elements of the input.
+ fn prepare(vec: Vectorization, cg: *CodeGen, tmp: Temporary) !PreparedOperand {
+ const zcu = cg.module.zcu;
+ const is_vector = tmp.ty.isVector(zcu);
+ const value: PreparedOperand.Value = switch (tmp.value) {
+ .singleton => |id| switch (vec) {
+ .scalar => blk: {
+ assert(!is_vector);
+ break :blk .{ .scalar = id };
+ },
+ .unrolled => blk: {
+ if (is_vector) break :blk .{ .vector_exploded = try tmp.explode(cg) };
+ break :blk .{ .scalar_broadcast = id };
+ },
+ },
+ .exploded_vector => |range| switch (vec) {
+ .scalar => unreachable,
+ .unrolled => |n| blk: {
+ assert(range.len == n);
+ break :blk .{ .vector_exploded = range };
+ },
+ },
+ };
+
+ return .{
+ .ty = tmp.ty,
+ .value = value,
+ };
+ }
+
+ /// Finalize the results of an operation back into a temporary. `results` is
+ /// a list of result-ids of the operation.
+ fn finalize(vec: Vectorization, ty: Type, results: IdRange) Temporary {
+ assert(vec.components() == results.len);
+ return .{
+ .ty = ty,
+ .value = switch (vec) {
+ .scalar => .{ .singleton = results.at(0) },
+ .unrolled => .{ .exploded_vector = results },
+ },
+ };
+ }
+
+ /// This struct represents an operand that has gone through some setup, and is
+ /// ready to be used as part of an operation.
+ const PreparedOperand = struct {
+ ty: Type,
+ value: PreparedOperand.Value,
+
+ /// The types of value that a prepared operand can hold internally. Depends
+ /// on the operation and input value.
+ const Value = union(enum) {
+ /// A single scalar value that is used by a scalar operation.
+ scalar: Id,
+ /// A single scalar that is broadcasted in an unrolled operation.
+ scalar_broadcast: Id,
+ /// A vector represented by a consecutive list of IDs that is used in an unrolled operation.
+ vector_exploded: IdRange,
+ };
+
+ /// Query the value at a particular index of the operation. Note that
+ /// the index is *not* the component/lane, but the index of the *operation*.
+ fn at(op: PreparedOperand, i: usize) Id {
+ switch (op.value) {
+ .scalar => |id| {
+ assert(i == 0);
+ return id;
+ },
+ .scalar_broadcast => |id| return id,
+ .vector_exploded => |range| return range.at(i),
+ }
+ }
+ };
+};
+
+/// A utility function to compute the vectorization style of
+/// a list of values. These values may be any of the following:
+/// - A `Vectorization` instance
+/// - A Type, in which case the vectorization is computed via `Vectorization.fromType`.
+/// - A Temporary, in which case the vectorization is computed via `Temporary.vectorization`.
+fn vectorization(cg: *CodeGen, args: anytype) Vectorization {
+ var v: Vectorization = undefined;
+ assert(args.len >= 1);
+ inline for (args, 0..) |arg, i| {
+ const iv: Vectorization = switch (@TypeOf(arg)) {
+ Vectorization => arg,
+ Type => Vectorization.fromType(arg, cg),
+ Temporary => arg.vectorization(cg),
+ else => @compileError("invalid type"),
+ };
+ if (i == 0) {
+ v = iv;
+ } else {
+ v = v.unify(iv);
+ }
+ }
+ return v;
+}
+
+/// This function builds an OpSConvert of OpUConvert depending on the
+/// signedness of the types.
+fn buildConvert(cg: *CodeGen, dst_ty: Type, src: Temporary) !Temporary {
+ const zcu = cg.module.zcu;
+
+ const dst_ty_id = try cg.resolveType(dst_ty.scalarType(zcu), .direct);
+ const src_ty_id = try cg.resolveType(src.ty.scalarType(zcu), .direct);
+
+ const v = cg.vectorization(.{ dst_ty, src });
+ const result_ty = try v.resultType(cg, dst_ty);
+
+ // We can directly compare integers, because those type-IDs are cached.
+ if (dst_ty_id == src_ty_id) {
+ // Nothing to do, type-pun to the right value.
+ // Note, Caller guarantees that the types fit (or caller will normalize after),
+ // so we don't have to normalize here.
+ // Note, dst_ty may be a scalar type even if we expect a vector, so we have to
+ // convert to the right type here.
+ return src.pun(result_ty);
+ }
+
+ const ops = v.components();
+ const results = cg.module.allocIds(ops);
+
+ const op_result_ty = dst_ty.scalarType(zcu);
+ const op_result_ty_id = try cg.resolveType(op_result_ty, .direct);
+
+ const opcode: Opcode = blk: {
+ if (dst_ty.scalarType(zcu).isAnyFloat()) break :blk .OpFConvert;
+ if (dst_ty.scalarType(zcu).isSignedInt(zcu)) break :blk .OpSConvert;
+ break :blk .OpUConvert;
+ };
+
+ const op_src = try v.prepare(cg, src);
+
+ for (0..ops) |i| {
+ try cg.body.emitRaw(cg.module.gpa, opcode, 3);
+ cg.body.writeOperand(Id, op_result_ty_id);
+ cg.body.writeOperand(Id, results.at(i));
+ cg.body.writeOperand(Id, op_src.at(i));
+ }
+
+ return v.finalize(result_ty, results);
+}
+
+fn buildFma(cg: *CodeGen, a: Temporary, b: Temporary, c: Temporary) !Temporary {
+ const zcu = cg.module.zcu;
+ const target = cg.module.zcu.getTarget();
+
+ const v = cg.vectorization(.{ a, b, c });
+ const ops = v.components();
+ const results = cg.module.allocIds(ops);
+
+ const op_result_ty = a.ty.scalarType(zcu);
+ const op_result_ty_id = try cg.resolveType(op_result_ty, .direct);
+ const result_ty = try v.resultType(cg, a.ty);
+
+ const op_a = try v.prepare(cg, a);
+ const op_b = try v.prepare(cg, b);
+ const op_c = try v.prepare(cg, c);
+
+ const set = try cg.importExtendedSet();
+ const opcode: u32 = switch (target.os.tag) {
+ .opencl => @intFromEnum(spec.OpenClOpcode.fma),
+ // NOTE: Vulkan's FMA instruction does *NOT* produce the right values!
+ // its precision guarantees do NOT match zigs and it does NOT match OpenCLs!
+ // it needs to be emulated!
+ .vulkan, .opengl => @intFromEnum(spec.GlslOpcode.Fma),
+ else => unreachable,
+ };
+
+ for (0..ops) |i| {
+ try cg.body.emit(cg.module.gpa, .OpExtInst, .{
+ .id_result_type = op_result_ty_id,
+ .id_result = results.at(i),
+ .set = set,
+ .instruction = .{ .inst = opcode },
+ .id_ref_4 = &.{ op_a.at(i), op_b.at(i), op_c.at(i) },
+ });
+ }
+
+ return v.finalize(result_ty, results);
+}
+
+fn buildSelect(cg: *CodeGen, condition: Temporary, lhs: Temporary, rhs: Temporary) !Temporary {
+ const zcu = cg.module.zcu;
+
+ const v = cg.vectorization(.{ condition, lhs, rhs });
+ const ops = v.components();
+ const results = cg.module.allocIds(ops);
+
+ const op_result_ty = lhs.ty.scalarType(zcu);
+ const op_result_ty_id = try cg.resolveType(op_result_ty, .direct);
+ const result_ty = try v.resultType(cg, lhs.ty);
+
+ assert(condition.ty.scalarType(zcu).zigTypeTag(zcu) == .bool);
+
+ const cond = try v.prepare(cg, condition);
+ const object_1 = try v.prepare(cg, lhs);
+ const object_2 = try v.prepare(cg, rhs);
+
+ for (0..ops) |i| {
+ try cg.body.emit(cg.module.gpa, .OpSelect, .{
+ .id_result_type = op_result_ty_id,
+ .id_result = results.at(i),
+ .condition = cond.at(i),
+ .object_1 = object_1.at(i),
+ .object_2 = object_2.at(i),
+ });
+ }
+
+ return v.finalize(result_ty, results);
+}
+
+fn buildCmp(cg: *CodeGen, opcode: Opcode, lhs: Temporary, rhs: Temporary) !Temporary {
+ const v = cg.vectorization(.{ lhs, rhs });
+ const ops = v.components();
+ const results = cg.module.allocIds(ops);
+
+ const op_result_ty: Type = .bool;
+ const op_result_ty_id = try cg.resolveType(op_result_ty, .direct);
+ const result_ty = try v.resultType(cg, Type.bool);
+
+ const op_lhs = try v.prepare(cg, lhs);
+ const op_rhs = try v.prepare(cg, rhs);
+
+ for (0..ops) |i| {
+ try cg.body.emitRaw(cg.module.gpa, opcode, 4);
+ cg.body.writeOperand(Id, op_result_ty_id);
+ cg.body.writeOperand(Id, results.at(i));
+ cg.body.writeOperand(Id, op_lhs.at(i));
+ cg.body.writeOperand(Id, op_rhs.at(i));
+ }
+
+ return v.finalize(result_ty, results);
+}
+
+const UnaryOp = enum {
+ l_not,
+ bit_not,
+ i_neg,
+ f_neg,
+ i_abs,
+ f_abs,
+ clz,
+ ctz,
+ floor,
+ ceil,
+ trunc,
+ round,
+ sqrt,
+ sin,
+ cos,
+ tan,
+ exp,
+ exp2,
+ log,
+ log2,
+ log10,
+
+ pub fn extInstOpcode(op: UnaryOp, target: *const std.Target) ?u32 {
+ return switch (target.os.tag) {
+ .opencl => @intFromEnum(@as(spec.OpenClOpcode, switch (op) {
+ .i_abs => .s_abs,
+ .f_abs => .fabs,
+ .clz => .clz,
+ .ctz => .ctz,
+ .floor => .floor,
+ .ceil => .ceil,
+ .trunc => .trunc,
+ .round => .round,
+ .sqrt => .sqrt,
+ .sin => .sin,
+ .cos => .cos,
+ .tan => .tan,
+ .exp => .exp,
+ .exp2 => .exp2,
+ .log => .log,
+ .log2 => .log2,
+ .log10 => .log10,
+ else => return null,
+ })),
+ // Note: We'll need to check these for floating point accuracy
+ // Vulkan does not put tight requirements on these, for correction
+ // we might want to emulate them at some point.
+ .vulkan, .opengl => @intFromEnum(@as(spec.GlslOpcode, switch (op) {
+ .i_abs => .SAbs,
+ .f_abs => .FAbs,
+ .floor => .Floor,
+ .ceil => .Ceil,
+ .trunc => .Trunc,
+ .round => .Round,
+ else => return null,
+ })),
+ else => unreachable,
+ };
+ }
+};
+
+fn buildUnary(cg: *CodeGen, op: UnaryOp, operand: Temporary) !Temporary {
+ const zcu = cg.module.zcu;
+ const target = cg.module.zcu.getTarget();
+ const v = cg.vectorization(.{operand});
+ const ops = v.components();
+ const results = cg.module.allocIds(ops);
+ const op_result_ty = operand.ty.scalarType(zcu);
+ const op_result_ty_id = try cg.resolveType(op_result_ty, .direct);
+ const result_ty = try v.resultType(cg, operand.ty);
+ const op_operand = try v.prepare(cg, operand);
+
+ if (op.extInstOpcode(target)) |opcode| {
+ const set = try cg.importExtendedSet();
+ for (0..ops) |i| {
+ try cg.body.emit(cg.module.gpa, .OpExtInst, .{
+ .id_result_type = op_result_ty_id,
+ .id_result = results.at(i),
+ .set = set,
+ .instruction = .{ .inst = opcode },
+ .id_ref_4 = &.{op_operand.at(i)},
+ });
+ }
+ } else {
+ const opcode: Opcode = switch (op) {
+ .l_not => .OpLogicalNot,
+ .bit_not => .OpNot,
+ .i_neg => .OpSNegate,
+ .f_neg => .OpFNegate,
+ else => return cg.todo(
+ "implement unary operation '{s}' for {s} os",
+ .{ @tagName(op), @tagName(target.os.tag) },
+ ),
+ };
+ for (0..ops) |i| {
+ try cg.body.emitRaw(cg.module.gpa, opcode, 3);
+ cg.body.writeOperand(Id, op_result_ty_id);
+ cg.body.writeOperand(Id, results.at(i));
+ cg.body.writeOperand(Id, op_operand.at(i));
+ }
+ }
+
+ return v.finalize(result_ty, results);
+}
+
+fn buildBinary(cg: *CodeGen, opcode: Opcode, lhs: Temporary, rhs: Temporary) !Temporary {
+ const zcu = cg.module.zcu;
+
+ const v = cg.vectorization(.{ lhs, rhs });
+ const ops = v.components();
+ const results = cg.module.allocIds(ops);
+
+ const op_result_ty = lhs.ty.scalarType(zcu);
+ const op_result_ty_id = try cg.resolveType(op_result_ty, .direct);
+ const result_ty = try v.resultType(cg, lhs.ty);
+
+ const op_lhs = try v.prepare(cg, lhs);
+ const op_rhs = try v.prepare(cg, rhs);
+
+ for (0..ops) |i| {
+ try cg.body.emitRaw(cg.module.gpa, opcode, 4);
+ cg.body.writeOperand(Id, op_result_ty_id);
+ cg.body.writeOperand(Id, results.at(i));
+ cg.body.writeOperand(Id, op_lhs.at(i));
+ cg.body.writeOperand(Id, op_rhs.at(i));
+ }
+
+ return v.finalize(result_ty, results);
+}
+
+/// This function builds an extended multiplication, either OpSMulExtended or OpUMulExtended on Vulkan,
+/// or OpIMul and s_mul_hi or u_mul_hi on OpenCL.
+fn buildWideMul(
+ cg: *CodeGen,
+ signedness: std.builtin.Signedness,
+ lhs: Temporary,
+ rhs: Temporary,
+) !struct { Temporary, Temporary } {
+ const pt = cg.pt;
+ const zcu = cg.module.zcu;
+ const target = cg.module.zcu.getTarget();
+ const ip = &zcu.intern_pool;
+
+ const v = lhs.vectorization(cg).unify(rhs.vectorization(cg));
+ const ops = v.components();
+
+ const arith_op_ty = lhs.ty.scalarType(zcu);
+ const arith_op_ty_id = try cg.resolveType(arith_op_ty, .direct);
+
+ const lhs_op = try v.prepare(cg, lhs);
+ const rhs_op = try v.prepare(cg, rhs);
+
+ const value_results = cg.module.allocIds(ops);
+ const overflow_results = cg.module.allocIds(ops);
+
+ switch (target.os.tag) {
+ .opencl => {
+ // Currently, SPIRV-LLVM-Translator based backends cannot deal with OpSMulExtended and
+ // OpUMulExtended. For these we will use the OpenCL s_mul_hi to compute the high-order bits
+ // instead.
+ const set = try cg.importExtendedSet();
+ const overflow_inst: spec.OpenClOpcode = switch (signedness) {
+ .signed => .s_mul_hi,
+ .unsigned => .u_mul_hi,
+ };
+
+ for (0..ops) |i| {
+ try cg.body.emit(cg.module.gpa, .OpIMul, .{
+ .id_result_type = arith_op_ty_id,
+ .id_result = value_results.at(i),
+ .operand_1 = lhs_op.at(i),
+ .operand_2 = rhs_op.at(i),
+ });
+
+ try cg.body.emit(cg.module.gpa, .OpExtInst, .{
+ .id_result_type = arith_op_ty_id,
+ .id_result = overflow_results.at(i),
+ .set = set,
+ .instruction = .{ .inst = @intFromEnum(overflow_inst) },
+ .id_ref_4 = &.{ lhs_op.at(i), rhs_op.at(i) },
+ });
+ }
+ },
+ .vulkan, .opengl => {
+ // Operations return a struct{T, T}
+ // where T is maybe vectorized.
+ const op_result_ty: Type = .fromInterned(try ip.getTupleType(zcu.gpa, pt.tid, .{
+ .types = &.{ arith_op_ty.toIntern(), arith_op_ty.toIntern() },
+ .values = &.{ .none, .none },
+ }));
+ const op_result_ty_id = try cg.resolveType(op_result_ty, .direct);
+
+ const opcode: Opcode = switch (signedness) {
+ .signed => .OpSMulExtended,
+ .unsigned => .OpUMulExtended,
+ };
+
+ for (0..ops) |i| {
+ const op_result = cg.module.allocId();
+
+ try cg.body.emitRaw(cg.module.gpa, opcode, 4);
+ cg.body.writeOperand(Id, op_result_ty_id);
+ cg.body.writeOperand(Id, op_result);
+ cg.body.writeOperand(Id, lhs_op.at(i));
+ cg.body.writeOperand(Id, rhs_op.at(i));
+
+ // The above operation returns a struct. We might want to expand
+ // Temporary to deal with the fact that these are structs eventually,
+ // but for now, take the struct apart and return two separate vectors.
+
+ try cg.body.emit(cg.module.gpa, .OpCompositeExtract, .{
+ .id_result_type = arith_op_ty_id,
+ .id_result = value_results.at(i),
+ .composite = op_result,
+ .indexes = &.{0},
+ });
+
+ try cg.body.emit(cg.module.gpa, .OpCompositeExtract, .{
+ .id_result_type = arith_op_ty_id,
+ .id_result = overflow_results.at(i),
+ .composite = op_result,
+ .indexes = &.{1},
+ });
+ }
+ },
+ else => unreachable,
+ }
+
+ const result_ty = try v.resultType(cg, lhs.ty);
+ return .{
+ v.finalize(result_ty, value_results),
+ v.finalize(result_ty, overflow_results),
+ };
+}
+
+/// The SPIR-V backend is not yet advanced enough to support the std testing infrastructure.
+/// In order to be able to run tests, we "temporarily" lower test kernels into separate entry-
+/// points. The test executor will then be able to invoke these to run the tests.
+/// Note that tests are lowered according to std.builtin.TestFn, which is `fn () anyerror!void`.
+/// (anyerror!void has the same layout as anyerror).
+/// Each test declaration generates a function like.
+/// %anyerror = OpTypeInt 0 16
+/// %p_invocation_globals_struct_ty = ...
+/// %p_anyerror = OpTypePointer CrossWorkgroup %anyerror
+/// %K = OpTypeFunction %void %p_invocation_globals_struct_ty %p_anyerror
+///
+/// %test = OpFunction %void %K
+/// %p_invocation_globals = OpFunctionParameter p_invocation_globals_struct_ty
+/// %p_err = OpFunctionParameter %p_anyerror
+/// %lbl = OpLabel
+/// %result = OpFunctionCall %anyerror %func %p_invocation_globals
+/// OpStore %p_err %result
+/// OpFunctionEnd
+/// TODO is to also write out the error as a function call parameter, and to somehow fetch
+/// the name of an error in the text executor.
+fn generateTestEntryPoint(
+ cg: *CodeGen,
+ name: []const u8,
+ spv_decl_index: Module.Decl.Index,
+ test_id: Id,
+) !void {
+ const gpa = cg.module.gpa;
+ const zcu = cg.module.zcu;
+ const target = cg.module.zcu.getTarget();
+
+ const anyerror_ty_id = try cg.resolveType(.anyerror, .direct);
+ const ptr_anyerror_ty = try cg.pt.ptrType(.{
+ .child = .anyerror_type,
+ .flags = .{ .address_space = .global },
+ });
+ const ptr_anyerror_ty_id = try cg.resolveType(ptr_anyerror_ty, .direct);
+
+ const kernel_id = cg.module.declPtr(spv_decl_index).result_id;
+
+ const section = &cg.module.sections.functions;
+
+ const p_error_id = cg.module.allocId();
+ switch (target.os.tag) {
+ .opencl, .amdhsa => {
+ const void_ty_id = try cg.resolveType(.void, .direct);
+ const kernel_proto_ty_id = try cg.module.functionType(void_ty_id, &.{ptr_anyerror_ty_id});
+
+ try section.emit(gpa, .OpFunction, .{
+ .id_result_type = try cg.resolveType(.void, .direct),
+ .id_result = kernel_id,
+ .function_control = .{},
+ .function_type = kernel_proto_ty_id,
+ });
+
+ try section.emit(gpa, .OpFunctionParameter, .{
+ .id_result_type = ptr_anyerror_ty_id,
+ .id_result = p_error_id,
+ });
+
+ try section.emit(gpa, .OpLabel, .{
+ .id_result = cg.module.allocId(),
+ });
+ },
+ .vulkan, .opengl => {
+ if (cg.module.error_buffer == null) {
+ const spv_err_decl_index = try cg.module.allocDecl(.global);
+ const err_buf_result_id = cg.module.declPtr(spv_err_decl_index).result_id;
+
+ const buffer_struct_ty_id = try cg.module.structType(
+ &.{anyerror_ty_id},
+ &.{"error_out"},
+ null,
+ .none,
+ );
+ try cg.module.decorate(buffer_struct_ty_id, .block);
+ try cg.module.decorateMember(buffer_struct_ty_id, 0, .{ .offset = .{ .byte_offset = 0 } });
+
+ const ptr_buffer_struct_ty_id = cg.module.allocId();
+ try cg.module.sections.globals.emit(gpa, .OpTypePointer, .{
+ .id_result = ptr_buffer_struct_ty_id,
+ .storage_class = cg.module.storageClass(.global),
+ .type = buffer_struct_ty_id,
+ });
+
+ try cg.module.sections.globals.emit(gpa, .OpVariable, .{
+ .id_result_type = ptr_buffer_struct_ty_id,
+ .id_result = err_buf_result_id,
+ .storage_class = cg.module.storageClass(.global),
+ });
+ try cg.module.decorate(err_buf_result_id, .{ .descriptor_set = .{ .descriptor_set = 0 } });
+ try cg.module.decorate(err_buf_result_id, .{ .binding = .{ .binding_point = 0 } });
+
+ cg.module.error_buffer = spv_err_decl_index;
+ }
+
+ try cg.module.sections.execution_modes.emit(gpa, .OpExecutionMode, .{
+ .entry_point = kernel_id,
+ .mode = .{ .local_size = .{
+ .x_size = 1,
+ .y_size = 1,
+ .z_size = 1,
+ } },
+ });
+
+ const void_ty_id = try cg.resolveType(.void, .direct);
+ const kernel_proto_ty_id = try cg.module.functionType(void_ty_id, &.{});
+ try section.emit(gpa, .OpFunction, .{
+ .id_result_type = try cg.resolveType(.void, .direct),
+ .id_result = kernel_id,
+ .function_control = .{},
+ .function_type = kernel_proto_ty_id,
+ });
+ try section.emit(gpa, .OpLabel, .{
+ .id_result = cg.module.allocId(),
+ });
+
+ const spv_err_decl_index = cg.module.error_buffer.?;
+ const buffer_id = cg.module.declPtr(spv_err_decl_index).result_id;
+ try cg.module.decl_deps.append(gpa, spv_err_decl_index);
+
+ const zero_id = try cg.constInt(.u32, 0);
+ try section.emit(gpa, .OpInBoundsAccessChain, .{
+ .id_result_type = ptr_anyerror_ty_id,
+ .id_result = p_error_id,
+ .base = buffer_id,
+ .indexes = &.{zero_id},
+ });
+ },
+ else => unreachable,
+ }
+
+ const error_id = cg.module.allocId();
+ try section.emit(gpa, .OpFunctionCall, .{
+ .id_result_type = anyerror_ty_id,
+ .id_result = error_id,
+ .function = test_id,
+ });
+ // Note: Convert to direct not required.
+ try section.emit(gpa, .OpStore, .{
+ .pointer = p_error_id,
+ .object = error_id,
+ .memory_access = .{
+ .aligned = .{ .literal_integer = @intCast(Type.abiAlignment(.anyerror, zcu).toByteUnits().?) },
+ },
+ });
+ try section.emit(gpa, .OpReturn, {});
+ try section.emit(gpa, .OpFunctionEnd, {});
+
+ // Just generate a quick other name because the intel runtime crashes when the entry-
+ // point name is the same as a different OpName.
+ const test_name = try std.fmt.allocPrint(cg.module.arena, "test {s}", .{name});
+
+ const execution_mode: spec.ExecutionModel = switch (target.os.tag) {
+ .vulkan, .opengl => .gl_compute,
+ .opencl, .amdhsa => .kernel,
+ else => unreachable,
+ };
+
+ try cg.module.declareEntryPoint(spv_decl_index, test_name, execution_mode, null);
+}
+
+fn intFromBool(cg: *CodeGen, value: Temporary) !Temporary {
+ return try cg.intFromBool2(value, Type.u1);
+}
+
+fn intFromBool2(cg: *CodeGen, value: Temporary, result_ty: Type) !Temporary {
+ const zero_id = try cg.constInt(result_ty, 0);
+ const one_id = try cg.constInt(result_ty, 1);
+
+ return try cg.buildSelect(
+ value,
+ Temporary.init(result_ty, one_id),
+ Temporary.init(result_ty, zero_id),
+ );
+}
+
+/// Convert representation from indirect (in memory) to direct (in 'register')
+/// This converts the argument type from resolveType(ty, .indirect) to resolveType(ty, .direct).
+fn convertToDirect(cg: *CodeGen, ty: Type, operand_id: Id) !Id {
+ const pt = cg.pt;
+ const zcu = cg.module.zcu;
+ switch (ty.scalarType(zcu).zigTypeTag(zcu)) {
+ .bool => {
+ const false_id = try cg.constBool(false, .indirect);
+ const operand_ty = blk: {
+ if (!ty.isVector(zcu)) break :blk Type.u1;
+ break :blk try pt.vectorType(.{
+ .len = ty.vectorLen(zcu),
+ .child = .u1_type,
+ });
+ };
+
+ const result = try cg.buildCmp(
+ .OpINotEqual,
+ Temporary.init(operand_ty, operand_id),
+ Temporary.init(.u1, false_id),
+ );
+ return try result.materialize(cg);
+ },
+ else => return operand_id,
+ }
+}
+
+/// Convert representation from direct (in 'register) to direct (in memory)
+/// This converts the argument type from resolveType(ty, .direct) to resolveType(ty, .indirect).
+fn convertToIndirect(cg: *CodeGen, ty: Type, operand_id: Id) !Id {
+ const zcu = cg.module.zcu;
+ switch (ty.scalarType(zcu).zigTypeTag(zcu)) {
+ .bool => {
+ const result = try cg.intFromBool(Temporary.init(ty, operand_id));
+ return try result.materialize(cg);
+ },
+ else => return operand_id,
+ }
+}
+
+fn extractField(cg: *CodeGen, result_ty: Type, object: Id, field: u32) !Id {
+ const result_ty_id = try cg.resolveType(result_ty, .indirect);
+ const result_id = cg.module.allocId();
+ const indexes = [_]u32{field};
+ try cg.body.emit(cg.module.gpa, .OpCompositeExtract, .{
+ .id_result_type = result_ty_id,
+ .id_result = result_id,
+ .composite = object,
+ .indexes = &indexes,
+ });
+ // Convert bools; direct structs have their field types as indirect values.
+ return try cg.convertToDirect(result_ty, result_id);
+}
+
+fn extractVectorComponent(cg: *CodeGen, result_ty: Type, vector_id: Id, field: u32) !Id {
+ const result_ty_id = try cg.resolveType(result_ty, .direct);
+ const result_id = cg.module.allocId();
+ const indexes = [_]u32{field};
+ try cg.body.emit(cg.module.gpa, .OpCompositeExtract, .{
+ .id_result_type = result_ty_id,
+ .id_result = result_id,
+ .composite = vector_id,
+ .indexes = &indexes,
+ });
+ // Vector components are already stored in direct representation.
+ return result_id;
+}
+
+const MemoryOptions = struct {
+ is_volatile: bool = false,
+};
+
+fn load(cg: *CodeGen, value_ty: Type, ptr_id: Id, options: MemoryOptions) !Id {
+ const zcu = cg.module.zcu;
+ const alignment: u32 = @intCast(value_ty.abiAlignment(zcu).toByteUnits().?);
+ const indirect_value_ty_id = try cg.resolveType(value_ty, .indirect);
+ const result_id = cg.module.allocId();
+ const access: spec.MemoryAccess.Extended = .{
+ .@"volatile" = options.is_volatile,
+ .aligned = .{ .literal_integer = alignment },
+ };
+ try cg.body.emit(cg.module.gpa, .OpLoad, .{
+ .id_result_type = indirect_value_ty_id,
+ .id_result = result_id,
+ .pointer = ptr_id,
+ .memory_access = access,
+ });
+ return try cg.convertToDirect(value_ty, result_id);
+}
+
+fn store(cg: *CodeGen, value_ty: Type, ptr_id: Id, value_id: Id, options: MemoryOptions) !void {
+ const indirect_value_id = try cg.convertToIndirect(value_ty, value_id);
+ const access: spec.MemoryAccess.Extended = .{ .@"volatile" = options.is_volatile };
+ try cg.body.emit(cg.module.gpa, .OpStore, .{
+ .pointer = ptr_id,
+ .object = indirect_value_id,
+ .memory_access = access,
+ });
+}
+
+fn genBody(cg: *CodeGen, body: []const Air.Inst.Index) !void {
+ for (body) |inst| {
+ try cg.genInst(inst);
+ }
+}
+
+fn genInst(cg: *CodeGen, inst: Air.Inst.Index) Error!void {
+ const gpa = cg.module.gpa;
+ const zcu = cg.module.zcu;
+ const ip = &zcu.intern_pool;
+ if (cg.liveness.isUnused(inst) and !cg.air.mustLower(inst, ip))
+ return;
+
+ const air_tags = cg.air.instructions.items(.tag);
+ const maybe_result_id: ?Id = switch (air_tags[@intFromEnum(inst)]) {
+ // zig fmt: off
+ .add, .add_wrap, .add_optimized => try cg.airArithOp(inst, .OpFAdd, .OpIAdd, .OpIAdd),
+ .sub, .sub_wrap, .sub_optimized => try cg.airArithOp(inst, .OpFSub, .OpISub, .OpISub),
+ .mul, .mul_wrap, .mul_optimized => try cg.airArithOp(inst, .OpFMul, .OpIMul, .OpIMul),
+
+ .sqrt => try cg.airUnOpSimple(inst, .sqrt),
+ .sin => try cg.airUnOpSimple(inst, .sin),
+ .cos => try cg.airUnOpSimple(inst, .cos),
+ .tan => try cg.airUnOpSimple(inst, .tan),
+ .exp => try cg.airUnOpSimple(inst, .exp),
+ .exp2 => try cg.airUnOpSimple(inst, .exp2),
+ .log => try cg.airUnOpSimple(inst, .log),
+ .log2 => try cg.airUnOpSimple(inst, .log2),
+ .log10 => try cg.airUnOpSimple(inst, .log10),
+ .abs => try cg.airAbs(inst),
+ .floor => try cg.airUnOpSimple(inst, .floor),
+ .ceil => try cg.airUnOpSimple(inst, .ceil),
+ .round => try cg.airUnOpSimple(inst, .round),
+ .trunc_float => try cg.airUnOpSimple(inst, .trunc),
+ .neg, .neg_optimized => try cg.airUnOpSimple(inst, .f_neg),
+
+ .div_float, .div_float_optimized => try cg.airArithOp(inst, .OpFDiv, .OpSDiv, .OpUDiv),
+ .div_floor, .div_floor_optimized => try cg.airDivFloor(inst),
+ .div_trunc, .div_trunc_optimized => try cg.airDivTrunc(inst),
+
+ .rem, .rem_optimized => try cg.airArithOp(inst, .OpFRem, .OpSRem, .OpUMod),
+ .mod, .mod_optimized => try cg.airArithOp(inst, .OpFMod, .OpSMod, .OpUMod),
+
+ .add_with_overflow => try cg.airAddSubOverflow(inst, .OpIAdd, .OpULessThan, .OpSLessThan),
+ .sub_with_overflow => try cg.airAddSubOverflow(inst, .OpISub, .OpUGreaterThan, .OpSGreaterThan),
+ .mul_with_overflow => try cg.airMulOverflow(inst),
+ .shl_with_overflow => try cg.airShlOverflow(inst),
+
+ .mul_add => try cg.airMulAdd(inst),
+
+ .ctz => try cg.airClzCtz(inst, .ctz),
+ .clz => try cg.airClzCtz(inst, .clz),
+
+ .select => try cg.airSelect(inst),
+
+ .splat => try cg.airSplat(inst),
+ .reduce, .reduce_optimized => try cg.airReduce(inst),
+ .shuffle_one => try cg.airShuffleOne(inst),
+ .shuffle_two => try cg.airShuffleTwo(inst),
+
+ .ptr_add => try cg.airPtrAdd(inst),
+ .ptr_sub => try cg.airPtrSub(inst),
+
+ .bit_and => try cg.airBinOpSimple(inst, .OpBitwiseAnd),
+ .bit_or => try cg.airBinOpSimple(inst, .OpBitwiseOr),
+ .xor => try cg.airBinOpSimple(inst, .OpBitwiseXor),
+ .bool_and => try cg.airBinOpSimple(inst, .OpLogicalAnd),
+ .bool_or => try cg.airBinOpSimple(inst, .OpLogicalOr),
+
+ .shl, .shl_exact => try cg.airShift(inst, .OpShiftLeftLogical, .OpShiftLeftLogical),
+ .shr, .shr_exact => try cg.airShift(inst, .OpShiftRightLogical, .OpShiftRightArithmetic),
+
+ .min => try cg.airMinMax(inst, .min),
+ .max => try cg.airMinMax(inst, .max),
+
+ .bitcast => try cg.airBitCast(inst),
+ .intcast, .trunc => try cg.airIntCast(inst),
+ .float_from_int => try cg.airFloatFromInt(inst),
+ .int_from_float => try cg.airIntFromFloat(inst),
+ .fpext, .fptrunc => try cg.airFloatCast(inst),
+ .not => try cg.airNot(inst),
+
+ .array_to_slice => try cg.airArrayToSlice(inst),
+ .slice => try cg.airSlice(inst),
+ .aggregate_init => try cg.airAggregateInit(inst),
+ .memcpy => return cg.airMemcpy(inst),
+ .memmove => return cg.airMemmove(inst),
+
+ .slice_ptr => try cg.airSliceField(inst, 0),
+ .slice_len => try cg.airSliceField(inst, 1),
+ .slice_elem_ptr => try cg.airSliceElemPtr(inst),
+ .slice_elem_val => try cg.airSliceElemVal(inst),
+ .ptr_elem_ptr => try cg.airPtrElemPtr(inst),
+ .ptr_elem_val => try cg.airPtrElemVal(inst),
+ .array_elem_val => try cg.airArrayElemVal(inst),
+
+ .vector_store_elem => return cg.airVectorStoreElem(inst),
+
+ .set_union_tag => return cg.airSetUnionTag(inst),
+ .get_union_tag => try cg.airGetUnionTag(inst),
+ .union_init => try cg.airUnionInit(inst),
+
+ .struct_field_val => try cg.airStructFieldVal(inst),
+ .field_parent_ptr => try cg.airFieldParentPtr(inst),
+
+ .struct_field_ptr_index_0 => try cg.airStructFieldPtrIndex(inst, 0),
+ .struct_field_ptr_index_1 => try cg.airStructFieldPtrIndex(inst, 1),
+ .struct_field_ptr_index_2 => try cg.airStructFieldPtrIndex(inst, 2),
+ .struct_field_ptr_index_3 => try cg.airStructFieldPtrIndex(inst, 3),
+
+ .cmp_eq => try cg.airCmp(inst, .eq),
+ .cmp_neq => try cg.airCmp(inst, .neq),
+ .cmp_gt => try cg.airCmp(inst, .gt),
+ .cmp_gte => try cg.airCmp(inst, .gte),
+ .cmp_lt => try cg.airCmp(inst, .lt),
+ .cmp_lte => try cg.airCmp(inst, .lte),
+ .cmp_vector => try cg.airVectorCmp(inst),
+
+ .arg => cg.airArg(),
+ .alloc => try cg.airAlloc(inst),
+ // TODO: We probably need to have a special implementation of this for the C abi.
+ .ret_ptr => try cg.airAlloc(inst),
+ .block => try cg.airBlock(inst),
+
+ .load => try cg.airLoad(inst),
+ .store, .store_safe => return cg.airStore(inst),
+
+ .br => return cg.airBr(inst),
+ // For now just ignore this instruction. This effectively falls back on the old implementation,
+ // this doesn't change anything for us.
+ .repeat => return,
+ .breakpoint => return,
+ .cond_br => return cg.airCondBr(inst),
+ .loop => return cg.airLoop(inst),
+ .ret => return cg.airRet(inst),
+ .ret_safe => return cg.airRet(inst), // TODO
+ .ret_load => return cg.airRetLoad(inst),
+ .@"try" => try cg.airTry(inst),
+ .switch_br => return cg.airSwitchBr(inst),
+ .unreach, .trap => return cg.airUnreach(),
+
+ .dbg_empty_stmt => return,
+ .dbg_stmt => return cg.airDbgStmt(inst),
+ .dbg_inline_block => try cg.airDbgInlineBlock(inst),
+ .dbg_var_ptr, .dbg_var_val, .dbg_arg_inline => return cg.airDbgVar(inst),
+
+ .unwrap_errunion_err => try cg.airErrUnionErr(inst),
+ .unwrap_errunion_payload => try cg.airErrUnionPayload(inst),
+ .wrap_errunion_err => try cg.airWrapErrUnionErr(inst),
+ .wrap_errunion_payload => try cg.airWrapErrUnionPayload(inst),
+
+ .is_null => try cg.airIsNull(inst, false, .is_null),
+ .is_non_null => try cg.airIsNull(inst, false, .is_non_null),
+ .is_null_ptr => try cg.airIsNull(inst, true, .is_null),
+ .is_non_null_ptr => try cg.airIsNull(inst, true, .is_non_null),
+ .is_err => try cg.airIsErr(inst, .is_err),
+ .is_non_err => try cg.airIsErr(inst, .is_non_err),
+
+ .optional_payload => try cg.airUnwrapOptional(inst),
+ .optional_payload_ptr => try cg.airUnwrapOptionalPtr(inst),
+ .wrap_optional => try cg.airWrapOptional(inst),
+
+ .assembly => try cg.airAssembly(inst),
+
+ .call => try cg.airCall(inst, .auto),
+ .call_always_tail => try cg.airCall(inst, .always_tail),
+ .call_never_tail => try cg.airCall(inst, .never_tail),
+ .call_never_inline => try cg.airCall(inst, .never_inline),
+
+ .work_item_id => try cg.airWorkItemId(inst),
+ .work_group_size => try cg.airWorkGroupSize(inst),
+ .work_group_id => try cg.airWorkGroupId(inst),
+
+ // zig fmt: on
+
+ else => |tag| return cg.todo("implement AIR tag {s}", .{@tagName(tag)}),
+ };
+
+ const result_id = maybe_result_id orelse return;
+ try cg.inst_results.putNoClobber(gpa, inst, result_id);
+}
+
+fn airBinOpSimple(cg: *CodeGen, inst: Air.Inst.Index, op: Opcode) !?Id {
+ const bin_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
+ const lhs = try cg.temporary(bin_op.lhs);
+ const rhs = try cg.temporary(bin_op.rhs);
+
+ const result = try cg.buildBinary(op, lhs, rhs);
+ return try result.materialize(cg);
+}
+
+fn airShift(cg: *CodeGen, inst: Air.Inst.Index, unsigned: Opcode, signed: Opcode) !?Id {
+ const zcu = cg.module.zcu;
+ const bin_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
+
+ if (cg.typeOf(bin_op.lhs).isVector(zcu) and !cg.typeOf(bin_op.rhs).isVector(zcu)) {
+ return cg.fail("vector shift with scalar rhs", .{});
+ }
+
+ const base = try cg.temporary(bin_op.lhs);
+ const shift = try cg.temporary(bin_op.rhs);
+
+ const result_ty = cg.typeOfIndex(inst);
+
+ const info = cg.arithmeticTypeInfo(result_ty);
+ switch (info.class) {
+ .composite_integer => return cg.todo("shift ops for composite integers", .{}),
+ .integer, .strange_integer => {},
+ .float, .bool => unreachable,
+ }
+
+ // Sometimes Zig doesn't make both of the arguments the same types here. SPIR-V expects that,
+ // so just manually upcast it if required.
+
+ // Note: The sign may differ here between the shift and the base type, in case
+ // of an arithmetic right shift. SPIR-V still expects the same type,
+ // so in that case we have to cast convert to signed.
+ const casted_shift = try cg.buildConvert(base.ty.scalarType(zcu), shift);
+
+ const shifted = switch (info.signedness) {
+ .unsigned => try cg.buildBinary(unsigned, base, casted_shift),
+ .signed => try cg.buildBinary(signed, base, casted_shift),
+ };
+
+ const result = try cg.normalize(shifted, info);
+ return try result.materialize(cg);
+}
+
+const MinMax = enum {
+ min,
+ max,
+
+ pub fn extInstOpcode(
+ op: MinMax,
+ target: *const std.Target,
+ info: ArithmeticTypeInfo,
+ ) u32 {
+ return switch (target.os.tag) {
+ .opencl => @intFromEnum(@as(spec.OpenClOpcode, switch (info.class) {
+ .float => switch (op) {
+ .min => .fmin,
+ .max => .fmax,
+ },
+ .integer, .strange_integer, .composite_integer => switch (info.signedness) {
+ .signed => switch (op) {
+ .min => .s_min,
+ .max => .s_max,
+ },
+ .unsigned => switch (op) {
+ .min => .u_min,
+ .max => .u_max,
+ },
+ },
+ .bool => unreachable,
+ })),
+ .vulkan, .opengl => @intFromEnum(@as(spec.GlslOpcode, switch (info.class) {
+ .float => switch (op) {
+ .min => .FMin,
+ .max => .FMax,
+ },
+ .integer, .strange_integer, .composite_integer => switch (info.signedness) {
+ .signed => switch (op) {
+ .min => .SMin,
+ .max => .SMax,
+ },
+ .unsigned => switch (op) {
+ .min => .UMin,
+ .max => .UMax,
+ },
+ },
+ .bool => unreachable,
+ })),
+ else => unreachable,
+ };
+ }
+};
+
+fn airMinMax(cg: *CodeGen, inst: Air.Inst.Index, op: MinMax) !?Id {
+ const bin_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
+
+ const lhs = try cg.temporary(bin_op.lhs);
+ const rhs = try cg.temporary(bin_op.rhs);
+
+ const result = try cg.minMax(lhs, rhs, op);
+ return try result.materialize(cg);
+}
+
+fn minMax(cg: *CodeGen, lhs: Temporary, rhs: Temporary, op: MinMax) !Temporary {
+ const zcu = cg.module.zcu;
+ const target = zcu.getTarget();
+ const info = cg.arithmeticTypeInfo(lhs.ty);
+
+ const v = cg.vectorization(.{ lhs, rhs });
+ const ops = v.components();
+ const results = cg.module.allocIds(ops);
+
+ const op_result_ty = lhs.ty.scalarType(zcu);
+ const op_result_ty_id = try cg.resolveType(op_result_ty, .direct);
+ const result_ty = try v.resultType(cg, lhs.ty);
+
+ const op_lhs = try v.prepare(cg, lhs);
+ const op_rhs = try v.prepare(cg, rhs);
+
+ const set = try cg.importExtendedSet();
+ const opcode = op.extInstOpcode(target, info);
+ for (0..ops) |i| {
+ try cg.body.emit(cg.module.gpa, .OpExtInst, .{
+ .id_result_type = op_result_ty_id,
+ .id_result = results.at(i),
+ .set = set,
+ .instruction = .{ .inst = opcode },
+ .id_ref_4 = &.{ op_lhs.at(i), op_rhs.at(i) },
+ });
+ }
+
+ return v.finalize(result_ty, results);
+}
+
+/// This function normalizes values to a canonical representation
+/// after some arithmetic operation. This mostly consists of wrapping
+/// behavior for strange integers:
+/// - Unsigned integers are bitwise masked with a mask that only passes
+/// the valid bits through.
+/// - Signed integers are also sign extended if they are negative.
+/// All other values are returned unmodified (this makes strange integer
+/// wrapping easier to use in generic operations).
+fn normalize(cg: *CodeGen, value: Temporary, info: ArithmeticTypeInfo) !Temporary {
+ const zcu = cg.module.zcu;
+ const ty = value.ty;
+ switch (info.class) {
+ .composite_integer, .integer, .bool, .float => return value,
+ .strange_integer => switch (info.signedness) {
+ .unsigned => {
+ const mask_value = if (info.bits == 64) 0xFFFF_FFFF_FFFF_FFFF else (@as(u64, 1) << @as(u6, @intCast(info.bits))) - 1;
+ const mask_id = try cg.constInt(ty.scalarType(zcu), mask_value);
+ return try cg.buildBinary(.OpBitwiseAnd, value, Temporary.init(ty.scalarType(zcu), mask_id));
+ },
+ .signed => {
+ // Shift left and right so that we can copy the sight bit that way.
+ const shift_amt_id = try cg.constInt(ty.scalarType(zcu), info.backing_bits - info.bits);
+ const shift_amt: Temporary = .init(ty.scalarType(zcu), shift_amt_id);
+ const left = try cg.buildBinary(.OpShiftLeftLogical, value, shift_amt);
+ return try cg.buildBinary(.OpShiftRightArithmetic, left, shift_amt);
+ },
+ },
+ }
+}
+
+fn airDivFloor(cg: *CodeGen, inst: Air.Inst.Index) !?Id {
+ const bin_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
+
+ const lhs = try cg.temporary(bin_op.lhs);
+ const rhs = try cg.temporary(bin_op.rhs);
+
+ const info = cg.arithmeticTypeInfo(lhs.ty);
+ switch (info.class) {
+ .composite_integer => unreachable, // TODO
+ .integer, .strange_integer => {
+ switch (info.signedness) {
+ .unsigned => {
+ const result = try cg.buildBinary(.OpUDiv, lhs, rhs);
+ return try result.materialize(cg);
+ },
+ .signed => {},
+ }
+
+ // For signed integers:
+ // (a / b) - (a % b != 0 && a < 0 != b < 0);
+ // There shouldn't be any overflow issues.
+
+ const div = try cg.buildBinary(.OpSDiv, lhs, rhs);
+ const rem = try cg.buildBinary(.OpSRem, lhs, rhs);
+
+ const zero: Temporary = .init(lhs.ty, try cg.constInt(lhs.ty, 0));
+
+ const rem_is_not_zero = try cg.buildCmp(.OpINotEqual, rem, zero);
+
+ const result_negative = try cg.buildCmp(
+ .OpLogicalNotEqual,
+ try cg.buildCmp(.OpSLessThan, lhs, zero),
+ try cg.buildCmp(.OpSLessThan, rhs, zero),
+ );
+ const rem_is_not_zero_and_result_is_negative = try cg.buildBinary(
+ .OpLogicalAnd,
+ rem_is_not_zero,
+ result_negative,
+ );
+
+ const result = try cg.buildBinary(
+ .OpISub,
+ div,
+ try cg.intFromBool2(rem_is_not_zero_and_result_is_negative, div.ty),
+ );
+
+ return try result.materialize(cg);
+ },
+ .float => {
+ const div = try cg.buildBinary(.OpFDiv, lhs, rhs);
+ const result = try cg.buildUnary(.floor, div);
+ return try result.materialize(cg);
+ },
+ .bool => unreachable,
+ }
+}
+
+fn airDivTrunc(cg: *CodeGen, inst: Air.Inst.Index) !?Id {
+ const bin_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
+
+ const lhs = try cg.temporary(bin_op.lhs);
+ const rhs = try cg.temporary(bin_op.rhs);
+
+ const info = cg.arithmeticTypeInfo(lhs.ty);
+ switch (info.class) {
+ .composite_integer => unreachable, // TODO
+ .integer, .strange_integer => switch (info.signedness) {
+ .unsigned => {
+ const result = try cg.buildBinary(.OpUDiv, lhs, rhs);
+ return try result.materialize(cg);
+ },
+ .signed => {
+ const result = try cg.buildBinary(.OpSDiv, lhs, rhs);
+ return try result.materialize(cg);
+ },
+ },
+ .float => {
+ const div = try cg.buildBinary(.OpFDiv, lhs, rhs);
+ const result = try cg.buildUnary(.trunc, div);
+ return try result.materialize(cg);
+ },
+ .bool => unreachable,
+ }
+}
+
+fn airUnOpSimple(cg: *CodeGen, inst: Air.Inst.Index, op: UnaryOp) !?Id {
+ const un_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
+ const operand = try cg.temporary(un_op);
+ const result = try cg.buildUnary(op, operand);
+ return try result.materialize(cg);
+}
+
+fn airArithOp(
+ cg: *CodeGen,
+ inst: Air.Inst.Index,
+ comptime fop: Opcode,
+ comptime sop: Opcode,
+ comptime uop: Opcode,
+) !?Id {
+ const bin_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
+
+ const lhs = try cg.temporary(bin_op.lhs);
+ const rhs = try cg.temporary(bin_op.rhs);
+
+ const info = cg.arithmeticTypeInfo(lhs.ty);
+
+ const result = switch (info.class) {
+ .composite_integer => unreachable, // TODO
+ .integer, .strange_integer => switch (info.signedness) {
+ .signed => try cg.buildBinary(sop, lhs, rhs),
+ .unsigned => try cg.buildBinary(uop, lhs, rhs),
+ },
+ .float => try cg.buildBinary(fop, lhs, rhs),
+ .bool => unreachable,
+ };
+
+ return try result.materialize(cg);
+}
+
+fn airAbs(cg: *CodeGen, inst: Air.Inst.Index) !?Id {
+ const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
+ const operand = try cg.temporary(ty_op.operand);
+ // Note: operand_ty may be signed, while ty is always unsigned!
+ const result_ty = cg.typeOfIndex(inst);
+ const result = try cg.abs(result_ty, operand);
+ return try result.materialize(cg);
+}
+
+fn abs(cg: *CodeGen, result_ty: Type, value: Temporary) !Temporary {
+ const zcu = cg.module.zcu;
+ const target = cg.module.zcu.getTarget();
+ const operand_info = cg.arithmeticTypeInfo(value.ty);
+
+ switch (operand_info.class) {
+ .float => return try cg.buildUnary(.f_abs, value),
+ .integer, .strange_integer => {
+ const abs_value = try cg.buildUnary(.i_abs, value);
+
+ switch (target.os.tag) {
+ .vulkan, .opengl => {
+ if (value.ty.intInfo(zcu).signedness == .signed) {
+ return cg.todo("perform bitcast after @abs", .{});
+ }
+ },
+ else => {},
+ }
+
+ return try cg.normalize(abs_value, cg.arithmeticTypeInfo(result_ty));
+ },
+ .composite_integer => unreachable, // TODO
+ .bool => unreachable,
+ }
+}
+
+fn airAddSubOverflow(
+ cg: *CodeGen,
+ inst: Air.Inst.Index,
+ comptime add: Opcode,
+ u_opcode: Opcode,
+ s_opcode: Opcode,
+) !?Id {
+ _ = s_opcode;
+ // Note: OpIAddCarry and OpISubBorrow are not really useful here: For unsigned numbers,
+ // there is in both cases only one extra operation required. For signed operations,
+ // the overflow bit is set then going from 0x80.. to 0x00.., but this doesn't actually
+ // normally set a carry bit. So the SPIR-V overflow operations are not particularly
+ // useful here.
+
+ const ty_pl = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
+ const extra = cg.air.extraData(Air.Bin, ty_pl.payload).data;
+
+ const lhs = try cg.temporary(extra.lhs);
+ const rhs = try cg.temporary(extra.rhs);
+
+ const result_ty = cg.typeOfIndex(inst);
+
+ const info = cg.arithmeticTypeInfo(lhs.ty);
+ switch (info.class) {
+ .composite_integer => unreachable, // TODO
+ .strange_integer, .integer => {},
+ .float, .bool => unreachable,
+ }
+
+ const sum = try cg.buildBinary(add, lhs, rhs);
+ const result = try cg.normalize(sum, info);
+
+ const overflowed = switch (info.signedness) {
+ // Overflow happened if the result is smaller than either of the operands. It doesn't matter which.
+ // For subtraction the conditions need to be swapped.
+ .unsigned => try cg.buildCmp(u_opcode, result, lhs),
+ // For signed operations, we check the signs of the operands and the result.
+ .signed => blk: {
+ // Signed overflow detection using the sign bits of the operands and the result.
+ // For addition (a + b), overflow occurs if the operands have the same sign
+ // and the result's sign is different from the operands' sign.
+ // (sign(a) == sign(b)) && (sign(a) != sign(result))
+ // For subtraction (a - b), overflow occurs if the operands have different signs
+ // and the result's sign is different from the minuend's (a's) sign.
+ // (sign(a) != sign(b)) && (sign(a) != sign(result))
+ const zero: Temporary = .init(rhs.ty, try cg.constInt(rhs.ty, 0));
+
+ const lhs_is_neg = try cg.buildCmp(.OpSLessThan, lhs, zero);
+ const rhs_is_neg = try cg.buildCmp(.OpSLessThan, rhs, zero);
+ const result_is_neg = try cg.buildCmp(.OpSLessThan, result, zero);
+
+ const signs_match = try cg.buildCmp(.OpLogicalEqual, lhs_is_neg, rhs_is_neg);
+ const result_sign_differs = try cg.buildCmp(.OpLogicalNotEqual, lhs_is_neg, result_is_neg);
+
+ const overflow_condition = if (add == .OpIAdd)
+ signs_match
+ else // .OpISub
+ try cg.buildUnary(.l_not, signs_match);
+
+ break :blk try cg.buildCmp(.OpLogicalAnd, overflow_condition, result_sign_differs);
+ },
+ };
+
+ const ov = try cg.intFromBool(overflowed);
+
+ const result_ty_id = try cg.resolveType(result_ty, .direct);
+ return try cg.constructComposite(result_ty_id, &.{ try result.materialize(cg), try ov.materialize(cg) });
+}
+
+fn airMulOverflow(cg: *CodeGen, inst: Air.Inst.Index) !?Id {
+ const pt = cg.pt;
+
+ const ty_pl = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
+ const extra = cg.air.extraData(Air.Bin, ty_pl.payload).data;
+
+ const lhs = try cg.temporary(extra.lhs);
+ const rhs = try cg.temporary(extra.rhs);
+
+ const result_ty = cg.typeOfIndex(inst);
+
+ const info = cg.arithmeticTypeInfo(lhs.ty);
+ switch (info.class) {
+ .composite_integer => unreachable, // TODO
+ .strange_integer, .integer => {},
+ .float, .bool => unreachable,
+ }
+
+ // There are 3 cases which we have to deal with:
+ // - If info.bits < 32 / 2, we will upcast to 32 and check the higher bits
+ // - If info.bits > 32 / 2, we have to use extended multiplication
+ // - Additionally, if info.bits != 32, we'll have to check the high bits
+ // of the result too.
+
+ const largest_int_bits = cg.largestSupportedIntBits();
+ // If non-null, the number of bits that the multiplication should be performed in. If
+ // null, we have to use wide multiplication.
+ const maybe_op_ty_bits: ?u16 = switch (info.bits) {
+ 0 => unreachable,
+ 1...16 => 32,
+ 17...32 => if (largest_int_bits > 32) 64 else null, // Upcast if we can.
+ 33...64 => null, // Always use wide multiplication.
+ else => unreachable, // TODO: Composite integers
+ };
+
+ const result, const overflowed = switch (info.signedness) {
+ .unsigned => blk: {
+ if (maybe_op_ty_bits) |op_ty_bits| {
+ const op_ty = try pt.intType(.unsigned, op_ty_bits);
+ const casted_lhs = try cg.buildConvert(op_ty, lhs);
+ const casted_rhs = try cg.buildConvert(op_ty, rhs);
+
+ const full_result = try cg.buildBinary(.OpIMul, casted_lhs, casted_rhs);
+
+ const low_bits = try cg.buildConvert(lhs.ty, full_result);
+ const result = try cg.normalize(low_bits, info);
+
+ // Shift the result bits away to get the overflow bits.
+ const shift: Temporary = .init(full_result.ty, try cg.constInt(full_result.ty, info.bits));
+ const overflow = try cg.buildBinary(.OpShiftRightLogical, full_result, shift);
+
+ // Directly check if its zero in the op_ty without converting first.
+ const zero: Temporary = .init(full_result.ty, try cg.constInt(full_result.ty, 0));
+ const overflowed = try cg.buildCmp(.OpINotEqual, zero, overflow);
+
+ break :blk .{ result, overflowed };
+ }
+
+ const low_bits, const high_bits = try cg.buildWideMul(.unsigned, lhs, rhs);
+
+ // Truncate the result, if required.
+ const result = try cg.normalize(low_bits, info);
+
+ // Overflow happened if the high-bits of the result are non-zero OR if the
+ // high bits of the low word of the result (those outside the range of the
+ // int) are nonzero.
+ const zero: Temporary = .init(lhs.ty, try cg.constInt(lhs.ty, 0));
+ const high_overflowed = try cg.buildCmp(.OpINotEqual, zero, high_bits);
+
+ // If no overflow bits in low_bits, no extra work needs to be done.
+ if (info.backing_bits == info.bits) break :blk .{ result, high_overflowed };
+
+ // Shift the result bits away to get the overflow bits.
+ const shift: Temporary = .init(lhs.ty, try cg.constInt(lhs.ty, info.bits));
+ const low_overflow = try cg.buildBinary(.OpShiftRightLogical, low_bits, shift);
+ const low_overflowed = try cg.buildCmp(.OpINotEqual, zero, low_overflow);
+
+ const overflowed = try cg.buildCmp(.OpLogicalOr, low_overflowed, high_overflowed);
+
+ break :blk .{ result, overflowed };
+ },
+ .signed => blk: {
+ // - lhs >= 0, rhxs >= 0: expect positive; overflow should be 0
+ // - lhs == 0 : expect positive; overflow should be 0
+ // - rhs == 0: expect positive; overflow should be 0
+ // - lhs > 0, rhs < 0: expect negative; overflow should be -1
+ // - lhs < 0, rhs > 0: expect negative; overflow should be -1
+ // - lhs <= 0, rhs <= 0: expect positive; overflow should be 0
+ // ------
+ // overflow should be -1 when
+ // (lhs > 0 && rhs < 0) || (lhs < 0 && rhs > 0)
+
+ const zero: Temporary = .init(lhs.ty, try cg.constInt(lhs.ty, 0));
+ const lhs_negative = try cg.buildCmp(.OpSLessThan, lhs, zero);
+ const rhs_negative = try cg.buildCmp(.OpSLessThan, rhs, zero);
+ const lhs_positive = try cg.buildCmp(.OpSGreaterThan, lhs, zero);
+ const rhs_positive = try cg.buildCmp(.OpSGreaterThan, rhs, zero);
+
+ // Set to `true` if we expect -1.
+ const expected_overflow_bit = try cg.buildBinary(
+ .OpLogicalOr,
+ try cg.buildCmp(.OpLogicalAnd, lhs_positive, rhs_negative),
+ try cg.buildCmp(.OpLogicalAnd, lhs_negative, rhs_positive),
+ );
+
+ if (maybe_op_ty_bits) |op_ty_bits| {
+ const op_ty = try pt.intType(.signed, op_ty_bits);
+ // Assume normalized; sign bit is set. We want a sign extend.
+ const casted_lhs = try cg.buildConvert(op_ty, lhs);
+ const casted_rhs = try cg.buildConvert(op_ty, rhs);
+
+ const full_result = try cg.buildBinary(.OpIMul, casted_lhs, casted_rhs);
+
+ // Truncate to the result type.
+ const low_bits = try cg.buildConvert(lhs.ty, full_result);
+ const result = try cg.normalize(low_bits, info);
+
+ // Now, we need to check the overflow bits AND the sign
+ // bit for the expected overflow bits.
+ // To do that, shift out everything bit the sign bit and
+ // then check what remains.
+ const shift: Temporary = .init(full_result.ty, try cg.constInt(full_result.ty, info.bits - 1));
+ // Use SRA so that any sign bits are duplicated. Now we can just check if ALL bits are set
+ // for negative cases.
+ const overflow = try cg.buildBinary(.OpShiftRightArithmetic, full_result, shift);
+
+ const long_all_set: Temporary = .init(full_result.ty, try cg.constInt(full_result.ty, -1));
+ const long_zero: Temporary = .init(full_result.ty, try cg.constInt(full_result.ty, 0));
+ const mask = try cg.buildSelect(expected_overflow_bit, long_all_set, long_zero);
+
+ const overflowed = try cg.buildCmp(.OpINotEqual, mask, overflow);
+
+ break :blk .{ result, overflowed };
+ }
+
+ const low_bits, const high_bits = try cg.buildWideMul(.signed, lhs, rhs);
+
+ // Truncate result if required.
+ const result = try cg.normalize(low_bits, info);
+
+ const all_set: Temporary = .init(lhs.ty, try cg.constInt(lhs.ty, -1));
+ const mask = try cg.buildSelect(expected_overflow_bit, all_set, zero);
+
+ // Like with unsigned, overflow happened if high_bits are not the ones we expect,
+ // and we also need to check some ones from the low bits.
+
+ const high_overflowed = try cg.buildCmp(.OpINotEqual, mask, high_bits);
+
+ // If no overflow bits in low_bits, no extra work needs to be done.
+ // Careful, we still have to check the sign bit, so this branch
+ // only goes for i33 and such.
+ if (info.backing_bits == info.bits + 1) break :blk .{ result, high_overflowed };
+
+ // Shift the result bits away to get the overflow bits.
+ const shift: Temporary = .init(lhs.ty, try cg.constInt(lhs.ty, info.bits - 1));
+ // Use SRA so that any sign bits are duplicated. Now we can just check if ALL bits are set
+ // for negative cases.
+ const low_overflow = try cg.buildBinary(.OpShiftRightArithmetic, low_bits, shift);
+ const low_overflowed = try cg.buildCmp(.OpINotEqual, mask, low_overflow);
+
+ const overflowed = try cg.buildCmp(.OpLogicalOr, low_overflowed, high_overflowed);
+
+ break :blk .{ result, overflowed };
+ },
+ };
+
+ const ov = try cg.intFromBool(overflowed);
+
+ const result_ty_id = try cg.resolveType(result_ty, .direct);
+ return try cg.constructComposite(result_ty_id, &.{ try result.materialize(cg), try ov.materialize(cg) });
+}
+
+fn airShlOverflow(cg: *CodeGen, inst: Air.Inst.Index) !?Id {
+ const zcu = cg.module.zcu;
+
+ const ty_pl = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
+ const extra = cg.air.extraData(Air.Bin, ty_pl.payload).data;
+
+ if (cg.typeOf(extra.lhs).isVector(zcu) and !cg.typeOf(extra.rhs).isVector(zcu)) {
+ return cg.fail("vector shift with scalar rhs", .{});
+ }
+
+ const base = try cg.temporary(extra.lhs);
+ const shift = try cg.temporary(extra.rhs);
+
+ const result_ty = cg.typeOfIndex(inst);
+
+ const info = cg.arithmeticTypeInfo(base.ty);
+ switch (info.class) {
+ .composite_integer => unreachable, // TODO
+ .integer, .strange_integer => {},
+ .float, .bool => unreachable,
+ }
+
+ // Sometimes Zig doesn't make both of the arguments the same types here. SPIR-V expects that,
+ // so just manually upcast it if required.
+ const casted_shift = try cg.buildConvert(base.ty.scalarType(zcu), shift);
+
+ const left = try cg.buildBinary(.OpShiftLeftLogical, base, casted_shift);
+ const result = try cg.normalize(left, info);
+
+ const right = switch (info.signedness) {
+ .unsigned => try cg.buildBinary(.OpShiftRightLogical, result, casted_shift),
+ .signed => try cg.buildBinary(.OpShiftRightArithmetic, result, casted_shift),
+ };
+
+ const overflowed = try cg.buildCmp(.OpINotEqual, base, right);
+ const ov = try cg.intFromBool(overflowed);
+
+ const result_ty_id = try cg.resolveType(result_ty, .direct);
+ return try cg.constructComposite(result_ty_id, &.{ try result.materialize(cg), try ov.materialize(cg) });
+}
+
+fn airMulAdd(cg: *CodeGen, inst: Air.Inst.Index) !?Id {
+ const pl_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
+ const extra = cg.air.extraData(Air.Bin, pl_op.payload).data;
+
+ const a = try cg.temporary(extra.lhs);
+ const b = try cg.temporary(extra.rhs);
+ const c = try cg.temporary(pl_op.operand);
+
+ const result_ty = cg.typeOfIndex(inst);
+ const info = cg.arithmeticTypeInfo(result_ty);
+ assert(info.class == .float); // .mul_add is only emitted for floats
+
+ const result = try cg.buildFma(a, b, c);
+ return try result.materialize(cg);
+}
+
+fn airClzCtz(cg: *CodeGen, inst: Air.Inst.Index, op: UnaryOp) !?Id {
+ if (cg.liveness.isUnused(inst)) return null;
+
+ const zcu = cg.module.zcu;
+ const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
+ const operand = try cg.temporary(ty_op.operand);
+
+ const scalar_result_ty = cg.typeOfIndex(inst).scalarType(zcu);
+
+ const info = cg.arithmeticTypeInfo(operand.ty);
+ switch (info.class) {
+ .composite_integer => unreachable, // TODO
+ .integer, .strange_integer => {},
+ .float, .bool => unreachable,
+ }
+
+ const count = try cg.buildUnary(op, operand);
+
+ // Result of OpenCL ctz/clz returns operand.ty, and we want result_ty.
+ // result_ty is always large enough to hold the result, so we might have to down
+ // cast it.
+ const result = try cg.buildConvert(scalar_result_ty, count);
+ return try result.materialize(cg);
+}
+
+fn airSelect(cg: *CodeGen, inst: Air.Inst.Index) !?Id {
+ const pl_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
+ const extra = cg.air.extraData(Air.Bin, pl_op.payload).data;
+ const pred = try cg.temporary(pl_op.operand);
+ const a = try cg.temporary(extra.lhs);
+ const b = try cg.temporary(extra.rhs);
+
+ const result = try cg.buildSelect(pred, a, b);
+ return try result.materialize(cg);
+}
+
+fn airSplat(cg: *CodeGen, inst: Air.Inst.Index) !?Id {
+ const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
+
+ const operand_id = try cg.resolve(ty_op.operand);
+ const result_ty = cg.typeOfIndex(inst);
+
+ return try cg.constructCompositeSplat(result_ty, operand_id);
+}
+
+fn airReduce(cg: *CodeGen, inst: Air.Inst.Index) !?Id {
+ const zcu = cg.module.zcu;
+ const reduce = cg.air.instructions.items(.data)[@intFromEnum(inst)].reduce;
+ const operand = try cg.resolve(reduce.operand);
+ const operand_ty = cg.typeOf(reduce.operand);
+ const scalar_ty = operand_ty.scalarType(zcu);
+ const scalar_ty_id = try cg.resolveType(scalar_ty, .direct);
+ const info = cg.arithmeticTypeInfo(operand_ty);
+ const len = operand_ty.vectorLen(zcu);
+ const first = try cg.extractVectorComponent(scalar_ty, operand, 0);
+
+ switch (reduce.operation) {
+ .Min, .Max => |op| {
+ var result: Temporary = .init(scalar_ty, first);
+ const cmp_op: MinMax = switch (op) {
+ .Max => .max,
+ .Min => .min,
+ else => unreachable,
+ };
+ for (1..len) |i| {
+ const lhs = result;
+ const rhs_id = try cg.extractVectorComponent(scalar_ty, operand, @intCast(i));
+ const rhs: Temporary = .init(scalar_ty, rhs_id);
+
+ result = try cg.minMax(lhs, rhs, cmp_op);
+ }
+
+ return try result.materialize(cg);
+ },
+ else => {},
+ }
+
+ var result_id = first;
+
+ const opcode: Opcode = switch (info.class) {
+ .bool => switch (reduce.operation) {
+ .And => .OpLogicalAnd,
+ .Or => .OpLogicalOr,
+ .Xor => .OpLogicalNotEqual,
+ else => unreachable,
+ },
+ .strange_integer, .integer => switch (reduce.operation) {
+ .And => .OpBitwiseAnd,
+ .Or => .OpBitwiseOr,
+ .Xor => .OpBitwiseXor,
+ .Add => .OpIAdd,
+ .Mul => .OpIMul,
+ else => unreachable,
+ },
+ .float => switch (reduce.operation) {
+ .Add => .OpFAdd,
+ .Mul => .OpFMul,
+ else => unreachable,
+ },
+ .composite_integer => unreachable, // TODO
+ };
+
+ for (1..len) |i| {
+ const lhs = result_id;
+ const rhs = try cg.extractVectorComponent(scalar_ty, operand, @intCast(i));
+ result_id = cg.module.allocId();
+
+ try cg.body.emitRaw(cg.module.gpa, opcode, 4);
+ cg.body.writeOperand(Id, scalar_ty_id);
+ cg.body.writeOperand(Id, result_id);
+ cg.body.writeOperand(Id, lhs);
+ cg.body.writeOperand(Id, rhs);
+ }
+
+ return result_id;
+}
+
+fn airShuffleOne(cg: *CodeGen, inst: Air.Inst.Index) !?Id {
+ const zcu = cg.module.zcu;
+ const gpa = zcu.gpa;
+
+ const unwrapped = cg.air.unwrapShuffleOne(zcu, inst);
+ const mask = unwrapped.mask;
+ const result_ty = unwrapped.result_ty;
+ const elem_ty = result_ty.childType(zcu);
+ const operand = try cg.resolve(unwrapped.operand);
+
+ const scratch_top = cg.id_scratch.items.len;
+ defer cg.id_scratch.shrinkRetainingCapacity(scratch_top);
+ const constituents = try cg.id_scratch.addManyAsSlice(gpa, mask.len);
+
+ for (constituents, mask) |*id, mask_elem| {
+ id.* = switch (mask_elem.unwrap()) {
+ .elem => |idx| try cg.extractVectorComponent(elem_ty, operand, idx),
+ .value => |val| try cg.constant(elem_ty, .fromInterned(val), .direct),
+ };
+ }
+
+ const result_ty_id = try cg.resolveType(result_ty, .direct);
+ return try cg.constructComposite(result_ty_id, constituents);
+}
+
+fn airShuffleTwo(cg: *CodeGen, inst: Air.Inst.Index) !?Id {
+ const zcu = cg.module.zcu;
+ const gpa = zcu.gpa;
+
+ const unwrapped = cg.air.unwrapShuffleTwo(zcu, inst);
+ const mask = unwrapped.mask;
+ const result_ty = unwrapped.result_ty;
+ const elem_ty = result_ty.childType(zcu);
+ const elem_ty_id = try cg.resolveType(elem_ty, .direct);
+ const operand_a = try cg.resolve(unwrapped.operand_a);
+ const operand_b = try cg.resolve(unwrapped.operand_b);
+
+ const scratch_top = cg.id_scratch.items.len;
+ defer cg.id_scratch.shrinkRetainingCapacity(scratch_top);
+ const constituents = try cg.id_scratch.addManyAsSlice(gpa, mask.len);
+
+ for (constituents, mask) |*id, mask_elem| {
+ id.* = switch (mask_elem.unwrap()) {
+ .a_elem => |idx| try cg.extractVectorComponent(elem_ty, operand_a, idx),
+ .b_elem => |idx| try cg.extractVectorComponent(elem_ty, operand_b, idx),
+ .undef => try cg.module.constUndef(elem_ty_id),
+ };
+ }
+
+ const result_ty_id = try cg.resolveType(result_ty, .direct);
+ return try cg.constructComposite(result_ty_id, constituents);
+}
+
+fn accessChainId(
+ cg: *CodeGen,
+ result_ty_id: Id,
+ base: Id,
+ indices: []const Id,
+) !Id {
+ const result_id = cg.module.allocId();
+ try cg.body.emit(cg.module.gpa, .OpInBoundsAccessChain, .{
+ .id_result_type = result_ty_id,
+ .id_result = result_id,
+ .base = base,
+ .indexes = indices,
+ });
+ return result_id;
+}
+
+/// AccessChain is essentially PtrAccessChain with 0 as initial argument. The effective
+/// difference lies in whether the resulting type of the first dereference will be the
+/// same as that of the base pointer, or that of a dereferenced base pointer. AccessChain
+/// is the latter and PtrAccessChain is the former.
+fn accessChain(
+ cg: *CodeGen,
+ result_ty_id: Id,
+ base: Id,
+ indices: []const u32,
+) !Id {
+ const gpa = cg.module.gpa;
+ const scratch_top = cg.id_scratch.items.len;
+ defer cg.id_scratch.shrinkRetainingCapacity(scratch_top);
+ const ids = try cg.id_scratch.addManyAsSlice(gpa, indices.len);
+ for (indices, ids) |index, *id| {
+ id.* = try cg.constInt(.u32, index);
+ }
+ return try cg.accessChainId(result_ty_id, base, ids);
+}
+
+fn ptrAccessChain(
+ cg: *CodeGen,
+ result_ty_id: Id,
+ base: Id,
+ element: Id,
+ indices: []const u32,
+) !Id {
+ const gpa = cg.module.gpa;
+ const target = cg.module.zcu.getTarget();
+
+ const scratch_top = cg.id_scratch.items.len;
+ defer cg.id_scratch.shrinkRetainingCapacity(scratch_top);
+ const ids = try cg.id_scratch.addManyAsSlice(gpa, indices.len);
+ for (indices, ids) |index, *id| {
+ id.* = try cg.constInt(.u32, index);
+ }
+
+ const result_id = cg.module.allocId();
+ switch (target.os.tag) {
+ .opencl, .amdhsa => {
+ try cg.body.emit(gpa, .OpInBoundsPtrAccessChain, .{
+ .id_result_type = result_ty_id,
+ .id_result = result_id,
+ .base = base,
+ .element = element,
+ .indexes = ids,
+ });
+ },
+ .vulkan, .opengl => {
+ try cg.body.emit(gpa, .OpPtrAccessChain, .{
+ .id_result_type = result_ty_id,
+ .id_result = result_id,
+ .base = base,
+ .element = element,
+ .indexes = ids,
+ });
+ },
+ else => unreachable,
+ }
+ return result_id;
+}
+
+fn ptrAdd(cg: *CodeGen, result_ty: Type, ptr_ty: Type, ptr_id: Id, offset_id: Id) !Id {
+ const zcu = cg.module.zcu;
+ const result_ty_id = try cg.resolveType(result_ty, .direct);
+
+ switch (ptr_ty.ptrSize(zcu)) {
+ .one => {
+ // Pointer to array
+ // TODO: Is this correct?
+ return try cg.accessChainId(result_ty_id, ptr_id, &.{offset_id});
+ },
+ .c, .many => {
+ return try cg.ptrAccessChain(result_ty_id, ptr_id, offset_id, &.{});
+ },
+ .slice => {
+ // TODO: This is probably incorrect. A slice should be returned here, though this is what llvm does.
+ const slice_ptr_id = try cg.extractField(result_ty, ptr_id, 0);
+ return try cg.ptrAccessChain(result_ty_id, slice_ptr_id, offset_id, &.{});
+ },
+ }
+}
+
+fn airPtrAdd(cg: *CodeGen, inst: Air.Inst.Index) !?Id {
+ const ty_pl = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
+ const bin_op = cg.air.extraData(Air.Bin, ty_pl.payload).data;
+ const ptr_id = try cg.resolve(bin_op.lhs);
+ const offset_id = try cg.resolve(bin_op.rhs);
+ const ptr_ty = cg.typeOf(bin_op.lhs);
+ const result_ty = cg.typeOfIndex(inst);
+
+ return try cg.ptrAdd(result_ty, ptr_ty, ptr_id, offset_id);
+}
+
+fn airPtrSub(cg: *CodeGen, inst: Air.Inst.Index) !?Id {
+ const ty_pl = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
+ const bin_op = cg.air.extraData(Air.Bin, ty_pl.payload).data;
+ const ptr_id = try cg.resolve(bin_op.lhs);
+ const ptr_ty = cg.typeOf(bin_op.lhs);
+ const offset_id = try cg.resolve(bin_op.rhs);
+ const offset_ty = cg.typeOf(bin_op.rhs);
+ const offset_ty_id = try cg.resolveType(offset_ty, .direct);
+ const result_ty = cg.typeOfIndex(inst);
+
+ const negative_offset_id = cg.module.allocId();
+ try cg.body.emit(cg.module.gpa, .OpSNegate, .{
+ .id_result_type = offset_ty_id,
+ .id_result = negative_offset_id,
+ .operand = offset_id,
+ });
+ return try cg.ptrAdd(result_ty, ptr_ty, ptr_id, negative_offset_id);
+}
+
+fn cmp(
+ cg: *CodeGen,
+ op: std.math.CompareOperator,
+ lhs: Temporary,
+ rhs: Temporary,
+) !Temporary {
+ const gpa = cg.module.gpa;
+ const pt = cg.pt;
+ const zcu = cg.module.zcu;
+ const ip = &zcu.intern_pool;
+ const scalar_ty = lhs.ty.scalarType(zcu);
+ const is_vector = lhs.ty.isVector(zcu);
+
+ switch (scalar_ty.zigTypeTag(zcu)) {
+ .int, .bool, .float => {},
+ .@"enum" => {
+ assert(!is_vector);
+ const ty = lhs.ty.intTagType(zcu);
+ return try cg.cmp(op, lhs.pun(ty), rhs.pun(ty));
+ },
+ .@"struct" => {
+ const struct_ty = zcu.typeToPackedStruct(scalar_ty).?;
+ const ty: Type = .fromInterned(struct_ty.backingIntTypeUnordered(ip));
+ return try cg.cmp(op, lhs.pun(ty), rhs.pun(ty));
+ },
+ .error_set => {
+ assert(!is_vector);
+ const err_int_ty = try pt.errorIntType();
+ return try cg.cmp(op, lhs.pun(err_int_ty), rhs.pun(err_int_ty));
+ },
+ .pointer => {
+ assert(!is_vector);
+ // Note that while SPIR-V offers OpPtrEqual and OpPtrNotEqual, they are
+ // currently not implemented in the SPIR-V LLVM translator. Thus, we emit these using
+ // OpConvertPtrToU...
+
+ const usize_ty_id = try cg.resolveType(.usize, .direct);
+
+ const lhs_int_id = cg.module.allocId();
+ try cg.body.emit(gpa, .OpConvertPtrToU, .{
+ .id_result_type = usize_ty_id,
+ .id_result = lhs_int_id,
+ .pointer = try lhs.materialize(cg),
+ });
+
+ const rhs_int_id = cg.module.allocId();
+ try cg.body.emit(gpa, .OpConvertPtrToU, .{
+ .id_result_type = usize_ty_id,
+ .id_result = rhs_int_id,
+ .pointer = try rhs.materialize(cg),
+ });
+
+ const lhs_int: Temporary = .init(.usize, lhs_int_id);
+ const rhs_int: Temporary = .init(.usize, rhs_int_id);
+ return try cg.cmp(op, lhs_int, rhs_int);
+ },
+ .optional => {
+ assert(!is_vector);
+
+ const ty = lhs.ty;
+
+ const payload_ty = ty.optionalChild(zcu);
+ if (ty.optionalReprIsPayload(zcu)) {
+ assert(payload_ty.hasRuntimeBitsIgnoreComptime(zcu));
+ assert(!payload_ty.isSlice(zcu));
+
+ return try cg.cmp(op, lhs.pun(payload_ty), rhs.pun(payload_ty));
+ }
+
+ const lhs_id = try lhs.materialize(cg);
+ const rhs_id = try rhs.materialize(cg);
+
+ const lhs_valid_id = if (payload_ty.hasRuntimeBitsIgnoreComptime(zcu))
+ try cg.extractField(.bool, lhs_id, 1)
+ else
+ try cg.convertToDirect(.bool, lhs_id);
+
+ const rhs_valid_id = if (payload_ty.hasRuntimeBitsIgnoreComptime(zcu))
+ try cg.extractField(.bool, rhs_id, 1)
+ else
+ try cg.convertToDirect(.bool, rhs_id);
+
+ const lhs_valid: Temporary = .init(.bool, lhs_valid_id);
+ const rhs_valid: Temporary = .init(.bool, rhs_valid_id);
+
+ if (!payload_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
+ return try cg.cmp(op, lhs_valid, rhs_valid);
+ }
+
+ // a = lhs_valid
+ // b = rhs_valid
+ // c = lhs_pl == rhs_pl
+ //
+ // For op == .eq we have:
+ // a == b && a -> c
+ // = a == b && (!a || c)
+ //
+ // For op == .neq we have
+ // a == b && a -> c
+ // = !(a == b && a -> c)
+ // = a != b || !(a -> c
+ // = a != b || !(!a || c)
+ // = a != b || a && !c
+
+ const lhs_pl_id = try cg.extractField(payload_ty, lhs_id, 0);
+ const rhs_pl_id = try cg.extractField(payload_ty, rhs_id, 0);
+
+ const lhs_pl: Temporary = .init(payload_ty, lhs_pl_id);
+ const rhs_pl: Temporary = .init(payload_ty, rhs_pl_id);
+
+ return switch (op) {
+ .eq => try cg.buildBinary(
+ .OpLogicalAnd,
+ try cg.cmp(.eq, lhs_valid, rhs_valid),
+ try cg.buildBinary(
+ .OpLogicalOr,
+ try cg.buildUnary(.l_not, lhs_valid),
+ try cg.cmp(.eq, lhs_pl, rhs_pl),
+ ),
+ ),
+ .neq => try cg.buildBinary(
+ .OpLogicalOr,
+ try cg.cmp(.neq, lhs_valid, rhs_valid),
+ try cg.buildBinary(
+ .OpLogicalAnd,
+ lhs_valid,
+ try cg.cmp(.neq, lhs_pl, rhs_pl),
+ ),
+ ),
+ else => unreachable,
+ };
+ },
+ else => |ty| return cg.todo("implement cmp operation for '{s}' type", .{@tagName(ty)}),
+ }
+
+ const info = cg.arithmeticTypeInfo(scalar_ty);
+ const pred: Opcode = switch (info.class) {
+ .composite_integer => unreachable, // TODO
+ .float => switch (op) {
+ .eq => .OpFOrdEqual,
+ .neq => .OpFUnordNotEqual,
+ .lt => .OpFOrdLessThan,
+ .lte => .OpFOrdLessThanEqual,
+ .gt => .OpFOrdGreaterThan,
+ .gte => .OpFOrdGreaterThanEqual,
+ },
+ .bool => switch (op) {
+ .eq => .OpLogicalEqual,
+ .neq => .OpLogicalNotEqual,
+ else => unreachable,
+ },
+ .integer, .strange_integer => switch (info.signedness) {
+ .signed => switch (op) {
+ .eq => .OpIEqual,
+ .neq => .OpINotEqual,
+ .lt => .OpSLessThan,
+ .lte => .OpSLessThanEqual,
+ .gt => .OpSGreaterThan,
+ .gte => .OpSGreaterThanEqual,
+ },
+ .unsigned => switch (op) {
+ .eq => .OpIEqual,
+ .neq => .OpINotEqual,
+ .lt => .OpULessThan,
+ .lte => .OpULessThanEqual,
+ .gt => .OpUGreaterThan,
+ .gte => .OpUGreaterThanEqual,
+ },
+ },
+ };
+
+ return try cg.buildCmp(pred, lhs, rhs);
+}
+
+fn airCmp(
+ cg: *CodeGen,
+ inst: Air.Inst.Index,
+ comptime op: std.math.CompareOperator,
+) !?Id {
+ const bin_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
+ const lhs = try cg.temporary(bin_op.lhs);
+ const rhs = try cg.temporary(bin_op.rhs);
+
+ const result = try cg.cmp(op, lhs, rhs);
+ return try result.materialize(cg);
+}
+
+fn airVectorCmp(cg: *CodeGen, inst: Air.Inst.Index) !?Id {
+ const ty_pl = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
+ const vec_cmp = cg.air.extraData(Air.VectorCmp, ty_pl.payload).data;
+ const lhs = try cg.temporary(vec_cmp.lhs);
+ const rhs = try cg.temporary(vec_cmp.rhs);
+ const op = vec_cmp.compareOperator();
+
+ const result = try cg.cmp(op, lhs, rhs);
+ return try result.materialize(cg);
+}
+
+/// Bitcast one type to another. Note: both types, input, output are expected in **direct** representation.
+fn bitCast(
+ cg: *CodeGen,
+ dst_ty: Type,
+ src_ty: Type,
+ src_id: Id,
+) !Id {
+ const gpa = cg.module.gpa;
+ const zcu = cg.module.zcu;
+ const src_ty_id = try cg.resolveType(src_ty, .direct);
+ const dst_ty_id = try cg.resolveType(dst_ty, .direct);
+
+ const result_id = blk: {
+ if (src_ty_id == dst_ty_id) break :blk src_id;
+
+ // TODO: Some more cases are missing here
+ // See fn bitCast in llvm.zig
+
+ if (src_ty.zigTypeTag(zcu) == .int and dst_ty.isPtrAtRuntime(zcu)) {
+ const result_id = cg.module.allocId();
+ try cg.body.emit(gpa, .OpConvertUToPtr, .{
+ .id_result_type = dst_ty_id,
+ .id_result = result_id,
+ .integer_value = src_id,
+ });
+ break :blk result_id;
+ }
+
+ // We can only use OpBitcast for specific conversions: between numerical types, and
+ // between pointers. If the resolved spir-v types fall into this category then emit OpBitcast,
+ // otherwise use a temporary and perform a pointer cast.
+ const can_bitcast = (src_ty.isNumeric(zcu) and dst_ty.isNumeric(zcu)) or (src_ty.isPtrAtRuntime(zcu) and dst_ty.isPtrAtRuntime(zcu));
+ if (can_bitcast) {
+ const result_id = cg.module.allocId();
+ try cg.body.emit(gpa, .OpBitcast, .{
+ .id_result_type = dst_ty_id,
+ .id_result = result_id,
+ .operand = src_id,
+ });
+
+ break :blk result_id;
+ }
+
+ const dst_ptr_ty_id = try cg.module.ptrType(dst_ty_id, .function);
+
+ const tmp_id = try cg.alloc(src_ty, .{ .storage_class = .function });
+ try cg.store(src_ty, tmp_id, src_id, .{});
+ const casted_ptr_id = cg.module.allocId();
+ try cg.body.emit(gpa, .OpBitcast, .{
+ .id_result_type = dst_ptr_ty_id,
+ .id_result = casted_ptr_id,
+ .operand = tmp_id,
+ });
+ break :blk try cg.load(dst_ty, casted_ptr_id, .{});
+ };
+
+ // Because strange integers use sign-extended representation, we may need to normalize
+ // the result here.
+ // TODO: This detail could cause stuff like @as(*const i1, @ptrCast(&@as(u1, 1))) to break
+ // should we change the representation of strange integers?
+ if (dst_ty.zigTypeTag(zcu) == .int) {
+ const info = cg.arithmeticTypeInfo(dst_ty);
+ const result = try cg.normalize(Temporary.init(dst_ty, result_id), info);
+ return try result.materialize(cg);
+ }
+
+ return result_id;
+}
+
+fn airBitCast(cg: *CodeGen, inst: Air.Inst.Index) !?Id {
+ const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
+ const operand_ty = cg.typeOf(ty_op.operand);
+ const result_ty = cg.typeOfIndex(inst);
+ if (operand_ty.toIntern() == .bool_type) {
+ const operand = try cg.temporary(ty_op.operand);
+ const result = try cg.intFromBool(operand);
+ return try result.materialize(cg);
+ }
+ const operand_id = try cg.resolve(ty_op.operand);
+ return try cg.bitCast(result_ty, operand_ty, operand_id);
+}
+
+fn airIntCast(cg: *CodeGen, inst: Air.Inst.Index) !?Id {
+ const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
+ const src = try cg.temporary(ty_op.operand);
+ const dst_ty = cg.typeOfIndex(inst);
+
+ const src_info = cg.arithmeticTypeInfo(src.ty);
+ const dst_info = cg.arithmeticTypeInfo(dst_ty);
+
+ if (src_info.backing_bits == dst_info.backing_bits) {
+ return try src.materialize(cg);
+ }
+
+ const converted = try cg.buildConvert(dst_ty, src);
+
+ // Make sure to normalize the result if shrinking.
+ // Because strange ints are sign extended in their backing
+ // type, we don't need to normalize when growing the type. The
+ // representation is already the same.
+ const result = if (dst_info.bits < src_info.bits)
+ try cg.normalize(converted, dst_info)
+ else
+ converted;
+
+ return try result.materialize(cg);
+}
+
+fn intFromPtr(cg: *CodeGen, operand_id: Id) !Id {
+ const result_type_id = try cg.resolveType(.usize, .direct);
+ const result_id = cg.module.allocId();
+ try cg.body.emit(cg.module.gpa, .OpConvertPtrToU, .{
+ .id_result_type = result_type_id,
+ .id_result = result_id,
+ .pointer = operand_id,
+ });
+ return result_id;
+}
+
+fn airFloatFromInt(cg: *CodeGen, inst: Air.Inst.Index) !?Id {
+ const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
+ const operand_ty = cg.typeOf(ty_op.operand);
+ const operand_id = try cg.resolve(ty_op.operand);
+ const result_ty = cg.typeOfIndex(inst);
+ return try cg.floatFromInt(result_ty, operand_ty, operand_id);
+}
+
+fn floatFromInt(cg: *CodeGen, result_ty: Type, operand_ty: Type, operand_id: Id) !Id {
+ const gpa = cg.module.gpa;
+ const operand_info = cg.arithmeticTypeInfo(operand_ty);
+ const result_id = cg.module.allocId();
+ const result_ty_id = try cg.resolveType(result_ty, .direct);
+ switch (operand_info.signedness) {
+ .signed => try cg.body.emit(gpa, .OpConvertSToF, .{
+ .id_result_type = result_ty_id,
+ .id_result = result_id,
+ .signed_value = operand_id,
+ }),
+ .unsigned => try cg.body.emit(gpa, .OpConvertUToF, .{
+ .id_result_type = result_ty_id,
+ .id_result = result_id,
+ .unsigned_value = operand_id,
+ }),
+ }
+ return result_id;
+}
+
+fn airIntFromFloat(cg: *CodeGen, inst: Air.Inst.Index) !?Id {
+ const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
+ const operand_id = try cg.resolve(ty_op.operand);
+ const result_ty = cg.typeOfIndex(inst);
+ return try cg.intFromFloat(result_ty, operand_id);
+}
+
+fn intFromFloat(cg: *CodeGen, result_ty: Type, operand_id: Id) !Id {
+ const gpa = cg.module.gpa;
+ const result_info = cg.arithmeticTypeInfo(result_ty);
+ const result_ty_id = try cg.resolveType(result_ty, .direct);
+ const result_id = cg.module.allocId();
+ switch (result_info.signedness) {
+ .signed => try cg.body.emit(gpa, .OpConvertFToS, .{
+ .id_result_type = result_ty_id,
+ .id_result = result_id,
+ .float_value = operand_id,
+ }),
+ .unsigned => try cg.body.emit(gpa, .OpConvertFToU, .{
+ .id_result_type = result_ty_id,
+ .id_result = result_id,
+ .float_value = operand_id,
+ }),
+ }
+ return result_id;
+}
+
+fn airFloatCast(cg: *CodeGen, inst: Air.Inst.Index) !?Id {
+ const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
+ const operand = try cg.temporary(ty_op.operand);
+ const dest_ty = cg.typeOfIndex(inst);
+ const result = try cg.buildConvert(dest_ty, operand);
+ return try result.materialize(cg);
+}
+
+fn airNot(cg: *CodeGen, inst: Air.Inst.Index) !?Id {
+ const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
+ const operand = try cg.temporary(ty_op.operand);
+ const result_ty = cg.typeOfIndex(inst);
+ const info = cg.arithmeticTypeInfo(result_ty);
+
+ const result = switch (info.class) {
+ .bool => try cg.buildUnary(.l_not, operand),
+ .float => unreachable,
+ .composite_integer => unreachable, // TODO
+ .strange_integer, .integer => blk: {
+ const complement = try cg.buildUnary(.bit_not, operand);
+ break :blk try cg.normalize(complement, info);
+ },
+ };
+
+ return try result.materialize(cg);
+}
+
+fn airArrayToSlice(cg: *CodeGen, inst: Air.Inst.Index) !?Id {
+ const zcu = cg.module.zcu;
+ const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
+ const array_ptr_ty = cg.typeOf(ty_op.operand);
+ const array_ty = array_ptr_ty.childType(zcu);
+ const slice_ty = cg.typeOfIndex(inst);
+ const elem_ptr_ty = slice_ty.slicePtrFieldType(zcu);
+
+ const elem_ptr_ty_id = try cg.resolveType(elem_ptr_ty, .direct);
+
+ const array_ptr_id = try cg.resolve(ty_op.operand);
+ const len_id = try cg.constInt(.usize, array_ty.arrayLen(zcu));
+
+ const elem_ptr_id = if (!array_ty.hasRuntimeBitsIgnoreComptime(zcu))
+ // Note: The pointer is something like *opaque{}, so we need to bitcast it to the element type.
+ try cg.bitCast(elem_ptr_ty, array_ptr_ty, array_ptr_id)
+ else
+ // Convert the pointer-to-array to a pointer to the first element.
+ try cg.accessChain(elem_ptr_ty_id, array_ptr_id, &.{0});
+
+ const slice_ty_id = try cg.resolveType(slice_ty, .direct);
+ return try cg.constructComposite(slice_ty_id, &.{ elem_ptr_id, len_id });
+}
+
+fn airSlice(cg: *CodeGen, inst: Air.Inst.Index) !?Id {
+ const ty_pl = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
+ const bin_op = cg.air.extraData(Air.Bin, ty_pl.payload).data;
+ const ptr_id = try cg.resolve(bin_op.lhs);
+ const len_id = try cg.resolve(bin_op.rhs);
+ const slice_ty = cg.typeOfIndex(inst);
+ const slice_ty_id = try cg.resolveType(slice_ty, .direct);
+ return try cg.constructComposite(slice_ty_id, &.{ ptr_id, len_id });
+}
+
+fn airAggregateInit(cg: *CodeGen, inst: Air.Inst.Index) !?Id {
+ const gpa = cg.module.gpa;
+ const pt = cg.pt;
+ const zcu = cg.module.zcu;
+ const ip = &zcu.intern_pool;
+ const target = cg.module.zcu.getTarget();
+ const ty_pl = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
+ const result_ty = cg.typeOfIndex(inst);
+ const len: usize = @intCast(result_ty.arrayLen(zcu));
+ const elements: []const Air.Inst.Ref = @ptrCast(cg.air.extra.items[ty_pl.payload..][0..len]);
+
+ switch (result_ty.zigTypeTag(zcu)) {
+ .@"struct" => {
+ if (zcu.typeToPackedStruct(result_ty)) |struct_type| {
+ comptime assert(Type.packed_struct_layout_version == 2);
+ const backing_int_ty: Type = .fromInterned(struct_type.backingIntTypeUnordered(ip));
+ var running_int_id = try cg.constInt(backing_int_ty, 0);
+ var running_bits: u16 = 0;
+ for (struct_type.field_types.get(ip), elements) |field_ty_ip, element| {
+ const field_ty: Type = .fromInterned(field_ty_ip);
+ if (!field_ty.hasRuntimeBitsIgnoreComptime(zcu)) continue;
+ const field_id = try cg.resolve(element);
+ const ty_bit_size: u16 = @intCast(field_ty.bitSize(zcu));
+ const field_int_ty = try cg.pt.intType(.unsigned, ty_bit_size);
+ const field_int_id = blk: {
+ if (field_ty.isPtrAtRuntime(zcu)) {
+ assert(target.cpu.arch == .spirv64 and
+ field_ty.ptrAddressSpace(zcu) == .storage_buffer);
+ break :blk try cg.intFromPtr(field_id);
+ }
+ break :blk try cg.bitCast(field_int_ty, field_ty, field_id);
+ };
+ const shift_rhs = try cg.constInt(backing_int_ty, running_bits);
+ const extended_int_conv = try cg.buildConvert(backing_int_ty, .{
+ .ty = field_int_ty,
+ .value = .{ .singleton = field_int_id },
+ });
+ const shifted = try cg.buildBinary(.OpShiftLeftLogical, extended_int_conv, .{
+ .ty = backing_int_ty,
+ .value = .{ .singleton = shift_rhs },
+ });
+ const running_int_tmp = try cg.buildBinary(
+ .OpBitwiseOr,
+ .{ .ty = backing_int_ty, .value = .{ .singleton = running_int_id } },
+ shifted,
+ );
+ running_int_id = try running_int_tmp.materialize(cg);
+ running_bits += ty_bit_size;
+ }
+ return running_int_id;
+ }
+
+ const scratch_top = cg.id_scratch.items.len;
+ defer cg.id_scratch.shrinkRetainingCapacity(scratch_top);
+ const constituents = try cg.id_scratch.addManyAsSlice(gpa, elements.len);
+
+ const types = try gpa.alloc(Type, elements.len);
+ defer gpa.free(types);
+
+ var index: usize = 0;
+
+ switch (ip.indexToKey(result_ty.toIntern())) {
+ .tuple_type => |tuple| {
+ for (tuple.types.get(ip), elements, 0..) |field_ty, element, i| {
+ if ((try result_ty.structFieldValueComptime(pt, i)) != null) continue;
+ assert(Type.fromInterned(field_ty).hasRuntimeBits(zcu));
+
+ const id = try cg.resolve(element);
+ types[index] = .fromInterned(field_ty);
+ constituents[index] = try cg.convertToIndirect(.fromInterned(field_ty), id);
+ index += 1;
+ }
+ },
+ .struct_type => {
+ const struct_type = ip.loadStructType(result_ty.toIntern());
+ var it = struct_type.iterateRuntimeOrder(ip);
+ for (elements, 0..) |element, i| {
+ const field_index = it.next().?;
+ if ((try result_ty.structFieldValueComptime(pt, i)) != null) continue;
+ const field_ty: Type = .fromInterned(struct_type.field_types.get(ip)[field_index]);
+ assert(field_ty.hasRuntimeBitsIgnoreComptime(zcu));
+
+ const id = try cg.resolve(element);
+ types[index] = field_ty;
+ constituents[index] = try cg.convertToIndirect(field_ty, id);
+ index += 1;
+ }
+ },
+ else => unreachable,
+ }
+
+ const result_ty_id = try cg.resolveType(result_ty, .direct);
+ return try cg.constructComposite(result_ty_id, constituents[0..index]);
+ },
+ .vector => {
+ const n_elems = result_ty.vectorLen(zcu);
+ const scratch_top = cg.id_scratch.items.len;
+ defer cg.id_scratch.shrinkRetainingCapacity(scratch_top);
+ const elem_ids = try cg.id_scratch.addManyAsSlice(gpa, n_elems);
+
+ for (elements, 0..) |element, i| {
+ elem_ids[i] = try cg.resolve(element);
+ }
+
+ const result_ty_id = try cg.resolveType(result_ty, .direct);
+ return try cg.constructComposite(result_ty_id, elem_ids);
+ },
+ .array => {
+ const array_info = result_ty.arrayInfo(zcu);
+ const n_elems: usize = @intCast(result_ty.arrayLenIncludingSentinel(zcu));
+ const scratch_top = cg.id_scratch.items.len;
+ defer cg.id_scratch.shrinkRetainingCapacity(scratch_top);
+ const elem_ids = try cg.id_scratch.addManyAsSlice(gpa, n_elems);
+
+ for (elements, 0..) |element, i| {
+ const id = try cg.resolve(element);
+ elem_ids[i] = try cg.convertToIndirect(array_info.elem_type, id);
+ }
+
+ if (array_info.sentinel) |sentinel_val| {
+ elem_ids[n_elems - 1] = try cg.constant(array_info.elem_type, sentinel_val, .indirect);
+ }
+
+ const result_ty_id = try cg.resolveType(result_ty, .direct);
+ return try cg.constructComposite(result_ty_id, elem_ids);
+ },
+ else => unreachable,
+ }
+}
+
+fn sliceOrArrayLen(cg: *CodeGen, operand_id: Id, ty: Type) !Id {
+ const zcu = cg.module.zcu;
+ switch (ty.ptrSize(zcu)) {
+ .slice => return cg.extractField(.usize, operand_id, 1),
+ .one => {
+ const array_ty = ty.childType(zcu);
+ const elem_ty = array_ty.childType(zcu);
+ const abi_size = elem_ty.abiSize(zcu);
+ const size = array_ty.arrayLenIncludingSentinel(zcu) * abi_size;
+ return try cg.constInt(.usize, size);
+ },
+ .many, .c => unreachable,
+ }
+}
+
+fn sliceOrArrayPtr(cg: *CodeGen, operand_id: Id, ty: Type) !Id {
+ const zcu = cg.module.zcu;
+ if (ty.isSlice(zcu)) {
+ const ptr_ty = ty.slicePtrFieldType(zcu);
+ return cg.extractField(ptr_ty, operand_id, 0);
+ }
+ return operand_id;
+}
+
+fn airMemcpy(cg: *CodeGen, inst: Air.Inst.Index) !void {
+ const bin_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
+ const dest_slice = try cg.resolve(bin_op.lhs);
+ const src_slice = try cg.resolve(bin_op.rhs);
+ const dest_ty = cg.typeOf(bin_op.lhs);
+ const src_ty = cg.typeOf(bin_op.rhs);
+ const dest_ptr = try cg.sliceOrArrayPtr(dest_slice, dest_ty);
+ const src_ptr = try cg.sliceOrArrayPtr(src_slice, src_ty);
+ const len = try cg.sliceOrArrayLen(dest_slice, dest_ty);
+ try cg.body.emit(cg.module.gpa, .OpCopyMemorySized, .{
+ .target = dest_ptr,
+ .source = src_ptr,
+ .size = len,
+ });
+}
+
+fn airMemmove(cg: *CodeGen, inst: Air.Inst.Index) !void {
+ _ = inst;
+ return cg.fail("TODO implement airMemcpy for spirv", .{});
+}
+
+fn airSliceField(cg: *CodeGen, inst: Air.Inst.Index, field: u32) !?Id {
+ const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
+ const field_ty = cg.typeOfIndex(inst);
+ const operand_id = try cg.resolve(ty_op.operand);
+ return try cg.extractField(field_ty, operand_id, field);
+}
+
+fn airSliceElemPtr(cg: *CodeGen, inst: Air.Inst.Index) !?Id {
+ const zcu = cg.module.zcu;
+ const ty_pl = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
+ const bin_op = cg.air.extraData(Air.Bin, ty_pl.payload).data;
+ const slice_ty = cg.typeOf(bin_op.lhs);
+ if (!slice_ty.isVolatilePtr(zcu) and cg.liveness.isUnused(inst)) return null;
+
+ const slice_id = try cg.resolve(bin_op.lhs);
+ const index_id = try cg.resolve(bin_op.rhs);
+
+ const ptr_ty = cg.typeOfIndex(inst);
+ const ptr_ty_id = try cg.resolveType(ptr_ty, .direct);
+
+ const slice_ptr = try cg.extractField(ptr_ty, slice_id, 0);
+ return try cg.ptrAccessChain(ptr_ty_id, slice_ptr, index_id, &.{});
+}
+
+fn airSliceElemVal(cg: *CodeGen, inst: Air.Inst.Index) !?Id {
+ const zcu = cg.module.zcu;
+ const bin_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
+ const slice_ty = cg.typeOf(bin_op.lhs);
+ if (!slice_ty.isVolatilePtr(zcu) and cg.liveness.isUnused(inst)) return null;
+
+ const slice_id = try cg.resolve(bin_op.lhs);
+ const index_id = try cg.resolve(bin_op.rhs);
+
+ const ptr_ty = slice_ty.slicePtrFieldType(zcu);
+ const ptr_ty_id = try cg.resolveType(ptr_ty, .direct);
+
+ const slice_ptr = try cg.extractField(ptr_ty, slice_id, 0);
+ const elem_ptr = try cg.ptrAccessChain(ptr_ty_id, slice_ptr, index_id, &.{});
+ return try cg.load(slice_ty.childType(zcu), elem_ptr, .{ .is_volatile = slice_ty.isVolatilePtr(zcu) });
+}
+
+fn ptrElemPtr(cg: *CodeGen, ptr_ty: Type, ptr_id: Id, index_id: Id) !Id {
+ const zcu = cg.module.zcu;
+ // Construct new pointer type for the resulting pointer
+ const elem_ty = ptr_ty.elemType2(zcu); // use elemType() so that we get T for *[N]T.
+ const elem_ty_id = try cg.resolveType(elem_ty, .indirect);
+ const elem_ptr_ty_id = try cg.module.ptrType(elem_ty_id, cg.module.storageClass(ptr_ty.ptrAddressSpace(zcu)));
+ if (ptr_ty.isSinglePointer(zcu)) {
+ // Pointer-to-array. In this case, the resulting pointer is not of the same type
+ // as the ptr_ty (we want a *T, not a *[N]T), and hence we need to use accessChain.
+ return try cg.accessChainId(elem_ptr_ty_id, ptr_id, &.{index_id});
+ } else {
+ // Resulting pointer type is the same as the ptr_ty, so use ptrAccessChain
+ return try cg.ptrAccessChain(elem_ptr_ty_id, ptr_id, index_id, &.{});
+ }
+}
+
+fn airPtrElemPtr(cg: *CodeGen, inst: Air.Inst.Index) !?Id {
+ const zcu = cg.module.zcu;
+ const ty_pl = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
+ const bin_op = cg.air.extraData(Air.Bin, ty_pl.payload).data;
+ const src_ptr_ty = cg.typeOf(bin_op.lhs);
+ const elem_ty = src_ptr_ty.childType(zcu);
+ const ptr_id = try cg.resolve(bin_op.lhs);
+
+ if (!elem_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
+ const dst_ptr_ty = cg.typeOfIndex(inst);
+ return try cg.bitCast(dst_ptr_ty, src_ptr_ty, ptr_id);
+ }
+
+ const index_id = try cg.resolve(bin_op.rhs);
+ return try cg.ptrElemPtr(src_ptr_ty, ptr_id, index_id);
+}
+
+fn airArrayElemVal(cg: *CodeGen, inst: Air.Inst.Index) !?Id {
+ const gpa = cg.module.gpa;
+ const zcu = cg.module.zcu;
+ const bin_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
+ const array_ty = cg.typeOf(bin_op.lhs);
+ const elem_ty = array_ty.childType(zcu);
+ const array_id = try cg.resolve(bin_op.lhs);
+ const index_id = try cg.resolve(bin_op.rhs);
+
+ // SPIR-V doesn't have an array indexing function for some damn reason.
+ // For now, just generate a temporary and use that.
+ // TODO: This backend probably also should use isByRef from llvm...
+
+ const is_vector = array_ty.isVector(zcu);
+
+ const elem_repr: Repr = if (is_vector) .direct else .indirect;
+ const array_ty_id = try cg.resolveType(array_ty, .direct);
+ const elem_ty_id = try cg.resolveType(elem_ty, elem_repr);
+ const ptr_array_ty_id = try cg.module.ptrType(array_ty_id, .function);
+ const ptr_elem_ty_id = try cg.module.ptrType(elem_ty_id, .function);
+
+ const tmp_id = cg.module.allocId();
+ try cg.prologue.emit(gpa, .OpVariable, .{
+ .id_result_type = ptr_array_ty_id,
+ .id_result = tmp_id,
+ .storage_class = .function,
+ });
+
+ try cg.body.emit(gpa, .OpStore, .{
+ .pointer = tmp_id,
+ .object = array_id,
+ });
+
+ const elem_ptr_id = try cg.accessChainId(ptr_elem_ty_id, tmp_id, &.{index_id});
+
+ const result_id = cg.module.allocId();
+ try cg.body.emit(gpa, .OpLoad, .{
+ .id_result_type = try cg.resolveType(elem_ty, elem_repr),
+ .id_result = result_id,
+ .pointer = elem_ptr_id,
+ });
+
+ if (is_vector) {
+ // Result is already in direct representation
+ return result_id;
+ }
+
+ // This is an array type; the elements are stored in indirect representation.
+ // We have to convert the type to direct.
+
+ return try cg.convertToDirect(elem_ty, result_id);
+}
+
+fn airPtrElemVal(cg: *CodeGen, inst: Air.Inst.Index) !?Id {
+ const zcu = cg.module.zcu;
+ const bin_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
+ const ptr_ty = cg.typeOf(bin_op.lhs);
+ const elem_ty = cg.typeOfIndex(inst);
+ const ptr_id = try cg.resolve(bin_op.lhs);
+ const index_id = try cg.resolve(bin_op.rhs);
+ const elem_ptr_id = try cg.ptrElemPtr(ptr_ty, ptr_id, index_id);
+ return try cg.load(elem_ty, elem_ptr_id, .{ .is_volatile = ptr_ty.isVolatilePtr(zcu) });
+}
+
+fn airVectorStoreElem(cg: *CodeGen, inst: Air.Inst.Index) !void {
+ const zcu = cg.module.zcu;
+ const data = cg.air.instructions.items(.data)[@intFromEnum(inst)].vector_store_elem;
+ const extra = cg.air.extraData(Air.Bin, data.payload).data;
+
+ const vector_ptr_ty = cg.typeOf(data.vector_ptr);
+ const vector_ty = vector_ptr_ty.childType(zcu);
+ const scalar_ty = vector_ty.scalarType(zcu);
+
+ const scalar_ty_id = try cg.resolveType(scalar_ty, .indirect);
+ const storage_class = cg.module.storageClass(vector_ptr_ty.ptrAddressSpace(zcu));
+ const scalar_ptr_ty_id = try cg.module.ptrType(scalar_ty_id, storage_class);
+
+ const vector_ptr = try cg.resolve(data.vector_ptr);
+ const index = try cg.resolve(extra.lhs);
+ const operand = try cg.resolve(extra.rhs);
+
+ const elem_ptr_id = try cg.accessChainId(scalar_ptr_ty_id, vector_ptr, &.{index});
+ try cg.store(scalar_ty, elem_ptr_id, operand, .{
+ .is_volatile = vector_ptr_ty.isVolatilePtr(zcu),
+ });
+}
+
+fn airSetUnionTag(cg: *CodeGen, inst: Air.Inst.Index) !void {
+ const zcu = cg.module.zcu;
+ const bin_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
+ const un_ptr_ty = cg.typeOf(bin_op.lhs);
+ const un_ty = un_ptr_ty.childType(zcu);
+ const layout = cg.unionLayout(un_ty);
+
+ if (layout.tag_size == 0) return;
+
+ const tag_ty = un_ty.unionTagTypeSafety(zcu).?;
+ const tag_ty_id = try cg.resolveType(tag_ty, .indirect);
+ const tag_ptr_ty_id = try cg.module.ptrType(tag_ty_id, cg.module.storageClass(un_ptr_ty.ptrAddressSpace(zcu)));
+
+ const union_ptr_id = try cg.resolve(bin_op.lhs);
+ const new_tag_id = try cg.resolve(bin_op.rhs);
+
+ if (!layout.has_payload) {
+ try cg.store(tag_ty, union_ptr_id, new_tag_id, .{ .is_volatile = un_ptr_ty.isVolatilePtr(zcu) });
+ } else {
+ const ptr_id = try cg.accessChain(tag_ptr_ty_id, union_ptr_id, &.{layout.tag_index});
+ try cg.store(tag_ty, ptr_id, new_tag_id, .{ .is_volatile = un_ptr_ty.isVolatilePtr(zcu) });
+ }
+}
+
+fn airGetUnionTag(cg: *CodeGen, inst: Air.Inst.Index) !?Id {
+ const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
+ const un_ty = cg.typeOf(ty_op.operand);
+
+ const zcu = cg.module.zcu;
+ const layout = cg.unionLayout(un_ty);
+ if (layout.tag_size == 0) return null;
+
+ const union_handle = try cg.resolve(ty_op.operand);
+ if (!layout.has_payload) return union_handle;
+
+ const tag_ty = un_ty.unionTagTypeSafety(zcu).?;
+ return try cg.extractField(tag_ty, union_handle, layout.tag_index);
+}
+
+fn unionInit(
+ cg: *CodeGen,
+ ty: Type,
+ active_field: u32,
+ payload: ?Id,
+) !Id {
+ // To initialize a union, generate a temporary variable with the
+ // union type, then get the field pointer and pointer-cast it to the
+ // right type to store it. Finally load the entire union.
+
+ // Note: The result here is not cached, because it generates runtime code.
+
+ const pt = cg.pt;
+ const zcu = cg.module.zcu;
+ const ip = &zcu.intern_pool;
+ const union_ty = zcu.typeToUnion(ty).?;
+ const tag_ty: Type = .fromInterned(union_ty.enum_tag_ty);
+
+ const layout = cg.unionLayout(ty);
+ const payload_ty: Type = .fromInterned(union_ty.field_types.get(ip)[active_field]);
+
+ if (union_ty.flagsUnordered(ip).layout == .@"packed") {
+ if (!payload_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
+ const int_ty = try pt.intType(.unsigned, @intCast(ty.bitSize(zcu)));
+ return cg.constInt(int_ty, 0);
+ }
+
+ assert(payload != null);
+ if (payload_ty.isInt(zcu)) {
+ if (ty.bitSize(zcu) == payload_ty.bitSize(zcu)) {
+ return cg.bitCast(ty, payload_ty, payload.?);
+ }
+
+ const trunc = try cg.buildConvert(ty, .{ .ty = payload_ty, .value = .{ .singleton = payload.? } });
+ return try trunc.materialize(cg);
+ }
+
+ const payload_int_ty = try pt.intType(.unsigned, @intCast(payload_ty.bitSize(zcu)));
+ const payload_int = if (payload_ty.ip_index == .bool_type)
+ try cg.convertToIndirect(payload_ty, payload.?)
+ else
+ try cg.bitCast(payload_int_ty, payload_ty, payload.?);
+ const trunc = try cg.buildConvert(ty, .{ .ty = payload_int_ty, .value = .{ .singleton = payload_int } });
+ return try trunc.materialize(cg);
+ }
+
+ const tag_int = if (layout.tag_size != 0) blk: {
+ const tag_val = try pt.enumValueFieldIndex(tag_ty, active_field);
+ const tag_int_val = try tag_val.intFromEnum(tag_ty, pt);
+ break :blk tag_int_val.toUnsignedInt(zcu);
+ } else 0;
+
+ if (!layout.has_payload) {
+ return try cg.constInt(tag_ty, tag_int);
+ }
+
+ const tmp_id = try cg.alloc(ty, .{ .storage_class = .function });
+
+ if (layout.tag_size != 0) {
+ const tag_ty_id = try cg.resolveType(tag_ty, .indirect);
+ const tag_ptr_ty_id = try cg.module.ptrType(tag_ty_id, .function);
+ const ptr_id = try cg.accessChain(tag_ptr_ty_id, tmp_id, &.{@as(u32, @intCast(layout.tag_index))});
+ const tag_id = try cg.constInt(tag_ty, tag_int);
+ try cg.store(tag_ty, ptr_id, tag_id, .{});
+ }
+
+ if (payload_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
+ const layout_payload_ty_id = try cg.resolveType(layout.payload_ty, .indirect);
+ const pl_ptr_ty_id = try cg.module.ptrType(layout_payload_ty_id, .function);
+ const pl_ptr_id = try cg.accessChain(pl_ptr_ty_id, tmp_id, &.{layout.payload_index});
+ const active_pl_ptr_id = if (!layout.payload_ty.eql(payload_ty, zcu)) blk: {
+ const payload_ty_id = try cg.resolveType(payload_ty, .indirect);
+ const active_pl_ptr_ty_id = try cg.module.ptrType(payload_ty_id, .function);
+ const active_pl_ptr_id = cg.module.allocId();
+ try cg.body.emit(cg.module.gpa, .OpBitcast, .{
+ .id_result_type = active_pl_ptr_ty_id,
+ .id_result = active_pl_ptr_id,
+ .operand = pl_ptr_id,
+ });
+ break :blk active_pl_ptr_id;
+ } else pl_ptr_id;
+
+ try cg.store(payload_ty, active_pl_ptr_id, payload.?, .{});
+ } else {
+ assert(payload == null);
+ }
+
+ // Just leave the padding fields uninitialized...
+ // TODO: Or should we initialize them with undef explicitly?
+
+ return try cg.load(ty, tmp_id, .{});
+}
+
+fn airUnionInit(cg: *CodeGen, inst: Air.Inst.Index) !?Id {
+ const zcu = cg.module.zcu;
+ const ip = &zcu.intern_pool;
+ const ty_pl = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
+ const extra = cg.air.extraData(Air.UnionInit, ty_pl.payload).data;
+ const ty = cg.typeOfIndex(inst);
+
+ const union_obj = zcu.typeToUnion(ty).?;
+ const field_ty: Type = .fromInterned(union_obj.field_types.get(ip)[extra.field_index]);
+ const payload = if (field_ty.hasRuntimeBitsIgnoreComptime(zcu))
+ try cg.resolve(extra.init)
+ else
+ null;
+ return try cg.unionInit(ty, extra.field_index, payload);
+}
+
+fn airStructFieldVal(cg: *CodeGen, inst: Air.Inst.Index) !?Id {
+ const pt = cg.pt;
+ const zcu = cg.module.zcu;
+ const ty_pl = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
+ const struct_field = cg.air.extraData(Air.StructField, ty_pl.payload).data;
+
+ const object_ty = cg.typeOf(struct_field.struct_operand);
+ const object_id = try cg.resolve(struct_field.struct_operand);
+ const field_index = struct_field.field_index;
+ const field_ty = object_ty.fieldType(field_index, zcu);
+
+ if (!field_ty.hasRuntimeBitsIgnoreComptime(zcu)) return null;
+
+ switch (object_ty.zigTypeTag(zcu)) {
+ .@"struct" => switch (object_ty.containerLayout(zcu)) {
+ .@"packed" => {
+ const struct_ty = zcu.typeToPackedStruct(object_ty).?;
+ const struct_backing_int_bits = cg.module.backingIntBits(@intCast(object_ty.bitSize(zcu))).@"0";
+ const bit_offset = zcu.structPackedFieldBitOffset(struct_ty, field_index);
+ // We use the same int type the packed struct is backed by, because even though it would
+ // be valid SPIR-V to use an smaller type like u16, some implementations like PoCL will complain.
+ const bit_offset_id = try cg.constInt(object_ty, bit_offset);
+ const signedness = if (field_ty.isInt(zcu)) field_ty.intInfo(zcu).signedness else .unsigned;
+ const field_bit_size: u16 = @intCast(field_ty.bitSize(zcu));
+ const field_int_ty = try pt.intType(signedness, field_bit_size);
+ const shift_lhs: Temporary = .{ .ty = object_ty, .value = .{ .singleton = object_id } };
+ const shift = try cg.buildBinary(.OpShiftRightLogical, shift_lhs, .{ .ty = object_ty, .value = .{ .singleton = bit_offset_id } });
+ const mask_id = try cg.constInt(object_ty, (@as(u64, 1) << @as(u6, @intCast(field_bit_size))) - 1);
+ const masked = try cg.buildBinary(.OpBitwiseAnd, shift, .{ .ty = object_ty, .value = .{ .singleton = mask_id } });
+ const result_id = blk: {
+ if (cg.module.backingIntBits(field_bit_size).@"0" == struct_backing_int_bits)
+ break :blk try cg.bitCast(field_int_ty, object_ty, try masked.materialize(cg));
+ const trunc = try cg.buildConvert(field_int_ty, masked);
+ break :blk try trunc.materialize(cg);
+ };
+ if (field_ty.ip_index == .bool_type) return try cg.convertToDirect(.bool, result_id);
+ if (field_ty.isInt(zcu)) return result_id;
+ return try cg.bitCast(field_ty, field_int_ty, result_id);
+ },
+ else => return try cg.extractField(field_ty, object_id, field_index),
+ },
+ .@"union" => switch (object_ty.containerLayout(zcu)) {
+ .@"packed" => {
+ const backing_int_ty = try pt.intType(.unsigned, @intCast(object_ty.bitSize(zcu)));
+ const signedness = if (field_ty.isInt(zcu)) field_ty.intInfo(zcu).signedness else .unsigned;
+ const field_bit_size: u16 = @intCast(field_ty.bitSize(zcu));
+ const int_ty = try pt.intType(signedness, field_bit_size);
+ const mask_id = try cg.constInt(backing_int_ty, (@as(u64, 1) << @as(u6, @intCast(field_bit_size))) - 1);
+ const masked = try cg.buildBinary(
+ .OpBitwiseAnd,
+ .{ .ty = backing_int_ty, .value = .{ .singleton = object_id } },
+ .{ .ty = backing_int_ty, .value = .{ .singleton = mask_id } },
+ );
+ const result_id = blk: {
+ if (cg.module.backingIntBits(field_bit_size).@"0" == cg.module.backingIntBits(@intCast(backing_int_ty.bitSize(zcu))).@"0")
+ break :blk try cg.bitCast(int_ty, backing_int_ty, try masked.materialize(cg));
+ const trunc = try cg.buildConvert(int_ty, masked);
+ break :blk try trunc.materialize(cg);
+ };
+ if (field_ty.ip_index == .bool_type) return try cg.convertToDirect(.bool, result_id);
+ if (field_ty.isInt(zcu)) return result_id;
+ return try cg.bitCast(field_ty, int_ty, result_id);
+ },
+ else => {
+ // Store, ptr-elem-ptr, pointer-cast, load
+ const layout = cg.unionLayout(object_ty);
+ assert(layout.has_payload);
+
+ const tmp_id = try cg.alloc(object_ty, .{ .storage_class = .function });
+ try cg.store(object_ty, tmp_id, object_id, .{});
+
+ const layout_payload_ty_id = try cg.resolveType(layout.payload_ty, .indirect);
+ const pl_ptr_ty_id = try cg.module.ptrType(layout_payload_ty_id, .function);
+ const pl_ptr_id = try cg.accessChain(pl_ptr_ty_id, tmp_id, &.{layout.payload_index});
+
+ const field_ty_id = try cg.resolveType(field_ty, .indirect);
+ const active_pl_ptr_ty_id = try cg.module.ptrType(field_ty_id, .function);
+ const active_pl_ptr_id = cg.module.allocId();
+ try cg.body.emit(cg.module.gpa, .OpBitcast, .{
+ .id_result_type = active_pl_ptr_ty_id,
+ .id_result = active_pl_ptr_id,
+ .operand = pl_ptr_id,
+ });
+ return try cg.load(field_ty, active_pl_ptr_id, .{});
+ },
+ },
+ else => unreachable,
+ }
+}
+
+fn airFieldParentPtr(cg: *CodeGen, inst: Air.Inst.Index) !?Id {
+ const zcu = cg.module.zcu;
+ const ty_pl = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
+ const extra = cg.air.extraData(Air.FieldParentPtr, ty_pl.payload).data;
+
+ const parent_ty = ty_pl.ty.toType().childType(zcu);
+ const result_ty_id = try cg.resolveType(ty_pl.ty.toType(), .indirect);
+
+ const field_ptr = try cg.resolve(extra.field_ptr);
+ const field_ptr_int = try cg.intFromPtr(field_ptr);
+ const field_offset = parent_ty.structFieldOffset(extra.field_index, zcu);
+
+ const base_ptr_int = base_ptr_int: {
+ if (field_offset == 0) break :base_ptr_int field_ptr_int;
+
+ const field_offset_id = try cg.constInt(.usize, field_offset);
+ const field_ptr_tmp: Temporary = .init(.usize, field_ptr_int);
+ const field_offset_tmp: Temporary = .init(.usize, field_offset_id);
+ const result = try cg.buildBinary(.OpISub, field_ptr_tmp, field_offset_tmp);
+ break :base_ptr_int try result.materialize(cg);
+ };
+
+ const base_ptr = cg.module.allocId();
+ try cg.body.emit(cg.module.gpa, .OpConvertUToPtr, .{
+ .id_result_type = result_ty_id,
+ .id_result = base_ptr,
+ .integer_value = base_ptr_int,
+ });
+
+ return base_ptr;
+}
+
+fn structFieldPtr(
+ cg: *CodeGen,
+ result_ptr_ty: Type,
+ object_ptr_ty: Type,
+ object_ptr: Id,
+ field_index: u32,
+) !Id {
+ const result_ty_id = try cg.resolveType(result_ptr_ty, .direct);
+
+ const zcu = cg.module.zcu;
+ const object_ty = object_ptr_ty.childType(zcu);
+ switch (object_ty.zigTypeTag(zcu)) {
+ .pointer => {
+ assert(object_ty.isSlice(zcu));
+ return cg.accessChain(result_ty_id, object_ptr, &.{field_index});
+ },
+ .@"struct" => switch (object_ty.containerLayout(zcu)) {
+ .@"packed" => return cg.todo("implement field access for packed structs", .{}),
+ else => {
+ return try cg.accessChain(result_ty_id, object_ptr, &.{field_index});
+ },
+ },
+ .@"union" => {
+ const layout = cg.unionLayout(object_ty);
+ if (!layout.has_payload) {
+ // Asked to get a pointer to a zero-sized field. Just lower this
+ // to undefined, there is no reason to make it be a valid pointer.
+ return try cg.module.constUndef(result_ty_id);
+ }
+
+ const storage_class = cg.module.storageClass(object_ptr_ty.ptrAddressSpace(zcu));
+ const layout_payload_ty_id = try cg.resolveType(layout.payload_ty, .indirect);
+ const pl_ptr_ty_id = try cg.module.ptrType(layout_payload_ty_id, storage_class);
+ const pl_ptr_id = blk: {
+ if (object_ty.containerLayout(zcu) == .@"packed") break :blk object_ptr;
+ break :blk try cg.accessChain(pl_ptr_ty_id, object_ptr, &.{layout.payload_index});
+ };
+
+ const active_pl_ptr_id = cg.module.allocId();
+ try cg.body.emit(cg.module.gpa, .OpBitcast, .{
+ .id_result_type = result_ty_id,
+ .id_result = active_pl_ptr_id,
+ .operand = pl_ptr_id,
+ });
+ return active_pl_ptr_id;
+ },
+ else => unreachable,
+ }
+}
+
+fn airStructFieldPtrIndex(cg: *CodeGen, inst: Air.Inst.Index, field_index: u32) !?Id {
+ const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
+ const struct_ptr = try cg.resolve(ty_op.operand);
+ const struct_ptr_ty = cg.typeOf(ty_op.operand);
+ const result_ptr_ty = cg.typeOfIndex(inst);
+ return try cg.structFieldPtr(result_ptr_ty, struct_ptr_ty, struct_ptr, field_index);
+}
+
+const AllocOptions = struct {
+ initializer: ?Id = null,
+ /// The final storage class of the pointer. This may be either `.Generic` or `.Function`.
+ /// In either case, the local is allocated in the `.Function` storage class, and optionally
+ /// cast back to `.Generic`.
+ storage_class: StorageClass,
+};
+
+// Allocate a function-local variable, with possible initializer.
+// This function returns a pointer to a variable of type `ty`,
+// which is in the Generic address space. The variable is actually
+// placed in the Function address space.
+fn alloc(
+ cg: *CodeGen,
+ ty: Type,
+ options: AllocOptions,
+) !Id {
+ const ty_id = try cg.resolveType(ty, .indirect);
+ const ptr_fn_ty_id = try cg.module.ptrType(ty_id, .function);
+
+ // SPIR-V requires that OpVariable declarations for locals go into the first block, so we are just going to
+ // directly generate them into func.prologue instead of the body.
+ const var_id = cg.module.allocId();
+ try cg.prologue.emit(cg.module.gpa, .OpVariable, .{
+ .id_result_type = ptr_fn_ty_id,
+ .id_result = var_id,
+ .storage_class = .function,
+ .initializer = options.initializer,
+ });
+
+ return var_id;
+}
+
+fn airAlloc(cg: *CodeGen, inst: Air.Inst.Index) !?Id {
+ const zcu = cg.module.zcu;
+ const ptr_ty = cg.typeOfIndex(inst);
+ const child_ty = ptr_ty.childType(zcu);
+ return try cg.alloc(child_ty, .{
+ .storage_class = cg.module.storageClass(ptr_ty.ptrAddressSpace(zcu)),
+ });
+}
+
+fn airArg(cg: *CodeGen) Id {
+ defer cg.next_arg_index += 1;
+ return cg.args.items[cg.next_arg_index];
+}
+
+/// Given a slice of incoming block connections, returns the block-id of the next
+/// block to jump to. This function emits instructions, so it should be emitted
+/// inside the merge block of the block.
+/// This function should only be called with structured control flow generation.
+fn structuredNextBlock(cg: *CodeGen, incoming: []const ControlFlow.Structured.Block.Incoming) !Id {
+ assert(cg.control_flow == .structured);
+
+ const result_id = cg.module.allocId();
+ const block_id_ty_id = try cg.resolveType(.u32, .direct);
+ try cg.body.emitRaw(cg.module.gpa, .OpPhi, @intCast(2 + incoming.len * 2)); // result type + result + variable/parent...
+ cg.body.writeOperand(Id, block_id_ty_id);
+ cg.body.writeOperand(Id, result_id);
+
+ for (incoming) |incoming_block| {
+ cg.body.writeOperand(spec.PairIdRefIdRef, .{ incoming_block.next_block, incoming_block.src_label });
+ }
+
+ return result_id;
+}
+
+/// Jumps to the block with the target block-id. This function must only be called when
+/// terminating a body, there should be no instructions after it.
+/// This function should only be called with structured control flow generation.
+fn structuredBreak(cg: *CodeGen, target_block: Id) !void {
+ assert(cg.control_flow == .structured);
+
+ const gpa = cg.module.gpa;
+ const sblock = cg.control_flow.structured.block_stack.getLast();
+ const merge_block = switch (sblock.*) {
+ .selection => |*merge| blk: {
+ const merge_label = cg.module.allocId();
+ try merge.merge_stack.append(gpa, .{
+ .incoming = .{
+ .src_label = cg.block_label,
+ .next_block = target_block,
+ },
+ .merge_block = merge_label,
+ });
+ break :blk merge_label;
+ },
+ // Loop blocks do not end in a break. Not through a direct break,
+ // and also not through another instruction like cond_br or unreachable (these
+ // situations are replaced by `cond_br` in sema, or there is a `block` instruction
+ // placed around them).
+ .loop => unreachable,
+ };
+
+ try cg.body.emit(gpa, .OpBranch, .{ .target_label = merge_block });
+}
+
+/// Generate a body in a way that exits the body using only structured constructs.
+/// Returns the block-id of the next block to jump to. After this function, a jump
+/// should still be emitted to the block that should follow this structured body.
+/// This function should only be called with structured control flow generation.
+fn genStructuredBody(
+ cg: *CodeGen,
+ /// This parameter defines the method that this structured body is exited with.
+ block_merge_type: union(enum) {
+ /// Using selection; early exits from this body are surrounded with
+ /// if() statements.
+ selection,
+ /// Using loops; loops can be early exited by jumping to the merge block at
+ /// any time.
+ loop: struct {
+ merge_label: Id,
+ continue_label: Id,
+ },
+ },
+ body: []const Air.Inst.Index,
+) !Id {
+ assert(cg.control_flow == .structured);
+
+ const gpa = cg.module.gpa;
+
+ var sblock: ControlFlow.Structured.Block = switch (block_merge_type) {
+ .loop => |merge| .{ .loop = .{
+ .merge_block = merge.merge_label,
+ } },
+ .selection => .{ .selection = .{} },
+ };
+ defer sblock.deinit(gpa);
+
+ {
+ try cg.control_flow.structured.block_stack.append(gpa, &sblock);
+ defer _ = cg.control_flow.structured.block_stack.pop();
+
+ try cg.genBody(body);
+ }
+
+ switch (sblock) {
+ .selection => |merge| {
+ // Now generate the merge block for all merges that
+ // still need to be performed.
+ const merge_stack = merge.merge_stack.items;
+
+ // If no merges on the stack, this block didn't generate any jumps (all paths
+ // ended with a return or an unreachable). In that case, we don't need to do
+ // any merging.
+ if (merge_stack.len == 0) {
+ // We still need to return a value of a next block to jump to.
+ // For example, if we have code like
+ // if (x) {
+ // if (y) return else return;
+ // } else {}
+ // then we still need the outer to have an OpSelectionMerge and consequently
+ // a phi node. In that case we can just return bogus, since we know that its
+ // path will never be taken.
+
+ // Make sure that we are still in a block when exiting the function.
+ // TODO: Can we get rid of that?
+ try cg.beginSpvBlock(cg.module.allocId());
+ const block_id_ty_id = try cg.resolveType(.u32, .direct);
+ return try cg.module.constUndef(block_id_ty_id);
+ }
+
+ // The top-most merge actually only has a single source, the
+ // final jump of the block, or the merge block of a sub-block, cond_br,
+ // or loop. Therefore we just need to generate a block with a jump to the
+ // next merge block.
+ try cg.beginSpvBlock(merge_stack[merge_stack.len - 1].merge_block);
+
+ // Now generate a merge ladder for the remaining merges in the stack.
+ var incoming: ControlFlow.Structured.Block.Incoming = .{
+ .src_label = cg.block_label,
+ .next_block = merge_stack[merge_stack.len - 1].incoming.next_block,
+ };
+ var i = merge_stack.len - 1;
+ while (i > 0) {
+ i -= 1;
+ const step = merge_stack[i];
+
+ try cg.body.emit(gpa, .OpBranch, .{ .target_label = step.merge_block });
+ try cg.beginSpvBlock(step.merge_block);
+ const next_block = try cg.structuredNextBlock(&.{ incoming, step.incoming });
+ incoming = .{
+ .src_label = step.merge_block,
+ .next_block = next_block,
+ };
+ }
+
+ return incoming.next_block;
+ },
+ .loop => |merge| {
+ // Close the loop by jumping to the continue label
+
+ try cg.body.emit(gpa, .OpBranch, .{ .target_label = block_merge_type.loop.continue_label });
+ // For blocks we must simple merge all the incoming blocks to get the next block.
+ try cg.beginSpvBlock(merge.merge_block);
+ return try cg.structuredNextBlock(merge.merges.items);
+ },
+ }
+}
+
+fn airBlock(cg: *CodeGen, inst: Air.Inst.Index) !?Id {
+ const inst_datas = cg.air.instructions.items(.data);
+ const extra = cg.air.extraData(Air.Block, inst_datas[@intFromEnum(inst)].ty_pl.payload);
+ return cg.lowerBlock(inst, @ptrCast(cg.air.extra.items[extra.end..][0..extra.data.body_len]));
+}
+
+fn lowerBlock(cg: *CodeGen, inst: Air.Inst.Index, body: []const Air.Inst.Index) !?Id {
+ // In AIR, a block doesn't really define an entry point like a block, but
+ // more like a scope that breaks can jump out of and "return" a value from.
+ // This cannot be directly modelled in SPIR-V, so in a block instruction,
+ // we're going to split up the current block by first generating the code
+ // of the block, then a label, and then generate the rest of the current
+ // ir.Block in a different SPIR-V block.
+
+ const gpa = cg.module.gpa;
+ const zcu = cg.module.zcu;
+ const ty = cg.typeOfIndex(inst);
+ const have_block_result = ty.isFnOrHasRuntimeBitsIgnoreComptime(zcu);
+
+ const cf = switch (cg.control_flow) {
+ .structured => |*cf| cf,
+ .unstructured => |*cf| {
+ var block: ControlFlow.Unstructured.Block = .{};
+ defer block.incoming_blocks.deinit(gpa);
+
+ // 4 chosen as arbitrary initial capacity.
+ try block.incoming_blocks.ensureUnusedCapacity(gpa, 4);
+
+ try cf.blocks.putNoClobber(gpa, inst, &block);
+ defer assert(cf.blocks.remove(inst));
+
+ try cg.genBody(body);
+
+ // Only begin a new block if there were actually any breaks towards it.
+ if (block.label) |label| {
+ try cg.beginSpvBlock(label);
+ }
+
+ if (!have_block_result)
+ return null;
+
+ assert(block.label != null);
+ const result_id = cg.module.allocId();
+ const result_type_id = try cg.resolveType(ty, .direct);
+
+ try cg.body.emitRaw(
+ gpa,
+ .OpPhi,
+ // result type + result + variable/parent...
+ 2 + @as(u16, @intCast(block.incoming_blocks.items.len * 2)),
+ );
+ cg.body.writeOperand(Id, result_type_id);
+ cg.body.writeOperand(Id, result_id);
+
+ for (block.incoming_blocks.items) |incoming| {
+ cg.body.writeOperand(
+ spec.PairIdRefIdRef,
+ .{ incoming.break_value_id, incoming.src_label },
+ );
+ }
+
+ return result_id;
+ },
+ };
+
+ const maybe_block_result_var_id = if (have_block_result) blk: {
+ const block_result_var_id = try cg.alloc(ty, .{ .storage_class = .function });
+ try cf.block_results.putNoClobber(gpa, inst, block_result_var_id);
+ break :blk block_result_var_id;
+ } else null;
+ defer if (have_block_result) assert(cf.block_results.remove(inst));
+
+ const next_block = try cg.genStructuredBody(.selection, body);
+
+ // When encountering a block instruction, we are always at least in the function's scope,
+ // so there always has to be another entry.
+ assert(cf.block_stack.items.len > 0);
+
+ // Check if the target of the branch was this current block.
+ const this_block = try cg.constInt(.u32, @intFromEnum(inst));
+ const jump_to_this_block_id = cg.module.allocId();
+ const bool_ty_id = try cg.resolveType(.bool, .direct);
+ try cg.body.emit(gpa, .OpIEqual, .{
+ .id_result_type = bool_ty_id,
+ .id_result = jump_to_this_block_id,
+ .operand_1 = next_block,
+ .operand_2 = this_block,
+ });
+
+ const sblock = cf.block_stack.getLast();
+
+ if (ty.isNoReturn(zcu)) {
+ // If this block is noreturn, this instruction is the last of a block,
+ // and we must simply jump to the block's merge unconditionally.
+ try cg.structuredBreak(next_block);
+ } else {
+ switch (sblock.*) {
+ .selection => |*merge| {
+ // To jump out of a selection block, push a new entry onto its merge stack and
+ // generate a conditional branch to there and to the instructions following this block.
+ const merge_label = cg.module.allocId();
+ const then_label = cg.module.allocId();
+ try cg.body.emit(gpa, .OpSelectionMerge, .{
+ .merge_block = merge_label,
+ .selection_control = .{},
+ });
+ try cg.body.emit(gpa, .OpBranchConditional, .{
+ .condition = jump_to_this_block_id,
+ .true_label = then_label,
+ .false_label = merge_label,
+ });
+ try merge.merge_stack.append(gpa, .{
+ .incoming = .{
+ .src_label = cg.block_label,
+ .next_block = next_block,
+ },
+ .merge_block = merge_label,
+ });
+
+ try cg.beginSpvBlock(then_label);
+ },
+ .loop => |*merge| {
+ // To jump out of a loop block, generate a conditional that exits the block
+ // to the loop merge if the target ID is not the one of this block.
+ const continue_label = cg.module.allocId();
+ try cg.body.emit(gpa, .OpBranchConditional, .{
+ .condition = jump_to_this_block_id,
+ .true_label = continue_label,
+ .false_label = merge.merge_block,
+ });
+ try merge.merges.append(gpa, .{
+ .src_label = cg.block_label,
+ .next_block = next_block,
+ });
+ try cg.beginSpvBlock(continue_label);
+ },
+ }
+ }
+
+ if (maybe_block_result_var_id) |block_result_var_id| {
+ return try cg.load(ty, block_result_var_id, .{});
+ }
+
+ return null;
+}
+
+fn airBr(cg: *CodeGen, inst: Air.Inst.Index) !void {
+ const gpa = cg.module.gpa;
+ const zcu = cg.module.zcu;
+ const br = cg.air.instructions.items(.data)[@intFromEnum(inst)].br;
+ const operand_ty = cg.typeOf(br.operand);
+
+ switch (cg.control_flow) {
+ .structured => |*cf| {
+ if (operand_ty.isFnOrHasRuntimeBitsIgnoreComptime(zcu)) {
+ const operand_id = try cg.resolve(br.operand);
+ const block_result_var_id = cf.block_results.get(br.block_inst).?;
+ try cg.store(operand_ty, block_result_var_id, operand_id, .{});
+ }
+
+ const next_block = try cg.constInt(.u32, @intFromEnum(br.block_inst));
+ try cg.structuredBreak(next_block);
+ },
+ .unstructured => |cf| {
+ const block = cf.blocks.get(br.block_inst).?;
+ if (operand_ty.isFnOrHasRuntimeBitsIgnoreComptime(zcu)) {
+ const operand_id = try cg.resolve(br.operand);
+ // block_label should not be undefined here, lest there
+ // is a br or br_void in the function's body.
+ try block.incoming_blocks.append(gpa, .{
+ .src_label = cg.block_label,
+ .break_value_id = operand_id,
+ });
+ }
+
+ if (block.label == null) {
+ block.label = cg.module.allocId();
+ }
+
+ try cg.body.emit(gpa, .OpBranch, .{ .target_label = block.label.? });
+ },
+ }
+}
+
+fn airCondBr(cg: *CodeGen, inst: Air.Inst.Index) !void {
+ const gpa = cg.module.gpa;
+ const pl_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
+ const cond_br = cg.air.extraData(Air.CondBr, pl_op.payload);
+ const then_body: []const Air.Inst.Index = @ptrCast(cg.air.extra.items[cond_br.end..][0..cond_br.data.then_body_len]);
+ const else_body: []const Air.Inst.Index = @ptrCast(cg.air.extra.items[cond_br.end + then_body.len ..][0..cond_br.data.else_body_len]);
+ const condition_id = try cg.resolve(pl_op.operand);
+
+ const then_label = cg.module.allocId();
+ const else_label = cg.module.allocId();
+
+ switch (cg.control_flow) {
+ .structured => {
+ const merge_label = cg.module.allocId();
+
+ try cg.body.emit(gpa, .OpSelectionMerge, .{
+ .merge_block = merge_label,
+ .selection_control = .{},
+ });
+ try cg.body.emit(gpa, .OpBranchConditional, .{
+ .condition = condition_id,
+ .true_label = then_label,
+ .false_label = else_label,
+ });
+
+ try cg.beginSpvBlock(then_label);
+ const then_next = try cg.genStructuredBody(.selection, then_body);
+ const then_incoming: ControlFlow.Structured.Block.Incoming = .{
+ .src_label = cg.block_label,
+ .next_block = then_next,
+ };
+
+ try cg.body.emit(gpa, .OpBranch, .{ .target_label = merge_label });
+
+ try cg.beginSpvBlock(else_label);
+ const else_next = try cg.genStructuredBody(.selection, else_body);
+ const else_incoming: ControlFlow.Structured.Block.Incoming = .{
+ .src_label = cg.block_label,
+ .next_block = else_next,
+ };
+
+ try cg.body.emit(gpa, .OpBranch, .{ .target_label = merge_label });
+
+ try cg.beginSpvBlock(merge_label);
+ const next_block = try cg.structuredNextBlock(&.{ then_incoming, else_incoming });
+
+ try cg.structuredBreak(next_block);
+ },
+ .unstructured => {
+ try cg.body.emit(gpa, .OpBranchConditional, .{
+ .condition = condition_id,
+ .true_label = then_label,
+ .false_label = else_label,
+ });
+
+ try cg.beginSpvBlock(then_label);
+ try cg.genBody(then_body);
+ try cg.beginSpvBlock(else_label);
+ try cg.genBody(else_body);
+ },
+ }
+}
+
+fn airLoop(cg: *CodeGen, inst: Air.Inst.Index) !void {
+ const gpa = cg.module.gpa;
+ const ty_pl = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
+ const loop = cg.air.extraData(Air.Block, ty_pl.payload);
+ const body: []const Air.Inst.Index = @ptrCast(cg.air.extra.items[loop.end..][0..loop.data.body_len]);
+
+ const body_label = cg.module.allocId();
+
+ switch (cg.control_flow) {
+ .structured => {
+ const header_label = cg.module.allocId();
+ const merge_label = cg.module.allocId();
+ const continue_label = cg.module.allocId();
+
+ // The back-edge must point to the loop header, so generate a separate block for the
+ // loop header so that we don't accidentally include some instructions from there
+ // in the loop.
+
+ try cg.body.emit(gpa, .OpBranch, .{ .target_label = header_label });
+ try cg.beginSpvBlock(header_label);
+
+ // Emit loop header and jump to loop body
+ try cg.body.emit(gpa, .OpLoopMerge, .{
+ .merge_block = merge_label,
+ .continue_target = continue_label,
+ .loop_control = .{},
+ });
+
+ try cg.body.emit(gpa, .OpBranch, .{ .target_label = body_label });
+
+ try cg.beginSpvBlock(body_label);
+
+ const next_block = try cg.genStructuredBody(.{ .loop = .{
+ .merge_label = merge_label,
+ .continue_label = continue_label,
+ } }, body);
+ try cg.structuredBreak(next_block);
+
+ try cg.beginSpvBlock(continue_label);
+
+ try cg.body.emit(gpa, .OpBranch, .{ .target_label = header_label });
+ },
+ .unstructured => {
+ try cg.body.emit(gpa, .OpBranch, .{ .target_label = body_label });
+ try cg.beginSpvBlock(body_label);
+ try cg.genBody(body);
+
+ try cg.body.emit(gpa, .OpBranch, .{ .target_label = body_label });
+ },
+ }
+}
+
+fn airLoad(cg: *CodeGen, inst: Air.Inst.Index) !?Id {
+ const zcu = cg.module.zcu;
+ const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
+ const ptr_ty = cg.typeOf(ty_op.operand);
+ const elem_ty = cg.typeOfIndex(inst);
+ const operand = try cg.resolve(ty_op.operand);
+ if (!ptr_ty.isVolatilePtr(zcu) and cg.liveness.isUnused(inst)) return null;
+
+ return try cg.load(elem_ty, operand, .{ .is_volatile = ptr_ty.isVolatilePtr(zcu) });
+}
+
+fn airStore(cg: *CodeGen, inst: Air.Inst.Index) !void {
+ const zcu = cg.module.zcu;
+ const bin_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
+ const ptr_ty = cg.typeOf(bin_op.lhs);
+ const elem_ty = ptr_ty.childType(zcu);
+ const ptr = try cg.resolve(bin_op.lhs);
+ const value = try cg.resolve(bin_op.rhs);
+
+ try cg.store(elem_ty, ptr, value, .{ .is_volatile = ptr_ty.isVolatilePtr(zcu) });
+}
+
+fn airRet(cg: *CodeGen, inst: Air.Inst.Index) !void {
+ const gpa = cg.module.gpa;
+ const zcu = cg.module.zcu;
+ const operand = cg.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
+ const ret_ty = cg.typeOf(operand);
+ if (!ret_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
+ const fn_info = zcu.typeToFunc(zcu.navValue(cg.owner_nav).typeOf(zcu)).?;
+ if (Type.fromInterned(fn_info.return_type).isError(zcu)) {
+ // Functions with an empty error set are emitted with an error code
+ // return type and return zero so they can be function pointers coerced
+ // to functions that return anyerror.
+ const no_err_id = try cg.constInt(.anyerror, 0);
+ return try cg.body.emit(gpa, .OpReturnValue, .{ .value = no_err_id });
+ } else {
+ return try cg.body.emit(gpa, .OpReturn, {});
+ }
+ }
+
+ const operand_id = try cg.resolve(operand);
+ try cg.body.emit(gpa, .OpReturnValue, .{ .value = operand_id });
+}
+
+fn airRetLoad(cg: *CodeGen, inst: Air.Inst.Index) !void {
+ const gpa = cg.module.gpa;
+ const zcu = cg.module.zcu;
+ const un_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
+ const ptr_ty = cg.typeOf(un_op);
+ const ret_ty = ptr_ty.childType(zcu);
+
+ if (!ret_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
+ const fn_info = zcu.typeToFunc(zcu.navValue(cg.owner_nav).typeOf(zcu)).?;
+ if (Type.fromInterned(fn_info.return_type).isError(zcu)) {
+ // Functions with an empty error set are emitted with an error code
+ // return type and return zero so they can be function pointers coerced
+ // to functions that return anyerror.
+ const no_err_id = try cg.constInt(.anyerror, 0);
+ return try cg.body.emit(gpa, .OpReturnValue, .{ .value = no_err_id });
+ } else {
+ return try cg.body.emit(gpa, .OpReturn, {});
+ }
+ }
+
+ const ptr = try cg.resolve(un_op);
+ const value = try cg.load(ret_ty, ptr, .{ .is_volatile = ptr_ty.isVolatilePtr(zcu) });
+ try cg.body.emit(gpa, .OpReturnValue, .{
+ .value = value,
+ });
+}
+
+fn airTry(cg: *CodeGen, inst: Air.Inst.Index) !?Id {
+ const gpa = cg.module.gpa;
+ const zcu = cg.module.zcu;
+ const pl_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
+ const err_union_id = try cg.resolve(pl_op.operand);
+ const extra = cg.air.extraData(Air.Try, pl_op.payload);
+ const body: []const Air.Inst.Index = @ptrCast(cg.air.extra.items[extra.end..][0..extra.data.body_len]);
+
+ const err_union_ty = cg.typeOf(pl_op.operand);
+ const payload_ty = cg.typeOfIndex(inst);
+
+ const bool_ty_id = try cg.resolveType(.bool, .direct);
+
+ const eu_layout = cg.errorUnionLayout(payload_ty);
+
+ if (!err_union_ty.errorUnionSet(zcu).errorSetIsEmpty(zcu)) {
+ const err_id = if (eu_layout.payload_has_bits)
+ try cg.extractField(.anyerror, err_union_id, eu_layout.errorFieldIndex())
+ else
+ err_union_id;
+
+ const zero_id = try cg.constInt(.anyerror, 0);
+ const is_err_id = cg.module.allocId();
+ try cg.body.emit(gpa, .OpINotEqual, .{
+ .id_result_type = bool_ty_id,
+ .id_result = is_err_id,
+ .operand_1 = err_id,
+ .operand_2 = zero_id,
+ });
+
+ // When there is an error, we must evaluate `body`. Otherwise we must continue
+ // with the current body.
+ // Just generate a new block here, then generate a new block inline for the remainder of the body.
+
+ const err_block = cg.module.allocId();
+ const ok_block = cg.module.allocId();
+
+ switch (cg.control_flow) {
+ .structured => {
+ // According to AIR documentation, this block is guaranteed
+ // to not break and end in a return instruction. Thus,
+ // for structured control flow, we can just naively use
+ // the ok block as the merge block here.
+ try cg.body.emit(gpa, .OpSelectionMerge, .{
+ .merge_block = ok_block,
+ .selection_control = .{},
+ });
+ },
+ .unstructured => {},
+ }
+
+ try cg.body.emit(gpa, .OpBranchConditional, .{
+ .condition = is_err_id,
+ .true_label = err_block,
+ .false_label = ok_block,
+ });
+
+ try cg.beginSpvBlock(err_block);
+ try cg.genBody(body);
+
+ try cg.beginSpvBlock(ok_block);
+ }
+
+ if (!eu_layout.payload_has_bits) {
+ return null;
+ }
+
+ // Now just extract the payload, if required.
+ return try cg.extractField(payload_ty, err_union_id, eu_layout.payloadFieldIndex());
+}
+
+fn airErrUnionErr(cg: *CodeGen, inst: Air.Inst.Index) !?Id {
+ const zcu = cg.module.zcu;
+ const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
+ const operand_id = try cg.resolve(ty_op.operand);
+ const err_union_ty = cg.typeOf(ty_op.operand);
+ const err_ty_id = try cg.resolveType(.anyerror, .direct);
+
+ if (err_union_ty.errorUnionSet(zcu).errorSetIsEmpty(zcu)) {
+ // No error possible, so just return undefined.
+ return try cg.module.constUndef(err_ty_id);
+ }
+
+ const payload_ty = err_union_ty.errorUnionPayload(zcu);
+ const eu_layout = cg.errorUnionLayout(payload_ty);
+
+ if (!eu_layout.payload_has_bits) {
+ // If no payload, error union is represented by error set.
+ return operand_id;
+ }
+
+ return try cg.extractField(.anyerror, operand_id, eu_layout.errorFieldIndex());
+}
+
+fn airErrUnionPayload(cg: *CodeGen, inst: Air.Inst.Index) !?Id {
+ const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
+ const operand_id = try cg.resolve(ty_op.operand);
+ const payload_ty = cg.typeOfIndex(inst);
+ const eu_layout = cg.errorUnionLayout(payload_ty);
+
+ if (!eu_layout.payload_has_bits) {
+ return null; // No error possible.
+ }
+
+ return try cg.extractField(payload_ty, operand_id, eu_layout.payloadFieldIndex());
+}
+
+fn airWrapErrUnionErr(cg: *CodeGen, inst: Air.Inst.Index) !?Id {
+ const zcu = cg.module.zcu;
+ const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
+ const err_union_ty = cg.typeOfIndex(inst);
+ const payload_ty = err_union_ty.errorUnionPayload(zcu);
+ const operand_id = try cg.resolve(ty_op.operand);
+ const eu_layout = cg.errorUnionLayout(payload_ty);
+
+ if (!eu_layout.payload_has_bits) {
+ return operand_id;
+ }
+
+ const payload_ty_id = try cg.resolveType(payload_ty, .indirect);
+
+ var members: [2]Id = undefined;
+ members[eu_layout.errorFieldIndex()] = operand_id;
+ members[eu_layout.payloadFieldIndex()] = try cg.module.constUndef(payload_ty_id);
+
+ var types: [2]Type = undefined;
+ types[eu_layout.errorFieldIndex()] = .anyerror;
+ types[eu_layout.payloadFieldIndex()] = payload_ty;
+
+ const err_union_ty_id = try cg.resolveType(err_union_ty, .direct);
+ return try cg.constructComposite(err_union_ty_id, &members);
+}
+
+fn airWrapErrUnionPayload(cg: *CodeGen, inst: Air.Inst.Index) !?Id {
+ const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
+ const err_union_ty = cg.typeOfIndex(inst);
+ const operand_id = try cg.resolve(ty_op.operand);
+ const payload_ty = cg.typeOf(ty_op.operand);
+ const eu_layout = cg.errorUnionLayout(payload_ty);
+
+ if (!eu_layout.payload_has_bits) {
+ return try cg.constInt(.anyerror, 0);
+ }
+
+ var members: [2]Id = undefined;
+ members[eu_layout.errorFieldIndex()] = try cg.constInt(.anyerror, 0);
+ members[eu_layout.payloadFieldIndex()] = try cg.convertToIndirect(payload_ty, operand_id);
+
+ var types: [2]Type = undefined;
+ types[eu_layout.errorFieldIndex()] = .anyerror;
+ types[eu_layout.payloadFieldIndex()] = payload_ty;
+
+ const err_union_ty_id = try cg.resolveType(err_union_ty, .direct);
+ return try cg.constructComposite(err_union_ty_id, &members);
+}
+
+fn airIsNull(cg: *CodeGen, inst: Air.Inst.Index, is_pointer: bool, pred: enum { is_null, is_non_null }) !?Id {
+ const zcu = cg.module.zcu;
+ const un_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
+ const operand_id = try cg.resolve(un_op);
+ const operand_ty = cg.typeOf(un_op);
+ const optional_ty = if (is_pointer) operand_ty.childType(zcu) else operand_ty;
+ const payload_ty = optional_ty.optionalChild(zcu);
+
+ const bool_ty_id = try cg.resolveType(.bool, .direct);
+
+ if (optional_ty.optionalReprIsPayload(zcu)) {
+ // Pointer payload represents nullability: pointer or slice.
+ const loaded_id = if (is_pointer)
+ try cg.load(optional_ty, operand_id, .{})
+ else
+ operand_id;
+
+ const ptr_ty = if (payload_ty.isSlice(zcu))
+ payload_ty.slicePtrFieldType(zcu)
+ else
+ payload_ty;
+
+ const ptr_id = if (payload_ty.isSlice(zcu))
+ try cg.extractField(ptr_ty, loaded_id, 0)
+ else
+ loaded_id;
+
+ const ptr_ty_id = try cg.resolveType(ptr_ty, .direct);
+ const null_id = try cg.module.constNull(ptr_ty_id);
+ const null_tmp: Temporary = .init(ptr_ty, null_id);
+ const ptr: Temporary = .init(ptr_ty, ptr_id);
+
+ const op: std.math.CompareOperator = switch (pred) {
+ .is_null => .eq,
+ .is_non_null => .neq,
+ };
+ const result = try cg.cmp(op, ptr, null_tmp);
+ return try result.materialize(cg);
+ }
+
+ const is_non_null_id = blk: {
+ if (is_pointer) {
+ if (payload_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
+ const storage_class = cg.module.storageClass(operand_ty.ptrAddressSpace(zcu));
+ const bool_indirect_ty_id = try cg.resolveType(.bool, .indirect);
+ const bool_ptr_ty_id = try cg.module.ptrType(bool_indirect_ty_id, storage_class);
+ const tag_ptr_id = try cg.accessChain(bool_ptr_ty_id, operand_id, &.{1});
+ break :blk try cg.load(.bool, tag_ptr_id, .{});
+ }
+
+ break :blk try cg.load(.bool, operand_id, .{});
+ }
+
+ break :blk if (payload_ty.hasRuntimeBitsIgnoreComptime(zcu))
+ try cg.extractField(.bool, operand_id, 1)
+ else
+ // Optional representation is bool indicating whether the optional is set
+ // Optionals with no payload are represented as an (indirect) bool, so convert
+ // it back to the direct bool here.
+ try cg.convertToDirect(.bool, operand_id);
+ };
+
+ return switch (pred) {
+ .is_null => blk: {
+ // Invert condition
+ const result_id = cg.module.allocId();
+ try cg.body.emit(cg.module.gpa, .OpLogicalNot, .{
+ .id_result_type = bool_ty_id,
+ .id_result = result_id,
+ .operand = is_non_null_id,
+ });
+ break :blk result_id;
+ },
+ .is_non_null => is_non_null_id,
+ };
+}
+
+fn airIsErr(cg: *CodeGen, inst: Air.Inst.Index, pred: enum { is_err, is_non_err }) !?Id {
+ const zcu = cg.module.zcu;
+ const un_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
+ const operand_id = try cg.resolve(un_op);
+ const err_union_ty = cg.typeOf(un_op);
+
+ if (err_union_ty.errorUnionSet(zcu).errorSetIsEmpty(zcu)) {
+ return try cg.constBool(pred == .is_non_err, .direct);
+ }
+
+ const payload_ty = err_union_ty.errorUnionPayload(zcu);
+ const eu_layout = cg.errorUnionLayout(payload_ty);
+ const bool_ty_id = try cg.resolveType(.bool, .direct);
+
+ const error_id = if (!eu_layout.payload_has_bits)
+ operand_id
+ else
+ try cg.extractField(.anyerror, operand_id, eu_layout.errorFieldIndex());
+
+ const result_id = cg.module.allocId();
+ switch (pred) {
+ inline else => |pred_ct| try cg.body.emit(
+ cg.module.gpa,
+ switch (pred_ct) {
+ .is_err => .OpINotEqual,
+ .is_non_err => .OpIEqual,
+ },
+ .{
+ .id_result_type = bool_ty_id,
+ .id_result = result_id,
+ .operand_1 = error_id,
+ .operand_2 = try cg.constInt(.anyerror, 0),
+ },
+ ),
+ }
+ return result_id;
+}
+
+fn airUnwrapOptional(cg: *CodeGen, inst: Air.Inst.Index) !?Id {
+ const zcu = cg.module.zcu;
+ const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
+ const operand_id = try cg.resolve(ty_op.operand);
+ const optional_ty = cg.typeOf(ty_op.operand);
+ const payload_ty = cg.typeOfIndex(inst);
+
+ if (!payload_ty.hasRuntimeBitsIgnoreComptime(zcu)) return null;
+
+ if (optional_ty.optionalReprIsPayload(zcu)) {
+ return operand_id;
+ }
+
+ return try cg.extractField(payload_ty, operand_id, 0);
+}
+
+fn airUnwrapOptionalPtr(cg: *CodeGen, inst: Air.Inst.Index) !?Id {
+ const zcu = cg.module.zcu;
+ const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
+ const operand_id = try cg.resolve(ty_op.operand);
+ const operand_ty = cg.typeOf(ty_op.operand);
+ const optional_ty = operand_ty.childType(zcu);
+ const payload_ty = optional_ty.optionalChild(zcu);
+ const result_ty = cg.typeOfIndex(inst);
+ const result_ty_id = try cg.resolveType(result_ty, .direct);
+
+ if (!payload_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
+ // There is no payload, but we still need to return a valid pointer.
+ // We can just return anything here, so just return a pointer to the operand.
+ return try cg.bitCast(result_ty, operand_ty, operand_id);
+ }
+
+ if (optional_ty.optionalReprIsPayload(zcu)) {
+ // They are the same value.
+ return try cg.bitCast(result_ty, operand_ty, operand_id);
+ }
+
+ return try cg.accessChain(result_ty_id, operand_id, &.{0});
+}
+
+fn airWrapOptional(cg: *CodeGen, inst: Air.Inst.Index) !?Id {
+ const zcu = cg.module.zcu;
+ const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
+ const payload_ty = cg.typeOf(ty_op.operand);
+
+ if (!payload_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
+ return try cg.constBool(true, .indirect);
+ }
+
+ const operand_id = try cg.resolve(ty_op.operand);
+
+ const optional_ty = cg.typeOfIndex(inst);
+ if (optional_ty.optionalReprIsPayload(zcu)) {
+ return operand_id;
+ }
+
+ const payload_id = try cg.convertToIndirect(payload_ty, operand_id);
+ const members = [_]Id{ payload_id, try cg.constBool(true, .indirect) };
+ const optional_ty_id = try cg.resolveType(optional_ty, .direct);
+ return try cg.constructComposite(optional_ty_id, &members);
+}
+
+fn airSwitchBr(cg: *CodeGen, inst: Air.Inst.Index) !void {
+ const gpa = cg.module.gpa;
+ const pt = cg.pt;
+ const zcu = cg.module.zcu;
+ const target = cg.module.zcu.getTarget();
+ const switch_br = cg.air.unwrapSwitch(inst);
+ const cond_ty = cg.typeOf(switch_br.operand);
+ const cond = try cg.resolve(switch_br.operand);
+ var cond_indirect = try cg.convertToIndirect(cond_ty, cond);
+
+ const cond_words: u32 = switch (cond_ty.zigTypeTag(zcu)) {
+ .bool, .error_set => 1,
+ .int => blk: {
+ const bits = cond_ty.intInfo(zcu).bits;
+ const backing_bits, const big_int = cg.module.backingIntBits(bits);
+ if (big_int) return cg.todo("implement composite int switch", .{});
+ break :blk if (backing_bits <= 32) 1 else 2;
+ },
+ .@"enum" => blk: {
+ const int_ty = cond_ty.intTagType(zcu);
+ const int_info = int_ty.intInfo(zcu);
+ const backing_bits, const big_int = cg.module.backingIntBits(int_info.bits);
+ if (big_int) return cg.todo("implement composite int switch", .{});
+ break :blk if (backing_bits <= 32) 1 else 2;
+ },
+ .pointer => blk: {
+ cond_indirect = try cg.intFromPtr(cond_indirect);
+ break :blk target.ptrBitWidth() / 32;
+ },
+ // TODO: Figure out which types apply here, and work around them as we can only do integers.
+ else => return cg.todo("implement switch for type {s}", .{@tagName(cond_ty.zigTypeTag(zcu))}),
+ };
+
+ const num_cases = switch_br.cases_len;
+
+ // Compute the total number of arms that we need.
+ // Zig switches are grouped by condition, so we need to loop through all of them
+ const num_conditions = blk: {
+ var num_conditions: u32 = 0;
+ var it = switch_br.iterateCases();
+ while (it.next()) |case| {
+ if (case.ranges.len > 0) return cg.todo("switch with ranges", .{});
+ num_conditions += @intCast(case.items.len);
+ }
+ break :blk num_conditions;
+ };
+
+ // First, pre-allocate the labels for the cases.
+ const case_labels = cg.module.allocIds(num_cases);
+ // We always need the default case - if zig has none, we will generate unreachable there.
+ const default = cg.module.allocId();
+
+ const merge_label = switch (cg.control_flow) {
+ .structured => cg.module.allocId(),
+ .unstructured => null,
+ };
+
+ if (cg.control_flow == .structured) {
+ try cg.body.emit(gpa, .OpSelectionMerge, .{
+ .merge_block = merge_label.?,
+ .selection_control = .{},
+ });
+ }
+
+ // Emit the instruction before generating the blocks.
+ try cg.body.emitRaw(gpa, .OpSwitch, 2 + (cond_words + 1) * num_conditions);
+ cg.body.writeOperand(Id, cond_indirect);
+ cg.body.writeOperand(Id, default);
+
+ // Emit each of the cases
+ {
+ var it = switch_br.iterateCases();
+ while (it.next()) |case| {
+ // SPIR-V needs a literal here, which' width depends on the case condition.
+ const label = case_labels.at(case.idx);
+
+ for (case.items) |item| {
+ const value = (try cg.air.value(item, pt)) orelse unreachable;
+ const int_val: u64 = switch (cond_ty.zigTypeTag(zcu)) {
+ .bool, .int => if (cond_ty.isSignedInt(zcu)) @bitCast(value.toSignedInt(zcu)) else value.toUnsignedInt(zcu),
+ .@"enum" => blk: {
+ // TODO: figure out of cond_ty is correct (something with enum literals)
+ break :blk (try value.intFromEnum(cond_ty, pt)).toUnsignedInt(zcu); // TODO: composite integer constants
+ },
+ .error_set => value.getErrorInt(zcu),
+ .pointer => value.toUnsignedInt(zcu),
+ else => unreachable,
+ };
+ const int_lit: spec.LiteralContextDependentNumber = switch (cond_words) {
+ 1 => .{ .uint32 = @intCast(int_val) },
+ 2 => .{ .uint64 = int_val },
+ else => unreachable,
+ };
+ cg.body.writeOperand(spec.LiteralContextDependentNumber, int_lit);
+ cg.body.writeOperand(Id, label);
+ }
+ }
+ }
+
+ var incoming_structured_blocks: std.ArrayListUnmanaged(ControlFlow.Structured.Block.Incoming) = .empty;
+ defer incoming_structured_blocks.deinit(gpa);
+
+ if (cg.control_flow == .structured) {
+ try incoming_structured_blocks.ensureUnusedCapacity(gpa, num_cases + 1);
+ }
+
+ // Now, finally, we can start emitting each of the cases.
+ var it = switch_br.iterateCases();
+ while (it.next()) |case| {
+ const label = case_labels.at(case.idx);
+
+ try cg.beginSpvBlock(label);
+
+ switch (cg.control_flow) {
+ .structured => {
+ const next_block = try cg.genStructuredBody(.selection, case.body);
+ incoming_structured_blocks.appendAssumeCapacity(.{
+ .src_label = cg.block_label,
+ .next_block = next_block,
+ });
+
+ try cg.body.emit(gpa, .OpBranch, .{ .target_label = merge_label.? });
+ },
+ .unstructured => {
+ try cg.genBody(case.body);
+ },
+ }
+ }
+
+ const else_body = it.elseBody();
+ try cg.beginSpvBlock(default);
+ if (else_body.len != 0) {
+ switch (cg.control_flow) {
+ .structured => {
+ const next_block = try cg.genStructuredBody(.selection, else_body);
+ incoming_structured_blocks.appendAssumeCapacity(.{
+ .src_label = cg.block_label,
+ .next_block = next_block,
+ });
+
+ try cg.body.emit(gpa, .OpBranch, .{ .target_label = merge_label.? });
+ },
+ .unstructured => {
+ try cg.genBody(else_body);
+ },
+ }
+ } else {
+ try cg.body.emit(gpa, .OpUnreachable, {});
+ }
+
+ if (cg.control_flow == .structured) {
+ try cg.beginSpvBlock(merge_label.?);
+ const next_block = try cg.structuredNextBlock(incoming_structured_blocks.items);
+ try cg.structuredBreak(next_block);
+ }
+}
+
+fn airUnreach(cg: *CodeGen) !void {
+ try cg.body.emit(cg.module.gpa, .OpUnreachable, {});
+}
+
+fn airDbgStmt(cg: *CodeGen, inst: Air.Inst.Index) !void {
+ const zcu = cg.module.zcu;
+ const dbg_stmt = cg.air.instructions.items(.data)[@intFromEnum(inst)].dbg_stmt;
+ const path = zcu.navFileScope(cg.owner_nav).sub_file_path;
+
+ if (zcu.comp.config.root_strip) return;
+
+ try cg.body.emit(cg.module.gpa, .OpLine, .{
+ .file = try cg.module.debugString(path),
+ .line = cg.base_line + dbg_stmt.line + 1,
+ .column = dbg_stmt.column + 1,
+ });
+}
+
+fn airDbgInlineBlock(cg: *CodeGen, inst: Air.Inst.Index) !?Id {
+ const zcu = cg.module.zcu;
+ const inst_datas = cg.air.instructions.items(.data);
+ const extra = cg.air.extraData(Air.DbgInlineBlock, inst_datas[@intFromEnum(inst)].ty_pl.payload);
+ const old_base_line = cg.base_line;
+ defer cg.base_line = old_base_line;
+ cg.base_line = zcu.navSrcLine(zcu.funcInfo(extra.data.func).owner_nav);
+ return cg.lowerBlock(inst, @ptrCast(cg.air.extra.items[extra.end..][0..extra.data.body_len]));
+}
+
+fn airDbgVar(cg: *CodeGen, inst: Air.Inst.Index) !void {
+ const pl_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
+ const target_id = try cg.resolve(pl_op.operand);
+ const name: Air.NullTerminatedString = @enumFromInt(pl_op.payload);
+ try cg.module.debugName(target_id, name.toSlice(cg.air));
+}
+
+fn airAssembly(cg: *CodeGen, inst: Air.Inst.Index) !?Id {
+ const gpa = cg.module.gpa;
+ const zcu = cg.module.zcu;
+ const ty_pl = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
+ const extra = cg.air.extraData(Air.Asm, ty_pl.payload);
+
+ const is_volatile = extra.data.flags.is_volatile;
+ const outputs_len = extra.data.flags.outputs_len;
+
+ if (!is_volatile and cg.liveness.isUnused(inst)) return null;
+
+ var extra_i: usize = extra.end;
+ const outputs: []const Air.Inst.Ref = @ptrCast(cg.air.extra.items[extra_i..][0..outputs_len]);
+ extra_i += outputs.len;
+ const inputs: []const Air.Inst.Ref = @ptrCast(cg.air.extra.items[extra_i..][0..extra.data.inputs_len]);
+ extra_i += inputs.len;
+
+ if (outputs.len > 1) {
+ return cg.todo("implement inline asm with more than 1 output", .{});
+ }
+
+ var ass: Assembler = .{ .cg = cg };
+ defer ass.deinit();
+
+ var output_extra_i = extra_i;
+ for (outputs) |output| {
+ if (output != .none) {
+ return cg.todo("implement inline asm with non-returned output", .{});
+ }
+ const extra_bytes = std.mem.sliceAsBytes(cg.air.extra.items[extra_i..]);
+ const constraint = std.mem.sliceTo(std.mem.sliceAsBytes(cg.air.extra.items[extra_i..]), 0);
+ const name = std.mem.sliceTo(extra_bytes[constraint.len + 1 ..], 0);
+ extra_i += (constraint.len + name.len + (2 + 3)) / 4;
+ // TODO: Record output and use it somewhere.
+ }
+
+ for (inputs) |input| {
+ const extra_bytes = std.mem.sliceAsBytes(cg.air.extra.items[extra_i..]);
+ const constraint = std.mem.sliceTo(extra_bytes, 0);
+ const name = std.mem.sliceTo(extra_bytes[constraint.len + 1 ..], 0);
+ // This equation accounts for the fact that even if we have exactly 4 bytes
+ // for the string, we still use the next u32 for the null terminator.
+ extra_i += (constraint.len + name.len + (2 + 3)) / 4;
+
+ const input_ty = cg.typeOf(input);
+
+ if (std.mem.eql(u8, constraint, "c")) {
+ // constant
+ const val = (try cg.air.value(input, cg.pt)) orelse {
+ return cg.fail("assembly inputs with 'c' constraint have to be compile-time known", .{});
+ };
+
+ // TODO: This entire function should be handled a bit better...
+ const ip = &zcu.intern_pool;
+ switch (ip.indexToKey(val.toIntern())) {
+ .int_type,
+ .ptr_type,
+ .array_type,
+ .vector_type,
+ .opt_type,
+ .anyframe_type,
+ .error_union_type,
+ .simple_type,
+ .struct_type,
+ .union_type,
+ .opaque_type,
+ .enum_type,
+ .func_type,
+ .error_set_type,
+ .inferred_error_set_type,
+ => unreachable, // types, not values
+
+ .undef => return cg.fail("assembly input with 'c' constraint cannot be undefined", .{}),
+
+ .int => try ass.value_map.put(gpa, name, .{ .constant = @intCast(val.toUnsignedInt(zcu)) }),
+ .enum_literal => |str| try ass.value_map.put(gpa, name, .{ .string = str.toSlice(ip) }),
+
+ else => unreachable, // TODO
+ }
+ } else if (std.mem.eql(u8, constraint, "t")) {
+ // type
+ if (input_ty.zigTypeTag(zcu) == .type) {
+ // This assembly input is a type instead of a value.
+ // That's fine for now, just make sure to resolve it as such.
+ const val = (try cg.air.value(input, cg.pt)).?;
+ const ty_id = try cg.resolveType(val.toType(), .direct);
+ try ass.value_map.put(gpa, name, .{ .ty = ty_id });
+ } else {
+ const ty_id = try cg.resolveType(input_ty, .direct);
+ try ass.value_map.put(gpa, name, .{ .ty = ty_id });
+ }
+ } else {
+ if (input_ty.zigTypeTag(zcu) == .type) {
+ return cg.fail("use the 't' constraint to supply types to SPIR-V inline assembly", .{});
+ }
+
+ const val_id = try cg.resolve(input);
+ try ass.value_map.put(gpa, name, .{ .value = val_id });
+ }
+ }
+
+ // TODO: do something with clobbers
+ _ = extra.data.clobbers;
+
+ const asm_source = std.mem.sliceAsBytes(cg.air.extra.items[extra_i..])[0..extra.data.source_len];
+
+ ass.assemble(asm_source) catch |err| switch (err) {
+ error.AssembleFail => {
+ // TODO: For now the compiler only supports a single error message per decl,
+ // so to translate the possible multiple errors from the assembler, emit
+ // them as notes here.
+ // TODO: Translate proper error locations.
+ assert(ass.errors.items.len != 0);
+ assert(cg.error_msg == null);
+ const src_loc = zcu.navSrcLoc(cg.owner_nav);
+ cg.error_msg = try Zcu.ErrorMsg.create(zcu.gpa, src_loc, "failed to assemble SPIR-V inline assembly", .{});
+ const notes = try zcu.gpa.alloc(Zcu.ErrorMsg, ass.errors.items.len);
+
+ // Sub-scope to prevent `return error.CodegenFail` from running the errdefers.
+ {
+ errdefer zcu.gpa.free(notes);
+ var i: usize = 0;
+ errdefer for (notes[0..i]) |*note| {
+ note.deinit(zcu.gpa);
+ };
+
+ while (i < ass.errors.items.len) : (i += 1) {
+ notes[i] = try Zcu.ErrorMsg.init(zcu.gpa, src_loc, "{s}", .{ass.errors.items[i].msg});
+ }
+ }
+ cg.error_msg.?.notes = notes;
+ return error.CodegenFail;
+ },
+ else => |others| return others,
+ };
+
+ for (outputs) |output| {
+ _ = output;
+ const extra_bytes = std.mem.sliceAsBytes(cg.air.extra.items[output_extra_i..]);
+ const constraint = std.mem.sliceTo(std.mem.sliceAsBytes(cg.air.extra.items[output_extra_i..]), 0);
+ const name = std.mem.sliceTo(extra_bytes[constraint.len + 1 ..], 0);
+ output_extra_i += (constraint.len + name.len + (2 + 3)) / 4;
+
+ const result = ass.value_map.get(name) orelse return {
+ return cg.fail("invalid asm output '{s}'", .{name});
+ };
+
+ switch (result) {
+ .just_declared, .unresolved_forward_reference => unreachable,
+ .ty => return cg.fail("cannot return spir-v type as value from assembly", .{}),
+ .value => |ref| return ref,
+ .constant, .string => return cg.fail("cannot return constant from assembly", .{}),
+ }
+
+ // TODO: Multiple results
+ // TODO: Check that the output type from assembly is the same as the type actually expected by Zig.
+ }
+
+ return null;
+}
+
+fn airCall(cg: *CodeGen, inst: Air.Inst.Index, modifier: std.builtin.CallModifier) !?Id {
+ _ = modifier;
+
+ const gpa = cg.module.gpa;
+ const zcu = cg.module.zcu;
+ const pl_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
+ const extra = cg.air.extraData(Air.Call, pl_op.payload);
+ const args: []const Air.Inst.Ref = @ptrCast(cg.air.extra.items[extra.end..][0..extra.data.args_len]);
+ const callee_ty = cg.typeOf(pl_op.operand);
+ const zig_fn_ty = switch (callee_ty.zigTypeTag(zcu)) {
+ .@"fn" => callee_ty,
+ .pointer => return cg.fail("cannot call function pointers", .{}),
+ else => unreachable,
+ };
+ const fn_info = zcu.typeToFunc(zig_fn_ty).?;
+ const return_type = fn_info.return_type;
+
+ const result_type_id = try cg.resolveFnReturnType(.fromInterned(return_type));
+ const result_id = cg.module.allocId();
+ const callee_id = try cg.resolve(pl_op.operand);
+
+ comptime assert(zig_call_abi_ver == 3);
+
+ const scratch_top = cg.id_scratch.items.len;
+ defer cg.id_scratch.shrinkRetainingCapacity(scratch_top);
+ const params = try cg.id_scratch.addManyAsSlice(gpa, args.len);
+
+ var n_params: usize = 0;
+ for (args) |arg| {
+ // Note: resolve() might emit instructions, so we need to call it
+ // before starting to emit OpFunctionCall instructions. Hence the
+ // temporary params buffer.
+ const arg_ty = cg.typeOf(arg);
+ if (!arg_ty.hasRuntimeBitsIgnoreComptime(zcu)) continue;
+ const arg_id = try cg.resolve(arg);
+
+ params[n_params] = arg_id;
+ n_params += 1;
+ }
+
+ try cg.body.emit(gpa, .OpFunctionCall, .{
+ .id_result_type = result_type_id,
+ .id_result = result_id,
+ .function = callee_id,
+ .id_ref_3 = params[0..n_params],
+ });
+
+ if (cg.liveness.isUnused(inst) or !Type.fromInterned(return_type).hasRuntimeBitsIgnoreComptime(zcu)) {
+ return null;
+ }
+
+ return result_id;
+}
+
+fn builtin3D(
+ cg: *CodeGen,
+ result_ty: Type,
+ builtin: spec.BuiltIn,
+ dimension: u32,
+ out_of_range_value: anytype,
+) !Id {
+ const gpa = cg.module.gpa;
+ if (dimension >= 3) return try cg.constInt(result_ty, out_of_range_value);
+ const u32_ty_id = try cg.module.intType(.unsigned, 32);
+ const vec_ty_id = try cg.module.vectorType(3, u32_ty_id);
+ const ptr_ty_id = try cg.module.ptrType(vec_ty_id, .input);
+ const spv_decl_index = try cg.module.builtin(ptr_ty_id, builtin, .input);
+ try cg.module.decl_deps.append(gpa, spv_decl_index);
+ const ptr_id = cg.module.declPtr(spv_decl_index).result_id;
+ const vec_id = cg.module.allocId();
+ try cg.body.emit(gpa, .OpLoad, .{
+ .id_result_type = vec_ty_id,
+ .id_result = vec_id,
+ .pointer = ptr_id,
+ });
+ return try cg.extractVectorComponent(result_ty, vec_id, dimension);
+}
+
+fn airWorkItemId(cg: *CodeGen, inst: Air.Inst.Index) !?Id {
+ if (cg.liveness.isUnused(inst)) return null;
+ const pl_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
+ const dimension = pl_op.payload;
+ return try cg.builtin3D(.u32, .local_invocation_id, dimension, 0);
+}
+
+// TODO: this must be an OpConstant/OpSpec but even then the driver crashes.
+fn airWorkGroupSize(cg: *CodeGen, inst: Air.Inst.Index) !?Id {
+ if (cg.liveness.isUnused(inst)) return null;
+ const pl_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
+ const dimension = pl_op.payload;
+ return try cg.builtin3D(.u32, .workgroup_id, dimension, 0);
+}
+
+fn airWorkGroupId(cg: *CodeGen, inst: Air.Inst.Index) !?Id {
+ if (cg.liveness.isUnused(inst)) return null;
+ const pl_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
+ const dimension = pl_op.payload;
+ return try cg.builtin3D(.u32, .workgroup_id, dimension, 0);
+}
+
+fn typeOf(cg: *CodeGen, inst: Air.Inst.Ref) Type {
+ const zcu = cg.module.zcu;
+ return cg.air.typeOf(inst, &zcu.intern_pool);
+}
+
+fn typeOfIndex(cg: *CodeGen, inst: Air.Inst.Index) Type {
+ const zcu = cg.module.zcu;
+ return cg.air.typeOfIndex(inst, &zcu.intern_pool);
+}