aboutsummaryrefslogtreecommitdiff
path: root/lib/std/debug/Dwarf/Unwind.zig
diff options
context:
space:
mode:
Diffstat (limited to 'lib/std/debug/Dwarf/Unwind.zig')
-rw-r--r--lib/std/debug/Dwarf/Unwind.zig702
1 files changed, 702 insertions, 0 deletions
diff --git a/lib/std/debug/Dwarf/Unwind.zig b/lib/std/debug/Dwarf/Unwind.zig
new file mode 100644
index 0000000000..d351c0421e
--- /dev/null
+++ b/lib/std/debug/Dwarf/Unwind.zig
@@ -0,0 +1,702 @@
+//! Contains state relevant to stack unwinding through the DWARF `.debug_frame` section, or the
+//! `.eh_frame` section which is an extension of the former specified by Linux Standard Base Core.
+//! Like `Dwarf`, no assumptions are made about the host's relationship to the target of the unwind
+//! information -- unwind data for any target can be read by any host.
+//!
+//! `Unwind` specifically deals with loading the data from CIEs and FDEs in the section, and with
+//! performing fast lookups of a program counter's corresponding FDE. The CFI instructions in the
+//! CIEs and FDEs can be interpreted by `VirtualMachine`.
+//!
+//! The typical usage of `Unwind` is as follows:
+//!
+//! * Initialize with `initEhFrameHdr` or `initSection`, depending on the available data
+//! * Call `prepare` to scan CIEs and, if necessary, construct a search table
+//! * Call `lookupPc` to find the section offset of the FDE corresponding to a PC
+//! * Call `getFde` to load the corresponding FDE and CIE
+//! * Check that the PC does indeed fall in that range (`lookupPc` may return a false positive)
+//! * Interpret the embedded CFI instructions using `VirtualMachine`
+//!
+//! In some cases, such as when using the "compact unwind" data in Mach-O binaries, the FDE offsets
+//! may already be known. In that case, no call to `lookupPc` is necessary, which means the call to
+//! `prepare` can be optimized to only scan CIEs.
+
+pub const VirtualMachine = @import("Unwind/VirtualMachine.zig");
+
+frame_section: struct {
+ id: Section,
+ /// The virtual address of the start of the section. "Virtual address" refers to the address in
+ /// the binary (e.g. `sh_addr` in an ELF file); the equivalent runtime address may be relocated
+ /// in position-independent binaries.
+ vaddr: u64,
+ /// The full contents of the section. May have imprecise bounds depending on `section`. This
+ /// memory is externally managed.
+ ///
+ /// For `.debug_frame`, the slice length is exactly equal to the section length. This is needed
+ /// to know the number of CIEs and FDEs.
+ ///
+ /// For `.eh_frame`, the slice length may exceed the section length, i.e. the slice may refer to
+ /// more bytes than are in the second. This restriction exists because `.eh_frame_hdr` only
+ /// includes the address of the loaded `.eh_frame` data, not its length. It is not a problem
+ /// because unlike `.debug_frame`, the end of the CIE/FDE list is signaled through a sentinel
+ /// value. If this slice does have bounds, they will still be checked, preventing crashes when
+ /// reading potentially-invalid `.eh_frame` data from files.
+ bytes: []const u8,
+},
+
+/// A structure allowing fast lookups of the FDE corresponding to a particular PC. We use a binary
+/// search table for the lookup; essentially, a list of all FDEs ordered by PC range. `null` means
+/// the lookup data is not yet populated, so `prepare` must be called before `lookupPc`.
+lookup: ?union(enum) {
+ /// The `.eh_frame_hdr` section contains a pre-computed search table which we can use.
+ eh_frame_hdr: struct {
+ /// Virtual address of the `.eh_frame_hdr` section.
+ vaddr: u64,
+ table: EhFrameHeader.SearchTable,
+ },
+ /// There is no pre-computed search table, so we have built one ourselves.
+ /// Allocated into `gpa` and freed by `deinit`.
+ sorted_fdes: []SortedFdeEntry,
+},
+
+/// Initially empty; populated by `prepare`.
+cie_list: std.MultiArrayList(struct {
+ offset: u64,
+ cie: CommonInformationEntry,
+}),
+
+const SortedFdeEntry = struct {
+ /// This FDE's value of `pc_begin`.
+ pc_begin: u64,
+ /// Offset into the section of the corresponding FDE, including the entry header.
+ fde_offset: u64,
+};
+
+pub const Section = enum { debug_frame, eh_frame };
+
+/// Initialize with unwind information from a header loaded from an `.eh_frame_hdr` section, and a
+/// pointer to the contents of the `.eh_frame` section.
+///
+/// `.eh_frame_hdr` may embed a binary search table of FDEs. If it does, we will use that table for
+/// PC lookups rather than spending time constructing our own search table.
+pub fn initEhFrameHdr(header: EhFrameHeader, section_vaddr: u64, section_bytes_ptr: [*]const u8) Unwind {
+ return .{
+ .frame_section = .{
+ .id = .eh_frame,
+ .bytes = maxSlice(section_bytes_ptr),
+ .vaddr = header.eh_frame_vaddr,
+ },
+ .lookup = if (header.search_table) |table| .{ .eh_frame_hdr = .{
+ .vaddr = section_vaddr,
+ .table = table,
+ } } else null,
+ .cie_list = .empty,
+ };
+}
+
+/// Initialize with unwind information from the contents of a `.debug_frame` or `.eh_frame` section.
+///
+/// If the `.eh_frame_hdr` section is available, consider instead using `initEhFrameHdr`, which
+/// allows the implementation to use a search table embedded in that section if it is available.
+pub fn initSection(section: Section, section_vaddr: u64, section_bytes: []const u8) Unwind {
+ return .{
+ .frame_section = .{
+ .id = section,
+ .bytes = section_bytes,
+ .vaddr = section_vaddr,
+ },
+ .lookup = null,
+ .cie_list = .empty,
+ };
+}
+
+pub fn deinit(unwind: *Unwind, gpa: Allocator) void {
+ if (unwind.lookup) |lookup| switch (lookup) {
+ .eh_frame_hdr => {},
+ .sorted_fdes => |fdes| gpa.free(fdes),
+ };
+ for (unwind.cie_list.items(.cie)) |*cie| {
+ if (cie.last_row) |*lr| {
+ gpa.free(lr.cols);
+ }
+ }
+ unwind.cie_list.deinit(gpa);
+}
+
+/// Decoded version of the `.eh_frame_hdr` section.
+pub const EhFrameHeader = struct {
+ /// The virtual address (i.e. as given in the binary, before relocations) of the `.eh_frame`
+ /// section. This value is important when using `.eh_frame_hdr` to find debug information for
+ /// the current binary, because it allows locating where the `.eh_frame` section is loaded in
+ /// memory (by adding it to the ELF module's base address).
+ eh_frame_vaddr: u64,
+ search_table: ?SearchTable,
+
+ pub const SearchTable = struct {
+ /// The byte offset of the search table into the `.eh_frame_hdr` section.
+ offset: u8,
+ encoding: EH.PE,
+ fde_count: usize,
+ /// The actual table entries are viewed as a plain byte slice because `encoding` causes the
+ /// size of entries in the table to vary.
+ entries: []const u8,
+
+ /// Returns the vaddr of the FDE for `pc`, or `null` if no matching FDE was found.
+ fn findEntry(
+ table: *const SearchTable,
+ eh_frame_hdr_vaddr: u64,
+ pc: u64,
+ addr_size_bytes: u8,
+ endian: Endian,
+ ) !?u64 {
+ const table_vaddr = eh_frame_hdr_vaddr + table.offset;
+ const entry_size = try entrySize(table.encoding, addr_size_bytes);
+ var left: usize = 0;
+ var len: usize = table.fde_count;
+ while (len > 1) {
+ const mid = left + len / 2;
+ var entry_reader: Reader = .fixed(table.entries[mid * entry_size ..][0..entry_size]);
+ const pc_begin = try readEhPointer(&entry_reader, table.encoding, addr_size_bytes, .{
+ .pc_rel_base = table_vaddr + left * entry_size,
+ .data_rel_base = eh_frame_hdr_vaddr,
+ }, endian);
+ if (pc < pc_begin) {
+ len /= 2;
+ } else {
+ left = mid;
+ len -= len / 2;
+ }
+ }
+ if (len == 0) return null;
+ var entry_reader: Reader = .fixed(table.entries[left * entry_size ..][0..entry_size]);
+ // Skip past `pc_begin`; we're now interested in the fde offset
+ _ = try readEhPointerAbs(&entry_reader, table.encoding.type, addr_size_bytes, endian);
+ const fde_ptr = try readEhPointer(&entry_reader, table.encoding, addr_size_bytes, .{
+ .pc_rel_base = table_vaddr + left * entry_size,
+ .data_rel_base = eh_frame_hdr_vaddr,
+ }, endian);
+ return fde_ptr;
+ }
+
+ fn entrySize(table_enc: EH.PE, addr_size_bytes: u8) !u8 {
+ return switch (table_enc.type) {
+ .absptr => 2 * addr_size_bytes,
+ .udata2, .sdata2 => 4,
+ .udata4, .sdata4 => 8,
+ .udata8, .sdata8 => 16,
+ .uleb128, .sleb128 => return bad(), // this is a binary search table; all entries must be the same size
+ _ => return bad(),
+ };
+ }
+ };
+
+ pub fn parse(
+ eh_frame_hdr_vaddr: u64,
+ eh_frame_hdr_bytes: []const u8,
+ addr_size_bytes: u8,
+ endian: Endian,
+ ) !EhFrameHeader {
+ var r: Reader = .fixed(eh_frame_hdr_bytes);
+
+ const version = try r.takeByte();
+ if (version != 1) return bad();
+
+ const eh_frame_ptr_enc: EH.PE = @bitCast(try r.takeByte());
+ const fde_count_enc: EH.PE = @bitCast(try r.takeByte());
+ const table_enc: EH.PE = @bitCast(try r.takeByte());
+
+ const eh_frame_ptr = try readEhPointer(&r, eh_frame_ptr_enc, addr_size_bytes, .{
+ .pc_rel_base = eh_frame_hdr_vaddr + r.seek,
+ }, endian);
+
+ const table: ?SearchTable = table: {
+ if (fde_count_enc == EH.PE.omit) break :table null;
+ if (table_enc == EH.PE.omit) break :table null;
+ const fde_count = try readEhPointer(&r, fde_count_enc, addr_size_bytes, .{
+ .pc_rel_base = eh_frame_hdr_vaddr + r.seek,
+ }, endian);
+ const entry_size = try SearchTable.entrySize(table_enc, addr_size_bytes);
+ const bytes_offset = r.seek;
+ const bytes_len = cast(usize, fde_count * entry_size) orelse return error.EndOfStream;
+ const bytes = try r.take(bytes_len);
+ break :table .{
+ .encoding = table_enc,
+ .fde_count = @intCast(fde_count),
+ .entries = bytes,
+ .offset = @intCast(bytes_offset),
+ };
+ };
+
+ return .{
+ .eh_frame_vaddr = eh_frame_ptr,
+ .search_table = table,
+ };
+ }
+};
+
+/// The shared header of an FDE/CIE, containing a length in bytes (DWARF's "initial length field")
+/// and a value which differentiates CIEs from FDEs and maps FDEs to their corresponding CIEs. The
+/// `.eh_frame` format also includes a third variation, here called `.terminator`, which acts as a
+/// sentinel for the whole section.
+///
+/// `CommonInformationEntry.parse` and `FrameDescriptionEntry.parse` expect the `EntryHeader` to
+/// have been parsed first: they accept data stored in the `EntryHeader`, and only read the bytes
+/// following this header.
+const EntryHeader = union(enum) {
+ cie: struct {
+ format: Format,
+ /// Remaining bytes in the CIE. These are parseable by `CommonInformationEntry.parse`.
+ bytes_len: u64,
+ },
+ fde: struct {
+ /// Offset into the section of the corresponding CIE, *including* its entry header.
+ cie_offset: u64,
+ /// Remaining bytes in the FDE. These are parseable by `FrameDescriptionEntry.parse`.
+ bytes_len: u64,
+ },
+ /// The `.eh_frame` format includes terminators which indicate that the last CIE/FDE has been
+ /// reached. However, `.debug_frame` does not include such a terminator, so the caller must
+ /// keep track of how many section bytes remain when parsing all entries in `.debug_frame`.
+ terminator,
+
+ fn read(r: *Reader, header_section_offset: u64, section: Section, endian: Endian) !EntryHeader {
+ const unit_header = try Dwarf.readUnitHeader(r, endian);
+ if (unit_header.unit_length == 0) return .terminator;
+
+ // Next is a value which will disambiguate CIEs and FDEs. Annoyingly, LSB Core makes this
+ // value always 4-byte, whereas DWARF makes it depend on the `dwarf.Format`.
+ const cie_ptr_or_id_size: u8 = switch (section) {
+ .eh_frame => 4,
+ .debug_frame => switch (unit_header.format) {
+ .@"32" => 4,
+ .@"64" => 8,
+ },
+ };
+ const cie_ptr_or_id = switch (cie_ptr_or_id_size) {
+ 4 => try r.takeInt(u32, endian),
+ 8 => try r.takeInt(u64, endian),
+ else => unreachable,
+ };
+ const remaining_bytes = unit_header.unit_length - cie_ptr_or_id_size;
+
+ // If this entry is a CIE, then `cie_ptr_or_id` will have this value, which is different
+ // between the DWARF `.debug_frame` section and the LSB Core `.eh_frame` section.
+ const cie_id: u64 = switch (section) {
+ .eh_frame => 0,
+ .debug_frame => switch (unit_header.format) {
+ .@"32" => maxInt(u32),
+ .@"64" => maxInt(u64),
+ },
+ };
+ if (cie_ptr_or_id == cie_id) {
+ return .{ .cie = .{
+ .format = unit_header.format,
+ .bytes_len = remaining_bytes,
+ } };
+ }
+
+ // This is an FDE -- `cie_ptr_or_id` points to the associated CIE. Unfortunately, the format
+ // of that pointer again differs between `.debug_frame` and `.eh_frame`.
+ const cie_offset = switch (section) {
+ .eh_frame => try std.math.sub(u64, header_section_offset + unit_header.header_length, cie_ptr_or_id),
+ .debug_frame => cie_ptr_or_id,
+ };
+ return .{ .fde = .{
+ .cie_offset = cie_offset,
+ .bytes_len = remaining_bytes,
+ } };
+ }
+};
+
+pub const CommonInformationEntry = struct {
+ version: u8,
+ format: Format,
+
+ /// In version 4, CIEs can specify the address size used in the CIE and associated FDEs.
+ /// This value must be used *only* to parse associated FDEs in `FrameDescriptionEntry.parse`.
+ addr_size_bytes: u8,
+
+ /// Always 0 for versions which do not specify this (currently all versions other than 4).
+ segment_selector_size: u8,
+
+ code_alignment_factor: u32,
+ data_alignment_factor: i32,
+ return_address_register: u8,
+
+ fde_pointer_enc: EH.PE,
+ is_signal_frame: bool,
+
+ augmentation_kind: AugmentationKind,
+
+ initial_instructions: []const u8,
+
+ last_row: ?struct {
+ offset: u64,
+ cfa: VirtualMachine.CfaRule,
+ cols: []VirtualMachine.Column,
+ },
+
+ pub const AugmentationKind = enum { none, gcc_eh, lsb_z };
+
+ /// This function expects to read the CIE starting with the version field.
+ /// The returned struct references memory backed by `cie_bytes`.
+ ///
+ /// `length_offset` specifies the offset of this CIE's length field in the
+ /// .eh_frame / .debug_frame section.
+ fn parse(
+ format: Format,
+ cie_bytes: []const u8,
+ section: Section,
+ default_addr_size_bytes: u8,
+ ) !CommonInformationEntry {
+ // We only read the data through this reader.
+ var r: Reader = .fixed(cie_bytes);
+
+ const version = try r.takeByte();
+ switch (section) {
+ .eh_frame => if (version != 1 and version != 3) return error.UnsupportedDwarfVersion,
+ .debug_frame => if (version != 4) return error.UnsupportedDwarfVersion,
+ }
+
+ const aug_str = try r.takeSentinel(0);
+ const aug_kind: AugmentationKind = aug: {
+ if (aug_str.len == 0) break :aug .none;
+ if (aug_str[0] == 'z') break :aug .lsb_z;
+ if (std.mem.eql(u8, aug_str, "eh")) break :aug .gcc_eh;
+ // We can't finish parsing the CIE if we don't know what its augmentation means.
+ return bad();
+ };
+
+ switch (aug_kind) {
+ .none => {}, // no extra data
+ .lsb_z => {}, // no extra data yet, but there is a bit later
+ .gcc_eh => try r.discardAll(default_addr_size_bytes), // unsupported data
+ }
+
+ const addr_size_bytes = if (version == 4) try r.takeByte() else default_addr_size_bytes;
+ const segment_selector_size: u8 = if (version == 4) try r.takeByte() else 0;
+ const code_alignment_factor = try r.takeLeb128(u32);
+ const data_alignment_factor = try r.takeLeb128(i32);
+ const return_address_register = if (version == 1) try r.takeByte() else try r.takeLeb128(u8);
+
+ // This is where LSB's augmentation might add some data.
+ const fde_pointer_enc: EH.PE, const is_signal_frame: bool = aug: {
+ const default_fde_pointer_enc: EH.PE = .{ .type = .absptr, .rel = .abs };
+ if (aug_kind != .lsb_z) break :aug .{ default_fde_pointer_enc, false };
+ const aug_data_len = try r.takeLeb128(u32);
+ var aug_data: Reader = .fixed(try r.take(aug_data_len));
+ var fde_pointer_enc: EH.PE = default_fde_pointer_enc;
+ var is_signal_frame = false;
+ for (aug_str[1..]) |byte| switch (byte) {
+ 'L' => _ = try aug_data.takeByte(), // we ignore the LSDA pointer
+ 'P' => {
+ const enc: EH.PE = @bitCast(try aug_data.takeByte());
+ const endian: Endian = .little; // irrelevant because we're discarding the value anyway
+ _ = try readEhPointerAbs(&aug_data, enc.type, addr_size_bytes, endian); // we ignore the personality routine; endianness is irrelevant since we're discarding
+ },
+ 'R' => fde_pointer_enc = @bitCast(try aug_data.takeByte()),
+ 'S' => is_signal_frame = true,
+ 'B', 'G' => {},
+ else => return bad(),
+ };
+ break :aug .{ fde_pointer_enc, is_signal_frame };
+ };
+
+ return .{
+ .format = format,
+ .version = version,
+ .addr_size_bytes = addr_size_bytes,
+ .segment_selector_size = segment_selector_size,
+ .code_alignment_factor = code_alignment_factor,
+ .data_alignment_factor = data_alignment_factor,
+ .return_address_register = return_address_register,
+ .fde_pointer_enc = fde_pointer_enc,
+ .is_signal_frame = is_signal_frame,
+ .augmentation_kind = aug_kind,
+ .initial_instructions = r.buffered(),
+ .last_row = null,
+ };
+ }
+};
+
+pub const FrameDescriptionEntry = struct {
+ pc_begin: u64,
+ pc_range: u64,
+ instructions: []const u8,
+
+ /// This function expects to read the FDE starting at the PC Begin field.
+ /// The returned struct references memory backed by `fde_bytes`.
+ fn parse(
+ /// The virtual address of the FDE we're parsing, *excluding* its entry header (i.e. the
+ /// address is after the header). If `fde_bytes` is backed by the memory of a loaded
+ /// module's `.eh_frame` section, this will equal `fde_bytes.ptr`.
+ fde_vaddr: u64,
+ fde_bytes: []const u8,
+ cie: *const CommonInformationEntry,
+ endian: Endian,
+ ) !FrameDescriptionEntry {
+ if (cie.segment_selector_size != 0) return error.UnsupportedAddrSize;
+
+ var r: Reader = .fixed(fde_bytes);
+
+ const pc_begin = try readEhPointer(&r, cie.fde_pointer_enc, cie.addr_size_bytes, .{
+ .pc_rel_base = fde_vaddr,
+ }, endian);
+
+ // I swear I'm not kidding when I say that PC Range is encoded with `cie.fde_pointer_enc`, but ignoring `rel`.
+ const pc_range = switch (try readEhPointerAbs(&r, cie.fde_pointer_enc.type, cie.addr_size_bytes, endian)) {
+ .unsigned => |x| x,
+ .signed => |x| cast(u64, x) orelse return bad(),
+ };
+
+ switch (cie.augmentation_kind) {
+ .none, .gcc_eh => {},
+ .lsb_z => {
+ // There is augmentation data, but it's irrelevant to us -- it
+ // only contains the LSDA pointer, which we don't care about.
+ const aug_data_len = try r.takeLeb128(usize);
+ _ = try r.discardAll(aug_data_len);
+ },
+ }
+
+ return .{
+ .pc_begin = pc_begin,
+ .pc_range = pc_range,
+ .instructions = r.buffered(),
+ };
+ }
+};
+
+/// Builds the CIE list and FDE lookup table if they are not already built. It is required to call
+/// this function at least once before calling `lookupPc` or `getFde`. If only `getFde` is needed,
+/// then `need_lookup` can be set to `false` to make this function more efficient.
+pub fn prepare(
+ unwind: *Unwind,
+ gpa: Allocator,
+ addr_size_bytes: u8,
+ endian: Endian,
+ need_lookup: bool,
+ /// The `__eh_frame` section in Mach-O binaries deviates from the standard `.eh_frame` section
+ /// in one way which this function needs to be aware of.
+ is_macho: bool,
+) !void {
+ if (unwind.cie_list.len > 0 and (!need_lookup or unwind.lookup != null)) return;
+ unwind.cie_list.clearRetainingCapacity();
+
+ if (is_macho) assert(unwind.lookup == null or unwind.lookup.? != .eh_frame_hdr);
+
+ const section = unwind.frame_section;
+
+ var r: Reader = .fixed(section.bytes);
+ var fde_list: std.ArrayList(SortedFdeEntry) = .empty;
+ defer fde_list.deinit(gpa);
+
+ const saw_terminator = while (r.seek < r.buffer.len) {
+ const entry_offset = r.seek;
+ switch (try EntryHeader.read(&r, entry_offset, section.id, endian)) {
+ .cie => |cie_info| {
+ // We will pre-populate a list of CIEs for efficiency: this avoids work re-parsing
+ // them every time we look up an FDE. It also lets us cache the result of evaluating
+ // the CIE's initial CFI instructions, which is useful because in the vast majority
+ // of cases those instructions will be needed to reach the PC we are unwinding to.
+ const bytes_len = cast(usize, cie_info.bytes_len) orelse return error.EndOfStream;
+ const idx = unwind.cie_list.len;
+ try unwind.cie_list.append(gpa, .{
+ .offset = entry_offset,
+ .cie = try .parse(cie_info.format, try r.take(bytes_len), section.id, addr_size_bytes),
+ });
+ errdefer _ = unwind.cie_list.pop().?;
+ try VirtualMachine.populateCieLastRow(gpa, &unwind.cie_list.items(.cie)[idx], addr_size_bytes, endian);
+ continue;
+ },
+ .fde => |fde_info| {
+ const bytes_len = cast(usize, fde_info.bytes_len) orelse return error.EndOfStream;
+ if (!need_lookup) {
+ try r.discardAll(bytes_len);
+ continue;
+ }
+ const cie = unwind.findCie(fde_info.cie_offset) orelse return error.InvalidDebugInfo;
+ const fde: FrameDescriptionEntry = try .parse(section.vaddr + r.seek, try r.take(bytes_len), cie, endian);
+ try fde_list.append(gpa, .{
+ .pc_begin = fde.pc_begin,
+ .fde_offset = entry_offset,
+ });
+ },
+ .terminator => break true,
+ }
+ } else false;
+ const expect_terminator = switch (section.id) {
+ .eh_frame => !is_macho, // `.eh_frame` indicates the end of the CIE/FDE list with a sentinel entry, though macOS omits this
+ .debug_frame => false, // `.debug_frame` uses the section bounds and does not specify a sentinel entry
+ };
+ if (saw_terminator != expect_terminator) return bad();
+
+ if (need_lookup) {
+ std.mem.sortUnstable(SortedFdeEntry, fde_list.items, {}, struct {
+ fn lessThan(ctx: void, a: SortedFdeEntry, b: SortedFdeEntry) bool {
+ ctx;
+ return a.pc_begin < b.pc_begin;
+ }
+ }.lessThan);
+
+ // This temporary is necessary to avoid an RLS footgun where `lookup` ends up non-null `undefined` on OOM.
+ const final_fdes = try fde_list.toOwnedSlice(gpa);
+ unwind.lookup = .{ .sorted_fdes = final_fdes };
+ }
+}
+
+fn findCie(unwind: *const Unwind, offset: u64) ?*const CommonInformationEntry {
+ const offsets = unwind.cie_list.items(.offset);
+ if (offsets.len == 0) return null;
+ var start: usize = 0;
+ var len: usize = offsets.len;
+ while (len > 1) {
+ const mid = len / 2;
+ if (offset < offsets[start + mid]) {
+ len = mid;
+ } else {
+ start += mid;
+ len -= mid;
+ }
+ }
+ if (offsets[start] != offset) return null;
+ return &unwind.cie_list.items(.cie)[start];
+}
+
+/// Given a program counter value, returns the offset of the corresponding FDE, or `null` if no
+/// matching FDE was found. The returned offset can be passed to `getFde` to load the data
+/// associated with the FDE.
+///
+/// Before calling this function, `prepare` must return successfully at least once, to ensure that
+/// `unwind.lookup` is populated.
+///
+/// The return value may be a false positive. After loading the FDE with `loadFde`, the caller must
+/// validate that `pc` is indeed in its range -- if it is not, then no FDE matches `pc`.
+pub fn lookupPc(unwind: *const Unwind, pc: u64, addr_size_bytes: u8, endian: Endian) !?u64 {
+ const sorted_fdes: []const SortedFdeEntry = switch (unwind.lookup.?) {
+ .eh_frame_hdr => |eh_frame_hdr| {
+ const fde_vaddr = try eh_frame_hdr.table.findEntry(
+ eh_frame_hdr.vaddr,
+ pc,
+ addr_size_bytes,
+ endian,
+ ) orelse return null;
+ return std.math.sub(u64, fde_vaddr, unwind.frame_section.vaddr) catch bad(); // convert vaddr to offset
+ },
+ .sorted_fdes => |sorted_fdes| sorted_fdes,
+ };
+ if (sorted_fdes.len == 0) return null;
+ var start: usize = 0;
+ var len: usize = sorted_fdes.len;
+ while (len > 1) {
+ const half = len / 2;
+ if (pc < sorted_fdes[start + half].pc_begin) {
+ len = half;
+ } else {
+ start += half;
+ len -= half;
+ }
+ }
+ // If any FDE matches, it'll be the one at `start` (maybe false positive).
+ return sorted_fdes[start].fde_offset;
+}
+
+/// Get the FDE at a given offset, as well as its associated CIE. This offset typically comes from
+/// `lookupPc`. The CFI instructions within can be evaluated with `VirtualMachine`.
+pub fn getFde(unwind: *const Unwind, fde_offset: u64, endian: Endian) !struct { *const CommonInformationEntry, FrameDescriptionEntry } {
+ const section = unwind.frame_section;
+
+ if (fde_offset > section.bytes.len) return error.EndOfStream;
+ var fde_reader: Reader = .fixed(section.bytes[@intCast(fde_offset)..]);
+ const fde_info = switch (try EntryHeader.read(&fde_reader, fde_offset, section.id, endian)) {
+ .fde => |info| info,
+ .cie, .terminator => return bad(), // This is meant to be an FDE
+ };
+
+ const cie = unwind.findCie(fde_info.cie_offset) orelse return error.InvalidDebugInfo;
+ const fde: FrameDescriptionEntry = try .parse(
+ section.vaddr + fde_offset + fde_reader.seek,
+ try fde_reader.take(cast(usize, fde_info.bytes_len) orelse return error.EndOfStream),
+ cie,
+ endian,
+ );
+
+ return .{ cie, fde };
+}
+
+const EhPointerContext = struct {
+ /// The address of the pointer field itself
+ pc_rel_base: u64,
+ // These relative addressing modes are only used in specific cases, and
+ // might not be available / required in all parsing contexts
+ data_rel_base: ?u64 = null,
+ text_rel_base: ?u64 = null,
+ function_rel_base: ?u64 = null,
+};
+/// Returns `error.InvalidDebugInfo` if the encoding is `EH.PE.omit`.
+fn readEhPointerAbs(r: *Reader, enc_ty: EH.PE.Type, addr_size_bytes: u8, endian: Endian) !union(enum) {
+ signed: i64,
+ unsigned: u64,
+} {
+ return switch (enc_ty) {
+ .absptr => .{
+ .unsigned = switch (addr_size_bytes) {
+ 2 => try r.takeInt(u16, endian),
+ 4 => try r.takeInt(u32, endian),
+ 8 => try r.takeInt(u64, endian),
+ else => return error.UnsupportedAddrSize,
+ },
+ },
+ .uleb128 => .{ .unsigned = try r.takeLeb128(u64) },
+ .udata2 => .{ .unsigned = try r.takeInt(u16, endian) },
+ .udata4 => .{ .unsigned = try r.takeInt(u32, endian) },
+ .udata8 => .{ .unsigned = try r.takeInt(u64, endian) },
+ .sleb128 => .{ .signed = try r.takeLeb128(i64) },
+ .sdata2 => .{ .signed = try r.takeInt(i16, endian) },
+ .sdata4 => .{ .signed = try r.takeInt(i32, endian) },
+ .sdata8 => .{ .signed = try r.takeInt(i64, endian) },
+ else => return bad(),
+ };
+}
+/// Returns `error.InvalidDebugInfo` if the encoding is `EH.PE.omit`.
+fn readEhPointer(r: *Reader, enc: EH.PE, addr_size_bytes: u8, ctx: EhPointerContext, endian: Endian) !u64 {
+ const offset = try readEhPointerAbs(r, enc.type, addr_size_bytes, endian);
+ if (enc.indirect) return bad(); // GCC extension; not supported
+ const base: u64 = switch (enc.rel) {
+ .abs, .aligned => 0,
+ .pcrel => ctx.pc_rel_base,
+ .textrel => ctx.text_rel_base orelse return bad(),
+ .datarel => ctx.data_rel_base orelse return bad(),
+ .funcrel => ctx.function_rel_base orelse return bad(),
+ _ => return bad(),
+ };
+ return switch (offset) {
+ .signed => |s| if (s >= 0)
+ try std.math.add(u64, base, @intCast(s))
+ else
+ try std.math.sub(u64, base, @intCast(-s)),
+ // absptr can actually contain signed values in some cases (aarch64 MachO)
+ .unsigned => |u| u +% base,
+ };
+}
+
+/// Like `Reader.fixed`, but when the length of the data is unknown and we just want to allow
+/// reading indefinitely.
+fn maxSlice(ptr: [*]const u8) []const u8 {
+ const len = std.math.maxInt(usize) - @intFromPtr(ptr);
+ return ptr[0..len];
+}
+
+const Allocator = std.mem.Allocator;
+const assert = std.debug.assert;
+const bad = Dwarf.bad;
+const cast = std.math.cast;
+const DW = std.dwarf;
+const Dwarf = std.debug.Dwarf;
+const EH = DW.EH;
+const Endian = std.builtin.Endian;
+const Format = DW.Format;
+const maxInt = std.math.maxInt;
+const missing = Dwarf.missing;
+const Reader = std.Io.Reader;
+const std = @import("std");
+const Unwind = @This();