diff options
Diffstat (limited to 'lib/std/special/compiler_rt/divdf3.zig')
| -rw-r--r-- | lib/std/special/compiler_rt/divdf3.zig | 328 |
1 files changed, 328 insertions, 0 deletions
diff --git a/lib/std/special/compiler_rt/divdf3.zig b/lib/std/special/compiler_rt/divdf3.zig new file mode 100644 index 0000000000..072feaec67 --- /dev/null +++ b/lib/std/special/compiler_rt/divdf3.zig @@ -0,0 +1,328 @@ +// Ported from: +// +// https://github.com/llvm/llvm-project/commit/d674d96bc56c0f377879d01c9d8dfdaaa7859cdb/compiler-rt/lib/builtins/divdf3.c + +const std = @import("std"); +const builtin = @import("builtin"); + +pub extern fn __divdf3(a: f64, b: f64) f64 { + @setRuntimeSafety(builtin.is_test); + const Z = @IntType(false, f64.bit_count); + const SignedZ = @IntType(true, f64.bit_count); + + const typeWidth = f64.bit_count; + const significandBits = std.math.floatMantissaBits(f64); + const exponentBits = std.math.floatExponentBits(f64); + + const signBit = (Z(1) << (significandBits + exponentBits)); + const maxExponent = ((1 << exponentBits) - 1); + const exponentBias = (maxExponent >> 1); + + const implicitBit = (Z(1) << significandBits); + const quietBit = implicitBit >> 1; + const significandMask = implicitBit - 1; + + const absMask = signBit - 1; + const exponentMask = absMask ^ significandMask; + const qnanRep = exponentMask | quietBit; + const infRep = @bitCast(Z, std.math.inf(f64)); + + const aExponent = @truncate(u32, (@bitCast(Z, a) >> significandBits) & maxExponent); + const bExponent = @truncate(u32, (@bitCast(Z, b) >> significandBits) & maxExponent); + const quotientSign: Z = (@bitCast(Z, a) ^ @bitCast(Z, b)) & signBit; + + var aSignificand: Z = @bitCast(Z, a) & significandMask; + var bSignificand: Z = @bitCast(Z, b) & significandMask; + var scale: i32 = 0; + + // Detect if a or b is zero, denormal, infinity, or NaN. + if (aExponent -% 1 >= maxExponent -% 1 or bExponent -% 1 >= maxExponent -% 1) { + const aAbs: Z = @bitCast(Z, a) & absMask; + const bAbs: Z = @bitCast(Z, b) & absMask; + + // NaN / anything = qNaN + if (aAbs > infRep) return @bitCast(f64, @bitCast(Z, a) | quietBit); + // anything / NaN = qNaN + if (bAbs > infRep) return @bitCast(f64, @bitCast(Z, b) | quietBit); + + if (aAbs == infRep) { + // infinity / infinity = NaN + if (bAbs == infRep) { + return @bitCast(f64, qnanRep); + } + // infinity / anything else = +/- infinity + else { + return @bitCast(f64, aAbs | quotientSign); + } + } + + // anything else / infinity = +/- 0 + if (bAbs == infRep) return @bitCast(f64, quotientSign); + + if (aAbs == 0) { + // zero / zero = NaN + if (bAbs == 0) { + return @bitCast(f64, qnanRep); + } + // zero / anything else = +/- zero + else { + return @bitCast(f64, quotientSign); + } + } + // anything else / zero = +/- infinity + if (bAbs == 0) return @bitCast(f64, infRep | quotientSign); + + // one or both of a or b is denormal, the other (if applicable) is a + // normal number. Renormalize one or both of a and b, and set scale to + // include the necessary exponent adjustment. + if (aAbs < implicitBit) scale +%= normalize(f64, &aSignificand); + if (bAbs < implicitBit) scale -%= normalize(f64, &bSignificand); + } + + // Or in the implicit significand bit. (If we fell through from the + // denormal path it was already set by normalize( ), but setting it twice + // won't hurt anything.) + aSignificand |= implicitBit; + bSignificand |= implicitBit; + var quotientExponent: i32 = @bitCast(i32, aExponent -% bExponent) +% scale; + + // Align the significand of b as a Q31 fixed-point number in the range + // [1, 2.0) and get a Q32 approximate reciprocal using a small minimax + // polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2. This + // is accurate to about 3.5 binary digits. + const q31b: u32 = @truncate(u32, bSignificand >> 21); + var recip32 = u32(0x7504f333) -% q31b; + + // Now refine the reciprocal estimate using a Newton-Raphson iteration: + // + // x1 = x0 * (2 - x0 * b) + // + // This doubles the number of correct binary digits in the approximation + // with each iteration, so after three iterations, we have about 28 binary + // digits of accuracy. + var correction32: u32 = undefined; + correction32 = @truncate(u32, ~(u64(recip32) *% q31b >> 32) +% 1); + recip32 = @truncate(u32, u64(recip32) *% correction32 >> 31); + correction32 = @truncate(u32, ~(u64(recip32) *% q31b >> 32) +% 1); + recip32 = @truncate(u32, u64(recip32) *% correction32 >> 31); + correction32 = @truncate(u32, ~(u64(recip32) *% q31b >> 32) +% 1); + recip32 = @truncate(u32, u64(recip32) *% correction32 >> 31); + + // recip32 might have overflowed to exactly zero in the preceding + // computation if the high word of b is exactly 1.0. This would sabotage + // the full-width final stage of the computation that follows, so we adjust + // recip32 downward by one bit. + recip32 -%= 1; + + // We need to perform one more iteration to get us to 56 binary digits; + // The last iteration needs to happen with extra precision. + const q63blo: u32 = @truncate(u32, bSignificand << 11); + var correction: u64 = undefined; + var reciprocal: u64 = undefined; + correction = ~(u64(recip32) *% q31b +% (u64(recip32) *% q63blo >> 32)) +% 1; + const cHi = @truncate(u32, correction >> 32); + const cLo = @truncate(u32, correction); + reciprocal = u64(recip32) *% cHi +% (u64(recip32) *% cLo >> 32); + + // We already adjusted the 32-bit estimate, now we need to adjust the final + // 64-bit reciprocal estimate downward to ensure that it is strictly smaller + // than the infinitely precise exact reciprocal. Because the computation + // of the Newton-Raphson step is truncating at every step, this adjustment + // is small; most of the work is already done. + reciprocal -%= 2; + + // The numerical reciprocal is accurate to within 2^-56, lies in the + // interval [0.5, 1.0), and is strictly smaller than the true reciprocal + // of b. Multiplying a by this reciprocal thus gives a numerical q = a/b + // in Q53 with the following properties: + // + // 1. q < a/b + // 2. q is in the interval [0.5, 2.0) + // 3. the error in q is bounded away from 2^-53 (actually, we have a + // couple of bits to spare, but this is all we need). + + // We need a 64 x 64 multiply high to compute q, which isn't a basic + // operation in C, so we need to be a little bit fussy. + var quotient: Z = undefined; + var quotientLo: Z = undefined; + wideMultiply(Z, aSignificand << 2, reciprocal, "ient, "ientLo); + + // Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0). + // In either case, we are going to compute a residual of the form + // + // r = a - q*b + // + // We know from the construction of q that r satisfies: + // + // 0 <= r < ulp(q)*b + // + // if r is greater than 1/2 ulp(q)*b, then q rounds up. Otherwise, we + // already have the correct result. The exact halfway case cannot occur. + // We also take this time to right shift quotient if it falls in the [1,2) + // range and adjust the exponent accordingly. + var residual: Z = undefined; + if (quotient < (implicitBit << 1)) { + residual = (aSignificand << 53) -% quotient *% bSignificand; + quotientExponent -%= 1; + } else { + quotient >>= 1; + residual = (aSignificand << 52) -% quotient *% bSignificand; + } + + const writtenExponent = quotientExponent +% exponentBias; + + if (writtenExponent >= maxExponent) { + // If we have overflowed the exponent, return infinity. + return @bitCast(f64, infRep | quotientSign); + } else if (writtenExponent < 1) { + if (writtenExponent == 0) { + // Check whether the rounded result is normal. + const round = @boolToInt((residual << 1) > bSignificand); + // Clear the implicit bit. + var absResult = quotient & significandMask; + // Round. + absResult += round; + if ((absResult & ~significandMask) != 0) { + // The rounded result is normal; return it. + return @bitCast(f64, absResult | quotientSign); + } + } + // Flush denormals to zero. In the future, it would be nice to add + // code to round them correctly. + return @bitCast(f64, quotientSign); + } else { + const round = @boolToInt((residual << 1) > bSignificand); + // Clear the implicit bit + var absResult = quotient & significandMask; + // Insert the exponent + absResult |= @bitCast(Z, SignedZ(writtenExponent)) << significandBits; + // Round + absResult +%= round; + // Insert the sign and return + return @bitCast(f64, absResult | quotientSign); + } +} + +fn wideMultiply(comptime Z: type, a: Z, b: Z, hi: *Z, lo: *Z) void { + @setRuntimeSafety(builtin.is_test); + switch (Z) { + u32 => { + // 32x32 --> 64 bit multiply + const product = u64(a) * u64(b); + hi.* = @truncate(u32, product >> 32); + lo.* = @truncate(u32, product); + }, + u64 => { + const S = struct { + fn loWord(x: u64) u64 { + return @truncate(u32, x); + } + fn hiWord(x: u64) u64 { + return @truncate(u32, x >> 32); + } + }; + // 64x64 -> 128 wide multiply for platforms that don't have such an operation; + // many 64-bit platforms have this operation, but they tend to have hardware + // floating-point, so we don't bother with a special case for them here. + // Each of the component 32x32 -> 64 products + const plolo: u64 = S.loWord(a) * S.loWord(b); + const plohi: u64 = S.loWord(a) * S.hiWord(b); + const philo: u64 = S.hiWord(a) * S.loWord(b); + const phihi: u64 = S.hiWord(a) * S.hiWord(b); + // Sum terms that contribute to lo in a way that allows us to get the carry + const r0: u64 = S.loWord(plolo); + const r1: u64 = S.hiWord(plolo) +% S.loWord(plohi) +% S.loWord(philo); + lo.* = r0 +% (r1 << 32); + // Sum terms contributing to hi with the carry from lo + hi.* = S.hiWord(plohi) +% S.hiWord(philo) +% S.hiWord(r1) +% phihi; + }, + u128 => { + const Word_LoMask = u64(0x00000000ffffffff); + const Word_HiMask = u64(0xffffffff00000000); + const Word_FullMask = u64(0xffffffffffffffff); + const S = struct { + fn Word_1(x: u128) u64 { + return @truncate(u32, x >> 96); + } + fn Word_2(x: u128) u64 { + return @truncate(u32, x >> 64); + } + fn Word_3(x: u128) u64 { + return @truncate(u32, x >> 32); + } + fn Word_4(x: u128) u64 { + return @truncate(u32, x); + } + }; + // 128x128 -> 256 wide multiply for platforms that don't have such an operation; + // many 64-bit platforms have this operation, but they tend to have hardware + // floating-point, so we don't bother with a special case for them here. + + const product11: u64 = S.Word_1(a) * S.Word_1(b); + const product12: u64 = S.Word_1(a) * S.Word_2(b); + const product13: u64 = S.Word_1(a) * S.Word_3(b); + const product14: u64 = S.Word_1(a) * S.Word_4(b); + const product21: u64 = S.Word_2(a) * S.Word_1(b); + const product22: u64 = S.Word_2(a) * S.Word_2(b); + const product23: u64 = S.Word_2(a) * S.Word_3(b); + const product24: u64 = S.Word_2(a) * S.Word_4(b); + const product31: u64 = S.Word_3(a) * S.Word_1(b); + const product32: u64 = S.Word_3(a) * S.Word_2(b); + const product33: u64 = S.Word_3(a) * S.Word_3(b); + const product34: u64 = S.Word_3(a) * S.Word_4(b); + const product41: u64 = S.Word_4(a) * S.Word_1(b); + const product42: u64 = S.Word_4(a) * S.Word_2(b); + const product43: u64 = S.Word_4(a) * S.Word_3(b); + const product44: u64 = S.Word_4(a) * S.Word_4(b); + + const sum0: u128 = u128(product44); + const sum1: u128 = u128(product34) +% + u128(product43); + const sum2: u128 = u128(product24) +% + u128(product33) +% + u128(product42); + const sum3: u128 = u128(product14) +% + u128(product23) +% + u128(product32) +% + u128(product41); + const sum4: u128 = u128(product13) +% + u128(product22) +% + u128(product31); + const sum5: u128 = u128(product12) +% + u128(product21); + const sum6: u128 = u128(product11); + + const r0: u128 = (sum0 & Word_FullMask) +% + ((sum1 & Word_LoMask) << 32); + const r1: u128 = (sum0 >> 64) +% + ((sum1 >> 32) & Word_FullMask) +% + (sum2 & Word_FullMask) +% + ((sum3 << 32) & Word_HiMask); + + lo.* = r0 +% (r1 << 64); + hi.* = (r1 >> 64) +% + (sum1 >> 96) +% + (sum2 >> 64) +% + (sum3 >> 32) +% + sum4 +% + (sum5 << 32) +% + (sum6 << 64); + }, + else => @compileError("unsupported"), + } +} + +fn normalize(comptime T: type, significand: *@IntType(false, T.bit_count)) i32 { + @setRuntimeSafety(builtin.is_test); + const Z = @IntType(false, T.bit_count); + const significandBits = std.math.floatMantissaBits(T); + const implicitBit = Z(1) << significandBits; + + const shift = @clz(Z, significand.*) - @clz(Z, implicitBit); + significand.* <<= @intCast(std.math.Log2Int(Z), shift); + return 1 - shift; +} + +test "import divdf3" { + _ = @import("divdf3_test.zig"); +} |
