diff options
Diffstat (limited to 'lib/std/compress/flate/Compress.zig')
| -rw-r--r-- | lib/std/compress/flate/Compress.zig | 2740 |
1 files changed, 2479 insertions, 261 deletions
diff --git a/lib/std/compress/flate/Compress.zig b/lib/std/compress/flate/Compress.zig index 2249ece4c0..d97053befd 100644 --- a/lib/std/compress/flate/Compress.zig +++ b/lib/std/compress/flate/Compress.zig @@ -1,332 +1,2550 @@ -//! Default compression algorithm. Has two steps: tokenization and token -//! encoding. +//! Allocates statically ~224K (128K lookup, 96K tokens). //! -//! Tokenization takes uncompressed input stream and produces list of tokens. -//! Each token can be literal (byte of data) or match (backrefernce to previous -//! data with length and distance). Tokenization accumulators 32K tokens, when -//! full or `flush` is called tokens are passed to the `block_writer`. Level -//! defines how hard (how slow) it tries to find match. -//! -//! Block writer will decide which type of deflate block to write (stored, fixed, -//! dynamic) and encode tokens to the output byte stream. Client has to call -//! `finish` to write block with the final bit set. -//! -//! Container defines type of header and footer which can be gzip, zlib or raw. -//! They all share same deflate body. Raw has no header or footer just deflate -//! body. -//! -//! Compression algorithm explained in rfc-1951 (slightly edited for this case): -//! -//! The compressor uses a chained hash table `lookup` to find duplicated -//! strings, using a hash function that operates on 4-byte sequences. At any -//! given point during compression, let XYZW be the next 4 input bytes -//! (lookahead) to be examined (not necessarily all different, of course). -//! First, the compressor examines the hash chain for XYZW. If the chain is -//! empty, the compressor simply writes out X as a literal byte and advances -//! one byte in the input. If the hash chain is not empty, indicating that the -//! sequence XYZW (or, if we are unlucky, some other 4 bytes with the same -//! hash function value) has occurred recently, the compressor compares all -//! strings on the XYZW hash chain with the actual input data sequence -//! starting at the current point, and selects the longest match. -//! -//! To improve overall compression, the compressor defers the selection of -//! matches ("lazy matching"): after a match of length N has been found, the -//! compressor searches for a longer match starting at the next input byte. If -//! it finds a longer match, it truncates the previous match to a length of -//! one (thus producing a single literal byte) and then emits the longer -//! match. Otherwise, it emits the original match, and, as described above, -//! advances N bytes before continuing. -//! -//! -//! Allocates statically ~400K (192K lookup, 128K tokens, 64K window). +//! The source of an `error.WriteFailed` is always the backing writer. After an +//! `error.WriteFailed`, the `.writer` becomes `.failing` and is unrecoverable. +//! After a `flush`, the writer also becomes `.failing` since the stream has +//! been finished. This behavior also applies to `Raw` and `Huffman`. + +// Implementation details: +// A chained hash table is used to find matches. `drain` always preserves `flate.history_len` +// bytes to use as a history and avoids tokenizing the final bytes since they can be part of +// a longer match with unwritten bytes (unless it is a `flush`). The minimum match searched +// for is of length `seq_bytes`. If a match is made, a longer match is also checked for at +// the next byte (lazy matching) if the last match does not meet the `Options.lazy` threshold. +// +// Up to `block_token` tokens are accumalated in `buffered_tokens` and are outputted in +// `write_block` which determines the optimal block type and frequencies. const builtin = @import("builtin"); const std = @import("std"); -const assert = std.debug.assert; -const testing = std.testing; -const expect = testing.expect; const mem = std.mem; const math = std.math; -const Writer = std.Io.Writer; +const assert = std.debug.assert; +const Io = std.Io; +const Writer = Io.Writer; const Compress = @This(); -const Token = @import("Token.zig"); -const BlockWriter = @import("BlockWriter.zig"); +const token = @import("token.zig"); const flate = @import("../flate.zig"); -const Container = flate.Container; -const Lookup = @import("Lookup.zig"); -const HuffmanEncoder = flate.HuffmanEncoder; -const LiteralNode = HuffmanEncoder.LiteralNode; - -lookup: Lookup = .{}, -tokens: Tokens = .{}, -block_writer: BlockWriter, -level: LevelArgs, -hasher: Container.Hasher, -writer: Writer, -state: State, -// Match and literal at the previous position. -// Used for lazy match finding in processWindow. -prev_match: ?Token = null, -prev_literal: ?u8 = null, +/// Until #104 is implemented, a ?u15 takes 4 bytes, which is unacceptable +/// as it doubles the size of this already massive structure. +/// +/// Also, there are no `to` / `from` methods because LLVM 21 does not +/// optimize away the conversion from and to `?u15`. +const PackedOptionalU15 = packed struct(u16) { + value: u15, + is_null: bool, -pub const State = enum { header, middle, ended }; + pub fn int(p: PackedOptionalU15) u16 { + return @bitCast(p); + } -/// Trades between speed and compression size. -/// Starts with level 4: in [zlib](https://github.com/madler/zlib/blob/abd3d1a28930f89375d4b41408b39f6c1be157b2/deflate.c#L115C1-L117C43) -/// levels 1-3 are using different algorithm to perform faster but with less -/// compression. That is not implemented here. -pub const Level = enum(u4) { - level_4 = 4, - level_5 = 5, - level_6 = 6, - level_7 = 7, - level_8 = 8, - level_9 = 9, - - fast = 0xb, - default = 0xc, - best = 0xd, + pub const null_bit: PackedOptionalU15 = .{ .value = 0, .is_null = true }; }; -/// Number of tokens to accumulate in deflate before starting block encoding. -/// -/// In zlib this depends on memlevel: 6 + memlevel, where default memlevel is -/// 8 and max 9 that gives 14 or 15 bits. -pub const n_tokens = 1 << 15; - -/// Algorithm knobs for each level. -const LevelArgs = struct { - good: u16, // Do less lookups if we already have match of this length. - nice: u16, // Stop looking for better match if we found match with at least this length. - lazy: u16, // Don't do lazy match find if got match with at least this length. - chain: u16, // How many lookups for previous match to perform. - - pub fn get(level: Level) LevelArgs { - return switch (level) { - .fast, .level_4 => .{ .good = 4, .lazy = 4, .nice = 16, .chain = 16 }, - .level_5 => .{ .good = 8, .lazy = 16, .nice = 32, .chain = 32 }, - .default, .level_6 => .{ .good = 8, .lazy = 16, .nice = 128, .chain = 128 }, - .level_7 => .{ .good = 8, .lazy = 32, .nice = 128, .chain = 256 }, - .level_8 => .{ .good = 32, .lazy = 128, .nice = 258, .chain = 1024 }, - .best, .level_9 => .{ .good = 32, .lazy = 258, .nice = 258, .chain = 4096 }, +/// After `flush` is called, all vtable calls with result in `error.WriteFailed.` +writer: Writer, +has_history: bool, +bit_writer: BitWriter, +buffered_tokens: struct { + /// List of `TokenBufferEntryHeader`s and their trailing data. + list: [@as(usize, block_tokens) * 3]u8, + pos: u32, + n: u16, + lit_freqs: [286]u16, + dist_freqs: [30]u16, + + pub const empty: @This() = .{ + .list = undefined, + .pos = 0, + .n = 0, + .lit_freqs = @splat(0), + .dist_freqs = @splat(0), + }; +}, +lookup: struct { + /// Indexes are the hashes of four-bytes sequences. + /// + /// Values are the positions in `chain` of the previous four bytes with the same hash. + head: [1 << lookup_hash_bits]PackedOptionalU15, + /// Values are the non-zero number of bytes backwards in the history with the same hash. + /// + /// The relationship of chain indexes and bytes relative to the latest history byte is + /// `chain_pos -% chain_index = history_index`. + chain: [32768]PackedOptionalU15, + /// The index in `chain` which is of the newest byte of the history. + chain_pos: u15, +}, +container: flate.Container, +hasher: flate.Container.Hasher, +opts: Options, + +const BitWriter = struct { + output: *Writer, + buffered: u7, + buffered_n: u3, + + pub fn init(w: *Writer) BitWriter { + return .{ + .output = w, + .buffered = 0, + .buffered_n = 0, }; } + + /// Asserts `bits` is zero-extended + pub fn write(b: *BitWriter, bits: u56, n: u6) Writer.Error!void { + assert(@as(u8, b.buffered) >> b.buffered_n == 0); + assert(@as(u57, bits) >> n == 0); // n may be 56 so u57 is needed + const combined = @shlExact(@as(u64, bits), b.buffered_n) | b.buffered; + const combined_bits = @as(u6, b.buffered_n) + n; + + const out = try b.output.writableSliceGreedy(8); + mem.writeInt(u64, out[0..8], combined, .little); + b.output.advance(combined_bits / 8); + + b.buffered_n = @truncate(combined_bits); + b.buffered = @intCast(combined >> (combined_bits - b.buffered_n)); + } + + /// Assserts one byte can be written to `b.otuput` without rebasing. + pub fn byteAlign(b: *BitWriter) void { + b.output.unusedCapacitySlice()[0] = b.buffered; + b.output.advance(@intFromBool(b.buffered_n != 0)); + b.buffered = 0; + b.buffered_n = 0; + } + + pub fn writeClen( + b: *BitWriter, + hclen: u4, + clen_values: []u8, + clen_extra: []u8, + clen_codes: [19]u16, + clen_bits: [19]u4, + ) Writer.Error!void { + // Write the first four clen entries seperately since they are always present, + // and writing them all at once takes too many bits. + try b.write(clen_bits[token.codegen_order[0]] | + @shlExact(@as(u6, clen_bits[token.codegen_order[1]]), 3) | + @shlExact(@as(u9, clen_bits[token.codegen_order[2]]), 6) | + @shlExact(@as(u12, clen_bits[token.codegen_order[3]]), 9), 12); + + var i = hclen; + var clen_bits_table: u45 = 0; + while (i != 0) { + i -= 1; + clen_bits_table <<= 3; + clen_bits_table |= clen_bits[token.codegen_order[4..][i]]; + } + try b.write(clen_bits_table, @as(u6, hclen) * 3); + + for (clen_values, clen_extra) |value, extra| { + try b.write( + clen_codes[value] | @shlExact(@as(u16, extra), clen_bits[value]), + clen_bits[value] + @as(u3, switch (value) { + 0...15 => 0, + 16 => 2, + 17 => 3, + 18 => 7, + else => unreachable, + }), + ); + } + } +}; + +/// Number of tokens to accumulate before outputing as a block. +/// The maximum value is `math.maxInt(u16) - 1` since one token is reserved for end-of-block. +const block_tokens: u16 = 1 << 15; +const lookup_hash_bits = 15; +const Hash = u16; // `u[lookup_hash_bits]` is not used due to worse optimization (with LLVM 21) +const seq_bytes = 3; // not intended to be changed +const Seq = std.meta.Int(.unsigned, seq_bytes * 8); + +const TokenBufferEntryHeader = packed struct(u16) { + kind: enum(u1) { + /// Followed by non-zero `data` byte literals. + bytes, + /// Followed by the length as a byte + match, + }, + data: u15, +}; + +const BlockHeader = packed struct(u3) { + final: bool, + kind: enum(u2) { stored, fixed, dynamic, _ }, + + pub fn int(h: BlockHeader) u3 { + return @bitCast(h); + } + + pub const Dynamic = packed struct(u17) { + regular: BlockHeader, + hlit: u5, + hdist: u5, + hclen: u4, + + pub fn int(h: Dynamic) u17 { + return @bitCast(h); + } + }; }; +fn outputMatch(c: *Compress, dist: u15, len: u8) Writer.Error!void { + // This must come first. Instead of ensuring a full block is never left buffered, + // draining it is defered to allow end of stream to be indicated. + if (c.buffered_tokens.n == block_tokens) { + @branchHint(.unlikely); // LLVM 21 optimizes this branch as the more likely without + try c.writeBlock(false); + } + const header: TokenBufferEntryHeader = .{ .kind = .match, .data = dist }; + c.buffered_tokens.list[c.buffered_tokens.pos..][0..2].* = @bitCast(header); + c.buffered_tokens.list[c.buffered_tokens.pos + 2] = len; + c.buffered_tokens.pos += 3; + c.buffered_tokens.n += 1; + + c.buffered_tokens.lit_freqs[@as(usize, 257) + token.LenCode.fromVal(len).toInt()] += 1; + c.buffered_tokens.dist_freqs[token.DistCode.fromVal(dist).toInt()] += 1; +} + +fn outputBytes(c: *Compress, bytes: []const u8) Writer.Error!void { + var remaining = bytes; + while (remaining.len != 0) { + if (c.buffered_tokens.n == block_tokens) { + @branchHint(.unlikely); // LLVM 21 optimizes this branch as the more likely without + try c.writeBlock(false); + } + + const n = @min(remaining.len, block_tokens - c.buffered_tokens.n, math.maxInt(u15)); + assert(n != 0); + const header: TokenBufferEntryHeader = .{ .kind = .bytes, .data = n }; + c.buffered_tokens.list[c.buffered_tokens.pos..][0..2].* = @bitCast(header); + @memcpy(c.buffered_tokens.list[c.buffered_tokens.pos + 2 ..][0..n], remaining[0..n]); + c.buffered_tokens.pos += @as(u32, 2) + n; + c.buffered_tokens.n += n; + + for (remaining[0..n]) |b| { + c.buffered_tokens.lit_freqs[b] += 1; + } + remaining = remaining[n..]; + } +} + +fn hash(x: u32) Hash { + return @intCast((x *% 0x9E3779B1) >> (32 - lookup_hash_bits)); +} + +/// Trades between speed and compression size. +/// +/// Default paramaters are [taken from zlib] +/// (https://github.com/madler/zlib/blob/v1.3.1/deflate.c#L112) pub const Options = struct { - level: Level = .default, - container: Container = .raw, + /// Perform less lookups when a match of at least this length has been found. + good: u16, + /// Stop when a match of at least this length has been found. + nice: u16, + /// Don't attempt a lazy match find when a match of at least this length has been found. + lazy: u16, + /// Check this many previous locations with the same hash for longer matches. + chain: u16, + + // zig fmt: off + pub const level_1: Options = .{ .good = 4, .nice = 8, .lazy = 0, .chain = 4 }; + pub const level_2: Options = .{ .good = 4, .nice = 16, .lazy = 0, .chain = 8 }; + pub const level_3: Options = .{ .good = 4, .nice = 32, .lazy = 0, .chain = 32 }; + pub const level_4: Options = .{ .good = 4, .nice = 16, .lazy = 4, .chain = 16 }; + pub const level_5: Options = .{ .good = 8, .nice = 32, .lazy = 16, .chain = 32 }; + pub const level_6: Options = .{ .good = 8, .nice = 128, .lazy = 16, .chain = 128 }; + pub const level_7: Options = .{ .good = 8, .nice = 128, .lazy = 32, .chain = 256 }; + pub const level_8: Options = .{ .good = 32, .nice = 258, .lazy = 128, .chain = 1024 }; + pub const level_9: Options = .{ .good = 32, .nice = 258, .lazy = 258, .chain = 4096 }; + // zig fmt: on + pub const fastest = level_1; + pub const default = level_6; + pub const best = level_9; }; -pub fn init(output: *Writer, buffer: []u8, options: Options) Compress { +/// It is asserted `buffer` is least `flate.max_history_len` bytes. +/// It is asserted `output` has a capacity of at least 8 bytes. +pub fn init( + output: *Writer, + buffer: []u8, + container: flate.Container, + opts: Options, +) Writer.Error!Compress { + assert(output.buffer.len > 8); + assert(buffer.len >= flate.max_window_len); + + // note that disallowing some of these simplifies matching logic + assert(opts.chain != 0); // use `Huffman`, disallowing this simplies matching + assert(opts.good >= 3 and opts.nice >= 3); // a match will (usually) not be found + assert(opts.good <= 258 and opts.nice <= 258); // a longer match will not be found + assert(opts.lazy <= opts.nice); // a longer match will (usually) not be found + if (opts.good <= opts.lazy) assert(opts.chain >= 1 << 2); // chain can be reduced to zero + + try output.writeAll(container.header()); return .{ - .block_writer = .init(output), - .level = .get(options.level), - .hasher = .init(options.container), - .state = .header, .writer = .{ .buffer = buffer, - .vtable = &.{ .drain = drain }, + .vtable = &.{ + .drain = drain, + .flush = flush, + .rebase = rebase, + }, + }, + .has_history = false, + .bit_writer = .init(output), + .buffered_tokens = .empty, + .lookup = .{ + // init `value` is max so there is 0xff pattern + .head = @splat(.{ .value = math.maxInt(u15), .is_null = true }), + .chain = undefined, + .chain_pos = math.maxInt(u15), }, + .container = container, + .opts = opts, + .hasher = .init(container), }; } -// Tokens store -const Tokens = struct { - list: [n_tokens]Token = undefined, - pos: usize = 0, +fn drain(w: *Writer, data: []const []const u8, splat: usize) Writer.Error!usize { + errdefer w.* = .failing; + // There may have not been enough space in the buffer and the write was sent directly here. + // However, it is required that all data goes through the buffer to keep a history. + // + // Additionally, ensuring the buffer is always full ensures there is always a full history + // after. + const data_n = w.buffer.len - w.end; + _ = w.fixedDrain(data, splat) catch {}; + assert(w.end == w.buffer.len); + try rebaseInner(w, 0, 1, false); + return data_n; +} + +fn flush(w: *Writer) Writer.Error!void { + defer w.* = .failing; + const c: *Compress = @fieldParentPtr("writer", w); + try rebaseInner(w, 0, w.buffer.len - flate.history_len, true); + try c.bit_writer.output.rebase(0, 1); + c.bit_writer.byteAlign(); + try c.hasher.writeFooter(c.bit_writer.output); +} + +fn rebase(w: *Writer, preserve: usize, capacity: usize) Writer.Error!void { + return rebaseInner(w, preserve, capacity, false); +} + +pub const rebase_min_preserve = flate.history_len; +pub const rebase_reserved_capacity = (token.max_length + 1) + seq_bytes; + +fn rebaseInner(w: *Writer, preserve: usize, capacity: usize, eos: bool) Writer.Error!void { + if (!eos) { + assert(@max(preserve, rebase_min_preserve) + (capacity + rebase_reserved_capacity) <= w.buffer.len); + assert(w.end >= flate.history_len + rebase_reserved_capacity); // Above assert should + // fail since rebase is only called when `capacity` is not present. This assertion is + // important because a full history is required at the end. + } else { + assert(preserve == 0 and capacity == w.buffer.len - flate.history_len); + } + + const c: *Compress = @fieldParentPtr("writer", w); + const buffered = w.buffered(); + + const start = @as(usize, flate.history_len) * @intFromBool(c.has_history); + const lit_end: usize = if (!eos) + buffered.len - rebase_reserved_capacity - (preserve -| flate.history_len) + else + buffered.len -| (seq_bytes - 1); + + var i = start; + var last_unmatched = i; + // Read from `w.buffer` instead of `buffered` since the latter may not + // have enough bytes. If this is the case, this variable is not used. + var seq: Seq = mem.readInt( + std.meta.Int(.unsigned, (seq_bytes - 1) * 8), + w.buffer[i..][0 .. seq_bytes - 1], + .big, + ); + if (buffered[i..].len < seq_bytes - 1) { + @branchHint(.unlikely); + assert(eos); + seq = undefined; + assert(i >= lit_end); + } + + while (i < lit_end) { + var match_start = i; + seq <<= 8; + seq |= buffered[i + (seq_bytes - 1)]; + var match = c.matchAndAddHash(i, hash(seq), token.min_length - 1, c.opts.chain, c.opts.good); + i += 1; + if (match.len < token.min_length) continue; + + var match_unadded = match.len - 1; + lazy: { + if (match.len >= c.opts.lazy) break :lazy; + if (match.len >= c.writer.buffered()[i..].len) { + @branchHint(.unlikely); // Only end of stream + break :lazy; + } - fn add(self: *Tokens, t: Token) void { - self.list[self.pos] = t; - self.pos += 1; + var chain = c.opts.chain; + var good = c.opts.good; + if (match.len >= good) { + chain >>= 2; + good = math.maxInt(u8); // Reduce only once + } + + seq <<= 8; + seq |= buffered[i + (seq_bytes - 1)]; + const lazy = c.matchAndAddHash(i, hash(seq), match.len, chain, good); + match_unadded -= 1; + i += 1; + + if (lazy.len > match.len) { + match_start += 1; + match = lazy; + match_unadded = match.len - 1; + } + } + + assert(i + match_unadded == match_start + match.len); + assert(mem.eql( + u8, + buffered[match_start..][0..match.len], + buffered[match_start - 1 - match.dist ..][0..match.len], + )); // This assert also seems to help codegen. + + try c.outputBytes(buffered[last_unmatched..match_start]); + try c.outputMatch(@intCast(match.dist), @intCast(match.len - 3)); + + last_unmatched = match_start + match.len; + if (last_unmatched + seq_bytes >= w.end) { + @branchHint(.unlikely); + assert(eos); + i = undefined; + break; + } + + while (true) { + seq <<= 8; + seq |= buffered[i + (seq_bytes - 1)]; + _ = c.addHash(i, hash(seq)); + i += 1; + + match_unadded -= 1; + if (match_unadded == 0) break; + } + assert(i == match_start + match.len); } - fn full(self: *Tokens) bool { - return self.pos == self.list.len; + if (eos) { + i = undefined; // (from match hashing logic) + try c.outputBytes(buffered[last_unmatched..]); + c.hasher.update(buffered[start..]); + try c.writeBlock(true); + return; } - fn reset(self: *Tokens) void { - self.pos = 0; + try c.outputBytes(buffered[last_unmatched..i]); + c.hasher.update(buffered[start..i]); + + const preserved = buffered[i - flate.history_len ..]; + assert(preserved.len > @max(rebase_min_preserve, preserve)); + @memmove(w.buffer[0..preserved.len], preserved); + w.end = preserved.len; + c.has_history = true; +} + +fn addHash(c: *Compress, i: usize, h: Hash) void { + assert(h == hash(mem.readInt(Seq, c.writer.buffer[i..][0..seq_bytes], .big))); + + const l = &c.lookup; + l.chain_pos +%= 1; + + // Equivilent to the below, however LLVM 21 does not optimize `@subWithOverflow` well at all. + // const replaced_i, const no_replace = @subWithOverflow(i, flate.history_len); + // if (no_replace == 0) { + if (i >= flate.history_len) { + @branchHint(.likely); + const replaced_i = i - flate.history_len; + // The following is the same as the below except uses a 32-bit load to help optimizations + // const replaced_seq = mem.readInt(Seq, c.writer.buffer[replaced_i..][0..seq_bytes], .big); + comptime assert(@sizeOf(Seq) <= @sizeOf(u32)); + const replaced_u32 = mem.readInt(u32, c.writer.buffered()[replaced_i..][0..4], .big); + const replaced_seq: Seq = @intCast(replaced_u32 >> (32 - @bitSizeOf(Seq))); + + const replaced_h = hash(replaced_seq); + // The following is equivilent to the below since LLVM 21 doesn't optimize it well. + // l.head[replaced_h].is_null = l.head[replaced_h].is_null or + // l.head[replaced_h].int() == l.chain_pos; + const empty_head = l.head[replaced_h].int() == l.chain_pos; + const null_flag = PackedOptionalU15.int(.{ .is_null = empty_head, .value = 0 }); + l.head[replaced_h] = @bitCast(l.head[replaced_h].int() | null_flag); } - fn tokens(self: *Tokens) []const Token { - return self.list[0..self.pos]; + const prev_chain_index = l.head[h]; + l.chain[l.chain_pos] = @bitCast((l.chain_pos -% prev_chain_index.value) | + (prev_chain_index.int() & PackedOptionalU15.null_bit.int())); // Preserves null + l.head[h] = .{ .value = l.chain_pos, .is_null = false }; +} + +/// If the match is shorter, the returned value can be any value `<= old`. +fn betterMatchLen(old: u16, prev: []const u8, bytes: []const u8) u16 { + assert(old < @min(bytes.len, token.max_length)); + assert(prev.len >= bytes.len); + assert(bytes.len >= token.min_length); + + var i: u16 = 0; + const Block = std.meta.Int(.unsigned, @min(math.divCeil( + comptime_int, + math.ceilPowerOfTwoAssert(usize, @bitSizeOf(usize)), + 8, + ) catch unreachable, 256) * 8); + + if (bytes.len < token.max_length) { + @branchHint(.unlikely); // Only end of stream + + while (bytes[i..].len >= @sizeOf(Block)) { + const a = mem.readInt(Block, prev[i..][0..@sizeOf(Block)], .little); + const b = mem.readInt(Block, bytes[i..][0..@sizeOf(Block)], .little); + const diff = a ^ b; + if (diff != 0) { + @branchHint(.likely); + i += @ctz(diff) / 8; + return i; + } + i += @sizeOf(Block); + } + + while (i != bytes.len and prev[i] == bytes[i]) { + i += 1; + } + assert(i < token.max_length); + return i; } -}; -fn drain(me: *Writer, data: []const []const u8, splat: usize) Writer.Error!usize { - _ = data; - _ = splat; - const c: *Compress = @fieldParentPtr("writer", me); - const out = c.block_writer.output; - switch (c.state) { - .header => { - c.state = .middle; - const header = c.hasher.container().header(); - try out.writeAll(header); - return header.len; - }, - .middle => {}, - .ended => unreachable, + if (old >= @sizeOf(Block)) { + // Check that a longer end is present, otherwise the match is always worse + const a = mem.readInt(Block, prev[old + 1 - @sizeOf(Block) ..][0..@sizeOf(Block)], .little); + const b = mem.readInt(Block, bytes[old + 1 - @sizeOf(Block) ..][0..@sizeOf(Block)], .little); + if (a != b) return i; + } + + while (true) { + const a = mem.readInt(Block, prev[i..][0..@sizeOf(Block)], .little); + const b = mem.readInt(Block, bytes[i..][0..@sizeOf(Block)], .little); + const diff = a ^ b; + if (diff != 0) { + i += @ctz(diff) / 8; + return i; + } + i += @sizeOf(Block); + if (i == 256) break; + } + + const a = mem.readInt(u16, prev[i..][0..2], .little); + const b = mem.readInt(u16, bytes[i..][0..2], .little); + const diff = a ^ b; + i += @ctz(diff) / 8; + assert(i <= token.max_length); + return i; +} + +test betterMatchLen { + try std.testing.fuzz({}, testFuzzedMatchLen, .{}); +} + +fn testFuzzedMatchLen(_: void, input: []const u8) !void { + @disableInstrumentation(); + var r: Io.Reader = .fixed(input); + var buf: [1024]u8 = undefined; + var w: Writer = .fixed(&buf); + var old = r.takeLeb128(u9) catch 0; + var bytes_off = @max(1, r.takeLeb128(u10) catch 258); + const prev_back = @max(1, r.takeLeb128(u10) catch 258); + + while (r.takeByte()) |byte| { + const op: packed struct(u8) { + kind: enum(u2) { splat, copy, insert_imm, insert }, + imm: u6, + + pub fn immOrByte(op_s: @This(), r_s: *Io.Reader) usize { + return if (op_s.imm == 0) op_s.imm else @as(usize, r_s.takeByte() catch 0) + 64; + } + } = @bitCast(byte); + (switch (op.kind) { + .splat => w.splatByteAll(r.takeByte() catch 0, op.immOrByte(&r)), + .copy => write: { + const start = w.buffered().len -| op.immOrByte(&r); + const len = @min(w.buffered().len - start, r.takeByte() catch 3); + break :write w.writeAll(w.buffered()[start..][0..len]); + }, + .insert_imm => w.writeByte(op.imm), + .insert => w.writeAll(r.take( + @min(r.bufferedLen(), @as(usize, op.imm) + 1), + ) catch unreachable), + }) catch break; + } else |_| {} + + w.splatByteAll(0, (1 + 3) -| w.buffered().len) catch unreachable; + bytes_off = @min(bytes_off, @as(u10, @intCast(w.buffered().len - 3))); + const prev_off = bytes_off -| prev_back; + assert(prev_off < bytes_off); + const prev = w.buffered()[prev_off..]; + const bytes = w.buffered()[bytes_off..]; + old = @min(old, bytes.len - 1, token.max_length - 1); + + const diff_index = mem.indexOfDiff(u8, prev, bytes).?; // unwrap since lengths are not same + const expected_len = @min(diff_index, 258); + errdefer std.debug.print( + \\prev : '{any}' + \\bytes: '{any}' + \\old : {} + \\expected: {?} + \\actual : {} + ++ "\n", .{ + prev, bytes, old, + if (old < expected_len) expected_len else null, betterMatchLen(old, prev, bytes), + }); + if (old < expected_len) { + try std.testing.expectEqual(expected_len, betterMatchLen(old, prev, bytes)); + } else { + try std.testing.expect(betterMatchLen(old, prev, bytes) <= old); + } +} + +fn matchAndAddHash(c: *Compress, i: usize, h: Hash, gt: u16, max_chain: u16, good_: u16) struct { + dist: u16, + len: u16, +} { + const l = &c.lookup; + const buffered = c.writer.buffered(); + + var chain_limit = max_chain; + var best_dist: u16 = undefined; + var best_len = gt; + const nice = @min(c.opts.nice, buffered[i..].len); + var good = good_; + + search: { + if (l.head[h].is_null) break :search; + // Actually a u15, but LLVM 21 does not optimize that as well (it truncates it each use). + var dist: u16 = l.chain_pos -% l.head[h].value; + while (true) { + chain_limit -= 1; + + const match_len = betterMatchLen(best_len, buffered[i - 1 - dist ..], buffered[i..]); + if (match_len > best_len) { + best_dist = dist; + best_len = match_len; + if (best_len >= nice) break; + if (best_len >= good) { + chain_limit >>= 2; + good = math.maxInt(u8); // Reduce only once + } + } + + if (chain_limit == 0) break; + const next_chain_index = l.chain_pos -% @as(u15, @intCast(dist)); + // Equivilent to the below, however LLVM 21 optimizes the below worse. + // if (l.chain[next_chain_index].is_null) break; + // dist, const out_of_window = @addWithOverflow(dist, l.chain[next_chain_index].value); + // if (out_of_window == 1) break; + dist +%= l.chain[next_chain_index].int(); // wrapping for potential null bit + comptime assert(flate.history_len == PackedOptionalU15.int(.null_bit)); + // Also, doing >= flate.history_len gives worse codegen with LLVM 21. + if ((dist | l.chain[next_chain_index].int()) & flate.history_len != 0) break; + } + } + + c.addHash(i, h); + return .{ .dist = best_dist, .len = best_len }; +} + +fn clenHlen(freqs: [19]u16) u4 { + // Note that the first four codes (16, 17, 18, and 0) are always present. + if (builtin.mode != .ReleaseSmall and (std.simd.suggestVectorLength(u16) orelse 1) >= 8) { + const V = @Vector(16, u16); + const hlen_mul: V = comptime m: { + var hlen_mul: [16]u16 = undefined; + for (token.codegen_order[3..], 0..) |i, hlen| { + hlen_mul[i] = hlen; + } + break :m hlen_mul; + }; + const encoded = freqs[0..16].* != @as(V, @splat(0)); + return @intCast(@reduce(.Max, @intFromBool(encoded) * hlen_mul)); + } else { + var max: u4 = 0; + for (token.codegen_order[4..], 1..) |i, len| { + max = if (freqs[i] == 0) max else @intCast(len); + } + return max; + } +} + +test clenHlen { + var freqs: [19]u16 = @splat(0); + try std.testing.expectEqual(0, clenHlen(freqs)); + for (token.codegen_order, 1..) |i, len| { + freqs[i] = 1; + try std.testing.expectEqual(len -| 4, clenHlen(freqs)); + freqs[i] = 0; + } +} + +/// Returns the number of values followed by the bitsize of the extra bits. +fn buildClen( + dyn_bits: []const u4, + out_values: []u8, + out_extra: []u8, + out_freqs: *[19]u16, +) struct { u16, u16 } { + assert(dyn_bits.len <= out_values.len); + assert(out_values.len == out_extra.len); + + var len: u16 = 0; + var extra_bitsize: u16 = 0; + + var remaining_bits = dyn_bits; + var prev: u4 = 0; + while (true) { + const b = remaining_bits[0]; + const n_max = @min(@as(u8, if (b != 0) + if (b != prev) 1 else 6 + else + 138), remaining_bits.len); + prev = b; + + var n: u8 = 0; + while (true) { + remaining_bits = remaining_bits[1..]; + n += 1; + if (n == n_max or remaining_bits[0] != b) break; + } + const code, const extra, const xsize = switch (n) { + 0 => unreachable, + 1...2 => .{ b, 0, 0 }, + 3...10 => .{ + @as(u8, 16) + @intFromBool(b == 0), + n - 3, + @as(u8, 2) + @intFromBool(b == 0), + }, + 11...138 => .{ 18, n - 11, 7 }, + else => unreachable, + }; + while (true) { + out_values[len] = code; + out_extra[len] = extra; + out_freqs[code] += 1; + extra_bitsize += xsize; + len += 1; + if (n != 2) { + @branchHint(.likely); + break; + } + // Code needs outputted once more + n = 1; + } + if (remaining_bits.len == 0) break; + } + + return .{ len, extra_bitsize }; +} + +test buildClen { + //dyn_bits: []u4, + //out_values: *[288 + 30]u8, + //out_extra: *[288 + 30]u8, + //out_freqs: *[19]u16, + //struct { u16, u16 } + var out_values: [288 + 30]u8 = undefined; + var out_extra: [288 + 30]u8 = undefined; + var out_freqs: [19]u16 = @splat(0); + const len, const extra_bitsize = buildClen(&([_]u4{ + 1, // A + 2, 2, // B + 3, 3, 3, // C + 4, 4, 4, 4, // D + 5, // E + 5, 5, 5, 5, 5, 5, // + 5, 5, 5, 5, 5, 5, + 5, 5, + 0, 1, // F + 0, 0, 1, // G + } ++ @as([138 + 10]u4, @splat(0)) // H + ), &out_values, &out_extra, &out_freqs); + try std.testing.expectEqualSlices(u8, &.{ + 1, // A + 2, 2, // B + 3, 3, 3, // C + 4, 16, // D + 5, 16, 16, 5, 5, // E + 0, 1, // F + 0, 0, 1, // G + 18, 17, // H + }, out_values[0..len]); + try std.testing.expectEqualSlices(u8, &.{ + 0, // A + 0, 0, // B + 0, 0, 0, // C + 0, (0), // D + 0, (3), (3), 0, 0, // E + 0, 0, // F + 0, 0, 0, // G + (127), (7), // H + }, out_extra[0..len]); + try std.testing.expectEqual(2 + 2 + 2 + 7 + 3, extra_bitsize); + try std.testing.expectEqualSlices(u16, &.{ + 3, 3, 2, 3, 1, 3, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, + 3, 1, 1, + }, &out_freqs); +} + +fn writeBlock(c: *Compress, eos: bool) Writer.Error!void { + const toks = &c.buffered_tokens; + if (!eos) assert(toks.n == block_tokens); + assert(toks.lit_freqs[256] == 0); + toks.lit_freqs[256] = 1; + + var dyn_codes_buf: [286 + 30]u16 = undefined; + var dyn_bits_buf: [286 + 30]u4 = @splat(0); + + const dyn_lit_codes_bitsize, const dyn_last_lit = huffman.build( + &toks.lit_freqs, + dyn_codes_buf[0..286], + dyn_bits_buf[0..286], + 15, + true, + ); + const dyn_lit_len = @max(257, dyn_last_lit + 1); + + const dyn_dist_codes_bitsize, const dyn_last_dist = huffman.build( + &toks.dist_freqs, + dyn_codes_buf[dyn_lit_len..][0..30], + dyn_bits_buf[dyn_lit_len..][0..30], + 15, + true, + ); + const dyn_dist_len = @max(1, dyn_last_dist + 1); + + var clen_values: [288 + 30]u8 = undefined; + var clen_extra: [288 + 30]u8 = undefined; + var clen_freqs: [19]u16 = @splat(0); + const clen_len, const clen_extra_bitsize = buildClen( + dyn_bits_buf[0 .. dyn_lit_len + dyn_dist_len], + &clen_values, + &clen_extra, + &clen_freqs, + ); + + var clen_codes: [19]u16 = undefined; + var clen_bits: [19]u4 = @splat(0); + const clen_codes_bitsize, _ = huffman.build( + &clen_freqs, + &clen_codes, + &clen_bits, + 7, + false, + ); + const hclen = clenHlen(clen_freqs); + + const dynamic_bitsize = @as(u32, 14) + + (4 + @as(u6, hclen)) * 3 + clen_codes_bitsize + clen_extra_bitsize + + dyn_lit_codes_bitsize + dyn_dist_codes_bitsize; + const fixed_bitsize = n: { + const freq7 = 1; // eos + var freq8: u16 = 0; + var freq9: u16 = 0; + var freq12: u16 = 0; // 7 + 5 - match freqs always have corresponding 5-bit dist freq + var freq13: u16 = 0; // 8 + 5 + for (toks.lit_freqs[0..144]) |f| freq8 += f; + for (toks.lit_freqs[144..256]) |f| freq9 += f; + assert(toks.lit_freqs[256] == 1); + for (toks.lit_freqs[257..280]) |f| freq12 += f; + for (toks.lit_freqs[280..286]) |f| freq13 += f; + break :n @as(u32, freq7) * 7 + + @as(u32, freq8) * 8 + @as(u32, freq9) * 9 + + @as(u32, freq12) * 12 + @as(u32, freq13) * 13; + }; + + stored: { + for (toks.dist_freqs) |n| if (n != 0) break :stored; + // No need to check len frequencies since they each have a corresponding dist frequency + assert(for (toks.lit_freqs[257..]) |f| (if (f != 0) break false) else true); + + // No matches. If the stored size is smaller than the huffman-encoded version, it will be + // outputed in a store block. This is not done with matches since the original input would + // need to be stored since the window may slid, and it may also exceed 65535 bytes. This + // should be OK since most inputs with matches should be more compressable anyways. + const stored_align_bits = -%(c.bit_writer.buffered_n +% 3); + const stored_bitsize = stored_align_bits + @as(u32, 32) + @as(u32, toks.n) * 8; + if (@min(dynamic_bitsize, fixed_bitsize) < stored_bitsize) break :stored; + + try c.bit_writer.write(BlockHeader.int(.{ .kind = .stored, .final = eos }), 3); + try c.bit_writer.output.rebase(0, 5); + c.bit_writer.byteAlign(); + c.bit_writer.output.writeInt(u16, c.buffered_tokens.n, .little) catch unreachable; + c.bit_writer.output.writeInt(u16, ~c.buffered_tokens.n, .little) catch unreachable; + + // Relatively small buffer since regular draining will + // always consume slightly less than 2 << 15 bytes. + var vec_buf: [4][]const u8 = undefined; + var vec_n: usize = 0; + var i: usize = 0; + + assert(c.buffered_tokens.pos != 0); + while (i != c.buffered_tokens.pos) { + const h: TokenBufferEntryHeader = @bitCast(toks.list[i..][0..2].*); + assert(h.kind == .bytes); + + i += 2; + vec_buf[vec_n] = toks.list[i..][0..h.data]; + i += h.data; + + vec_n += 1; + if (i == c.buffered_tokens.pos or vec_n == vec_buf.len) { + try c.bit_writer.output.writeVecAll(vec_buf[0..vec_n]); + vec_n = 0; + } + } + + toks.* = .empty; + return; + } + + const lit_codes, const lit_bits, const dist_codes, const dist_bits = + if (dynamic_bitsize < fixed_bitsize) codes: { + try c.bit_writer.write(BlockHeader.Dynamic.int(.{ + .regular = .{ .final = eos, .kind = .dynamic }, + .hlit = @intCast(dyn_lit_len - 257), + .hdist = @intCast(dyn_dist_len - 1), + .hclen = hclen, + }), 17); + try c.bit_writer.writeClen( + hclen, + clen_values[0..clen_len], + clen_extra[0..clen_len], + clen_codes, + clen_bits, + ); + break :codes .{ + dyn_codes_buf[0..dyn_lit_len], + dyn_bits_buf[0..dyn_lit_len], + dyn_codes_buf[dyn_lit_len..][0..dyn_dist_len], + dyn_bits_buf[dyn_lit_len..][0..dyn_dist_len], + }; + } else codes: { + try c.bit_writer.write(BlockHeader.int(.{ .final = eos, .kind = .fixed }), 3); + break :codes .{ + &token.fixed_lit_codes, + &token.fixed_lit_bits, + &token.fixed_dist_codes, + &token.fixed_dist_bits, + }; + }; + + var i: usize = 0; + while (i != toks.pos) { + const h: TokenBufferEntryHeader = @bitCast(toks.list[i..][0..2].*); + i += 2; + if (h.kind == .bytes) { + for (toks.list[i..][0..h.data]) |b| { + try c.bit_writer.write(lit_codes[b], lit_bits[b]); + } + i += h.data; + } else { + const dist = h.data; + const len = toks.list[i]; + i += 1; + const dist_code = token.DistCode.fromVal(dist); + const len_code = token.LenCode.fromVal(len); + const dist_val = dist_code.toInt(); + const lit_val = @as(u16, 257) + len_code.toInt(); + + var out: u48 = lit_codes[lit_val]; + var out_bits: u6 = lit_bits[lit_val]; + out |= @shlExact(@as(u20, len - len_code.base()), @intCast(out_bits)); + out_bits += len_code.extraBits(); + + out |= @shlExact(@as(u35, dist_codes[dist_val]), out_bits); + out_bits += dist_bits[dist_val]; + out |= @shlExact(@as(u48, dist - dist_code.base()), out_bits); + out_bits += dist_code.extraBits(); + + try c.bit_writer.write(out, out_bits); + } + } + try c.bit_writer.write(lit_codes[256], lit_bits[256]); + + toks.* = .empty; +} + +/// Huffman tree construction. +/// +/// The approach for building the huffman tree is [taken from zlib] +/// (https://github.com/madler/zlib/blob/v1.3.1/trees.c#L625) with some modifications. +const huffman = struct { + const max_leafs = 286; + const max_nodes = max_leafs * 2; + + const Node = struct { + freq: u16, + depth: u16, + + pub const Index = u16; + + pub fn smaller(a: Node, b: Node) bool { + return if (a.freq != b.freq) a.freq < b.freq else a.depth < b.depth; + } + }; + + fn heapSiftDown(nodes: []Node, heap: []Node.Index, start: usize) void { + var i = start; + while (true) { + var min = i; + const l = i * 2 + 1; + const r = l + 1; + min = if (l < heap.len and nodes[heap[l]].smaller(nodes[heap[min]])) l else min; + min = if (r < heap.len and nodes[heap[r]].smaller(nodes[heap[min]])) r else min; + if (i == min) break; + mem.swap(Node.Index, &heap[i], &heap[min]); + i = min; + } + } + + fn heapRemoveRoot(nodes: []Node, heap: []Node.Index) void { + heap[0] = heap[heap.len - 1]; + heapSiftDown(nodes, heap[0 .. heap.len - 1], 0); + } + + /// Returns the total bits to encode `freqs` followed by the index of the last non-zero bits. + /// For `freqs[i]` == 0, `out_codes[i]` will be undefined. + /// It is asserted `out_bits` is zero-filled. + /// It is asserted `out_bits.len` is at least a length of + /// one if ncomplete trees are allowed and two otherwise. + pub fn build( + freqs: []const u16, + out_codes: []u16, + out_bits: []u4, + max_bits: u4, + incomplete_allowed: bool, + ) struct { u32, u16 } { + assert(out_codes.len - 1 >= @intFromBool(incomplete_allowed)); + // freqs and out_codes are in the loop to assert they are all the same length + for (freqs, out_codes, out_bits) |_, _, n| assert(n == 0); + assert(out_codes.len <= @as(u16, 1) << max_bits); + + // Indexes 0..freqs are leafs, indexes max_leafs.. are internal nodes. + var tree_nodes: [max_nodes]Node = undefined; + var tree_parent_nodes: [max_nodes]Node.Index = undefined; + var nodes_end: u16 = max_leafs; + // Dual-purpose buffer. Nodes are ordered by least frequency or when equal, least depth. + // The start is a min heap of level-zero nodes. + // The end is a sorted buffer of nodes with the greatest first. + var node_buf: [max_nodes]Node.Index = undefined; + var heap_end: u16 = 0; + var sorted_start: u16 = node_buf.len; + + for (0.., freqs) |n, freq| { + tree_nodes[n] = .{ .freq = freq, .depth = 0 }; + node_buf[heap_end] = @intCast(n); + heap_end += @intFromBool(freq != 0); + } + + // There must be at least one code at minimum, + node_buf[heap_end] = 0; + heap_end += @intFromBool(heap_end == 0); + // and at least two if incomplete must be avoided. + if (heap_end == 1 and incomplete_allowed) { + @branchHint(.unlikely); // LLVM 21 optimizes this branch as the more likely without + + // Codes must have at least one-bit, so this is a special case. + out_bits[node_buf[0]] = 1; + out_codes[node_buf[0]] = 0; + return .{ freqs[node_buf[0]], node_buf[0] }; + } + const last_nonzero = @max(node_buf[heap_end - 1], 1); // For heap_end > 1, last is not be 0 + node_buf[heap_end] = @intFromBool(node_buf[0] == 0); + heap_end += @intFromBool(heap_end == 1); + + // Heapify the array of frequencies + const heapify_final = heap_end - 1; + const heapify_start = (heapify_final - 1) / 2; // Parent of final node + var heapify_i = heapify_start; + while (true) { + heapSiftDown(&tree_nodes, node_buf[0..heap_end], heapify_i); + if (heapify_i == 0) break; + heapify_i -= 1; + } + + // Build optimal tree. `max_bits` is not enforced yet. + while (heap_end > 1) { + const a = node_buf[0]; + heapRemoveRoot(&tree_nodes, node_buf[0..heap_end]); + heap_end -= 1; + const b = node_buf[0]; + + sorted_start -= 2; + node_buf[sorted_start..][0..2].* = .{ b, a }; + + tree_nodes[nodes_end] = .{ + .freq = tree_nodes[a].freq + tree_nodes[b].freq, + .depth = @max(tree_nodes[a].depth, tree_nodes[b].depth) + 1, + }; + defer nodes_end += 1; + tree_parent_nodes[a] = nodes_end; + tree_parent_nodes[b] = nodes_end; + + node_buf[0] = nodes_end; + heapSiftDown(&tree_nodes, node_buf[0..heap_end], 0); + } + sorted_start -= 1; + node_buf[sorted_start] = node_buf[0]; + + var bit_counts: [16]u16 = @splat(0); + buildBits(out_bits, &bit_counts, &tree_parent_nodes, node_buf[sorted_start..], max_bits); + return .{ buildValues(freqs, out_codes, out_bits, bit_counts), last_nonzero }; + } + + fn buildBits( + out_bits: []u4, + bit_counts: *[16]u16, + parent_nodes: *[max_nodes]Node.Index, + sorted: []Node.Index, + max_bits: u4, + ) void { + var internal_node_bits: [max_nodes - max_leafs]u4 = undefined; + var overflowed: u16 = 0; + + internal_node_bits[sorted[0] - max_leafs] = 0; // root + for (sorted[1..]) |i| { + const parent_bits = internal_node_bits[parent_nodes[i] - max_leafs]; + overflowed += @intFromBool(parent_bits == max_bits); + const bits = parent_bits + @intFromBool(parent_bits != max_bits); + bit_counts[bits] += @intFromBool(i < max_leafs); + (if (i >= max_leafs) &internal_node_bits[i - max_leafs] else &out_bits[i]).* = bits; + } + + if (overflowed == 0) { + @branchHint(.likely); + return; + } + + outer: while (true) { + var deepest: u4 = max_bits - 1; + while (bit_counts[deepest] == 0) deepest -= 1; + while (overflowed != 0) { + // Insert an internal node under the leaf and move an overflow as its sibling + bit_counts[deepest] -= 1; + bit_counts[deepest + 1] += 2; + // Only overflow moved. Its sibling's depth is one less, however is still >= depth. + bit_counts[max_bits] -= 1; + overflowed -= 2; + + if (overflowed == 0) break :outer; + deepest += 1; + if (deepest == max_bits) continue :outer; + } + } + + // Reassign bit lengths + assert(bit_counts[0] == 0); + var i: usize = 0; + for (1.., bit_counts[1..]) |bits, all| { + var remaining = all; + while (remaining != 0) { + defer i += 1; + if (sorted[i] >= max_leafs) continue; + out_bits[sorted[i]] = @intCast(bits); + remaining -= 1; + } + } + assert(for (sorted[i..]) |n| { // all leafs consumed + if (n < max_leafs) break false; + } else true); + } + + fn buildValues(freqs: []const u16, out_codes: []u16, bits: []u4, bit_counts: [16]u16) u32 { + var code: u16 = 0; + var base: [16]u16 = undefined; + assert(bit_counts[0] == 0); + for (bit_counts[1..], base[1..]) |c, *b| { + b.* = code; + code +%= c; + code <<= 1; + } + var freq_sums: [16]u16 = @splat(0); + for (out_codes, bits, freqs) |*c, b, f| { + c.* = @bitReverse(base[b]) >> -%b; + base[b] += 1; // For `b == 0` this is fine since v is specified to be undefined. + freq_sums[b] += f; + } + return @reduce(.Add, @as(@Vector(16, u32), freq_sums) * std.simd.iota(u32, 16)); + } + + test build { + var codes: [8]u16 = undefined; + var bits: [8]u4 = undefined; + + const regular_freqs: [8]u16 = .{ 1, 1, 0, 8, 8, 0, 2, 4 }; + // The optimal tree for the above frequencies is + // 4 1 1 + // \ / + // 3 2 # + // \ / + // 2 8 8 4 # + // \ / \ / + // 1 # # + // \ / + // 0 # + bits = @splat(0); + var n, var lnz = build(®ular_freqs, &codes, &bits, 15, true); + codes[2] = 0; + codes[5] = 0; + try std.testing.expectEqualSlices(u4, &.{ 4, 4, 0, 2, 2, 0, 3, 2 }, &bits); + try std.testing.expectEqualSlices(u16, &.{ + 0b0111, 0b1111, 0, 0b00, 0b10, 0, 0b011, 0b01, + }, &codes); + try std.testing.expectEqual(54, n); + try std.testing.expectEqual(7, lnz); + // When constrained to 3 bits, it becomes + // 3 1 1 2 4 + // \ / \ / + // 2 8 8 # # + // \ / \ / + // 1 # # + // \ / + // 0 # + bits = @splat(0); + n, lnz = build(®ular_freqs, &codes, &bits, 3, true); + codes[2] = 0; + codes[5] = 0; + try std.testing.expectEqualSlices(u4, &.{ 3, 3, 0, 2, 2, 0, 3, 3 }, &bits); + try std.testing.expectEqualSlices(u16, &.{ + 0b001, 0b101, 0, 0b00, 0b10, 0, 0b011, 0b111, + }, &codes); + try std.testing.expectEqual(56, n); + try std.testing.expectEqual(7, lnz); + + // Empty tree. At least one code should be present + bits = @splat(0); + n, lnz = build(&.{ 0, 0 }, codes[0..2], bits[0..2], 15, true); + try std.testing.expectEqualSlices(u4, &.{ 1, 0 }, bits[0..2]); + try std.testing.expectEqual(0b0, codes[0]); + try std.testing.expectEqual(0, n); + try std.testing.expectEqual(0, lnz); + + // Check all incompletable frequencies are completed + for ([_][2]u16{ .{ 0, 0 }, .{ 0, 1 }, .{ 1, 0 } }) |incomplete| { + // Empty tree. Both codes should be present to prevent incomplete trees + bits = @splat(0); + n, lnz = build(&incomplete, codes[0..2], bits[0..2], 15, false); + try std.testing.expectEqualSlices(u4, &.{ 1, 1 }, bits[0..2]); + try std.testing.expectEqualSlices(u16, &.{ 0b0, 0b1 }, codes[0..2]); + try std.testing.expectEqual(incomplete[0] + incomplete[1], n); + try std.testing.expectEqual(1, lnz); + } + + try std.testing.fuzz({}, checkFuzzedBuildFreqs, .{}); } - const buffered = me.buffered(); - const min_lookahead = Token.min_length + Token.max_length; - const history_plus_lookahead_len = flate.history_len + min_lookahead; - if (buffered.len < history_plus_lookahead_len) return 0; - const lookahead = buffered[flate.history_len..]; + fn checkFuzzedBuildFreqs(_: void, freqs: []const u8) !void { + @disableInstrumentation(); + var r: Io.Reader = .fixed(freqs); + var freqs_limit: u16 = 65535; + var freqs_buf: [max_leafs]u16 = undefined; + var nfreqs: u15 = 0; + + const params: packed struct(u8) { + max_bits: u4, + _: u3, + incomplete_allowed: bool, + } = @bitCast(r.takeByte() catch 255); + while (nfreqs != freqs_buf.len) { + const leb = r.takeLeb128(u16); + const f = if (leb) |f| @min(f, freqs_limit) else |e| switch (e) { + error.ReadFailed => unreachable, + error.EndOfStream => 0, + error.Overflow => freqs_limit, + }; + freqs_buf[nfreqs] = f; + nfreqs += 1; + freqs_limit -= f; + if (leb == error.EndOfStream and nfreqs - 1 > @intFromBool(params.incomplete_allowed)) + break; + } + + var codes_buf: [max_leafs]u16 = undefined; + var bits_buf: [max_leafs]u4 = @splat(0); + const total_bits, const last_nonzero = build( + freqs_buf[0..nfreqs], + codes_buf[0..nfreqs], + bits_buf[0..nfreqs], + @max(math.log2_int_ceil(u15, nfreqs), params.max_bits), + params.incomplete_allowed, + ); + + var has_bitlen_one: bool = false; + var expected_total_bits: u32 = 0; + var expected_last_nonzero: ?u16 = null; + var weighted_sum: u32 = 0; + for (freqs_buf[0..nfreqs], bits_buf[0..nfreqs], 0..) |f, nb, i| { + has_bitlen_one = has_bitlen_one or nb == 1; + weighted_sum += @shlExact(@as(u16, 1), 15 - nb) & ((1 << 15) - 1); + expected_total_bits += @as(u32, f) * nb; + if (nb != 0) expected_last_nonzero = @intCast(i); + } + + errdefer std.log.err( + \\ params: {} + \\ freqs: {any} + \\ bits: {any} + \\ # freqs: {} + \\ max bits: {} + \\ weighted sum: {} + \\ has_bitlen_one: {} + \\ expected/actual total bits: {}/{} + \\ expected/actual last nonzero: {?}/{} + ++ "\n", .{ + params, + freqs_buf[0..nfreqs], + bits_buf[0..nfreqs], + nfreqs, + @max(math.log2_int_ceil(u15, nfreqs), params.max_bits), + weighted_sum, + has_bitlen_one, + expected_total_bits, + total_bits, + expected_last_nonzero, + last_nonzero, + }); + + try std.testing.expectEqual(expected_total_bits, total_bits); + try std.testing.expectEqual(expected_last_nonzero, last_nonzero); + if (weighted_sum > 1 << 15) + return error.OversubscribedHuffmanTree; + if (weighted_sum < 1 << 15 and + !(params.incomplete_allowed and has_bitlen_one and weighted_sum == 1 << 14)) + return error.IncompleteHuffmanTree; + } +}; - // TODO tokenize - _ = lookahead; - //c.hasher.update(lookahead[0..n]); - @panic("TODO"); +test { + _ = huffman; } -pub fn end(c: *Compress) !void { - try endUnflushed(c); - const out = c.block_writer.output; - try out.flush(); +/// [0] is a gradient where the probability of lower values decreases across it +/// [1] is completely random and hence uncompressable +fn testingFreqBufs() !*[2][65536]u8 { + const fbufs = try std.testing.allocator.create([2][65536]u8); + var prng: std.Random.DefaultPrng = .init(std.testing.random_seed); + prng.random().bytes(&fbufs[0]); + prng.random().bytes(&fbufs[1]); + for (0.., &fbufs[0], fbufs[1]) |i, *grad, rand| { + const prob = @as(u8, @intCast(255 - i / (fbufs[0].len * 256))); + grad.* /= @max(1, rand / @max(1, prob)); + } + return fbufs; } -pub fn endUnflushed(c: *Compress) !void { - while (c.writer.end != 0) _ = try drain(&c.writer, &.{""}, 1); - c.state = .ended; +fn testingCheckDecompressedMatches( + flate_bytes: []const u8, + expected_size: u32, + expected_hash: flate.Container.Hasher, +) !void { + const container: flate.Container = expected_hash; + var data_hash: flate.Container.Hasher = .init(container); + var data_size: u32 = 0; + var flate_r: Io.Reader = .fixed(flate_bytes); + var deflate_buf: [flate.max_window_len]u8 = undefined; + var deflate: flate.Decompress = .init(&flate_r, container, &deflate_buf); - const out = c.block_writer.output; + while (deflate.reader.peekGreedy(1)) |bytes| { + data_size += @intCast(bytes.len); + data_hash.update(bytes); + deflate.reader.toss(bytes.len); + } else |e| switch (e) { + error.ReadFailed => return deflate.err.?, + error.EndOfStream => {}, + } - // TODO flush tokens + try testingCheckContainerHash( + expected_size, + expected_hash, + data_hash, + data_size, + deflate.container_metadata, + ); +} - switch (c.hasher) { - .gzip => |*gzip| { - // GZIP 8 bytes footer - // - 4 bytes, CRC32 (CRC-32) - // - 4 bytes, ISIZE (Input SIZE) - size of the original (uncompressed) input data modulo 2^32 - const footer = try out.writableArray(8); - std.mem.writeInt(u32, footer[0..4], gzip.crc.final(), .little); - std.mem.writeInt(u32, footer[4..8], @truncate(gzip.count), .little); +fn testingCheckContainerHash( + expected_size: u32, + expected_hash: flate.Container.Hasher, + actual_hash: flate.Container.Hasher, + actual_size: u32, + actual_meta: flate.Container.Metadata, +) !void { + try std.testing.expectEqual(expected_size, actual_size); + switch (actual_hash) { + .raw => {}, + .gzip => |gz| { + const expected_crc = expected_hash.gzip.crc.final(); + try std.testing.expectEqual(expected_size, actual_meta.gzip.count); + try std.testing.expectEqual(expected_crc, gz.crc.final()); + try std.testing.expectEqual(expected_crc, actual_meta.gzip.crc); }, - .zlib => |*zlib| { - // ZLIB (RFC 1950) is big-endian, unlike GZIP (RFC 1952). - // 4 bytes of ADLER32 (Adler-32 checksum) - // Checksum value of the uncompressed data (excluding any - // dictionary data) computed according to Adler-32 - // algorithm. - std.mem.writeInt(u32, try out.writableArray(4), zlib.adler, .big); + .zlib => |zl| { + const expected_adler = expected_hash.zlib.adler; + try std.testing.expectEqual(expected_adler, zl.adler); + try std.testing.expectEqual(expected_adler, actual_meta.zlib.adler); }, - .raw => {}, } } -pub const Simple = struct { - /// Note that store blocks are limited to 65535 bytes. - buffer: []u8, - wp: usize, - block_writer: BlockWriter, - hasher: Container.Hasher, - strategy: Strategy, +const PackedContainer = packed struct(u2) { + raw: bool, + other: enum(u1) { gzip, zlib }, + + pub fn val(c: @This()) flate.Container { + return if (c.raw) .raw else switch (c.other) { + .gzip => .gzip, + .zlib => .zlib, + }; + } +}; + +test Compress { + const fbufs = try testingFreqBufs(); + defer if (!builtin.fuzz) std.testing.allocator.destroy(fbufs); + try std.testing.fuzz(fbufs, testFuzzedCompressInput, .{}); +} + +fn testFuzzedCompressInput(fbufs: *const [2][65536]u8, input: []const u8) !void { + var in: Io.Reader = .fixed(input); + var opts: packed struct(u51) { + container: PackedContainer, + buf_size: u16, + good: u8, + nice: u8, + lazy: u8, + /// Not a `u16` to limit it for performance + chain: u9, + } = @bitCast(in.takeLeb128(u51) catch 0); + var expected_hash: flate.Container.Hasher = .init(opts.container.val()); + var expected_size: u32 = 0; + + var flate_buf: [128 * 1024]u8 = undefined; + var flate_w: Writer = .fixed(&flate_buf); + var deflate_buf: [flate.max_window_len * 2]u8 = undefined; + var deflate_w = try Compress.init( + &flate_w, + deflate_buf[0 .. flate.max_window_len + @as(usize, opts.buf_size)], + opts.container.val(), + .{ + .good = @as(u16, opts.good) + 3, + .nice = @as(u16, opts.nice) + 3, + .lazy = @as(u16, @min(opts.lazy, opts.nice)) + 3, + .chain = @max(1, opts.chain, @as(u8, 4) * @intFromBool(opts.good <= opts.lazy)), + }, + ); + + // It is ensured that more bytes are not written then this to ensure this run + // does not take too long and that `flate_buf` does not run out of space. + const flate_buf_blocks = flate_buf.len / block_tokens; + // Allow a max overhead of 64 bytes per block since the implementation does not gaurauntee it + // writes store blocks when optimal. This comes from taking less than 32 bytes to write an + // optimal dynamic block header of mostly bitlen 8 codes and the end of block literal plus + // `(65536 / 256) / 8`, which is is the maximum number of extra bytes from bitlen 9 codes. An + // extra 32 bytes is reserved on top of that for container headers and footers. + const max_size = flate_buf.len - (flate_buf_blocks * 64 + 32); + + while (true) { + const data: packed struct(u36) { + is_rebase: bool, + is_bytes: bool, + params: packed union { + copy: packed struct(u34) { + len_lo: u5, + dist: u15, + len_hi: u4, + _: u10, + }, + bytes: packed struct(u34) { + kind: enum(u1) { gradient, random }, + off_hi: u4, + len_lo: u10, + off_mi: u4, + len_hi: u5, + off_lo: u8, + _: u2, + }, + rebase: packed struct(u34) { + preserve: u17, + capacity: u17, + }, + }, + } = @bitCast(in.takeLeb128(u36) catch |e| switch (e) { + error.ReadFailed => unreachable, + error.Overflow => 0, + error.EndOfStream => break, + }); + + const buffered = deflate_w.writer.buffered(); + // Required for repeating patterns and since writing from `buffered` is illegal + var copy_buf: [512]u8 = undefined; + + if (data.is_rebase) { + const usable_capacity = deflate_w.writer.buffer.len - rebase_reserved_capacity; + const preserve = @min(data.params.rebase.preserve, usable_capacity); + const capacity = @min(data.params.rebase.capacity, usable_capacity - + @max(rebase_min_preserve, preserve)); + try deflate_w.writer.rebase(preserve, capacity); + continue; + } + + const max_bytes = max_size -| expected_size; + const bytes = if (!data.is_bytes and buffered.len != 0) bytes: { + const dist = @min(buffered.len, @as(u32, data.params.copy.dist) + 1); + const len = @min( + @max(@shlExact(@as(u9, data.params.copy.len_hi), 5) | data.params.copy.len_lo, 1), + max_bytes, + ); + // Reuse the implementation's history. Otherwise our own would need maintained. + const bytes_start = buffered[buffered.len - dist ..]; + const history_bytes = bytes_start[0..@min(bytes_start.len, len)]; + + @memcpy(copy_buf[0..history_bytes.len], history_bytes); + const new_history = len - history_bytes.len; + if (history_bytes.len != len) for ( // check needed for `- dist` + copy_buf[history_bytes.len..][0..new_history], + copy_buf[history_bytes.len - dist ..][0..new_history], + ) |*next, prev| { + next.* = prev; + }; + break :bytes copy_buf[0..len]; + } else bytes: { + const off = @shlExact(@as(u16, data.params.bytes.off_hi), 12) | + @shlExact(@as(u16, data.params.bytes.off_mi), 8) | + data.params.bytes.off_lo; + const len = @shlExact(@as(u16, data.params.bytes.len_hi), 10) | + data.params.bytes.len_lo; + const fbuf = &fbufs[@intFromEnum(data.params.bytes.kind)]; + break :bytes fbuf[off..][0..@min(len, fbuf.len - off, max_bytes)]; + }; + assert(bytes.len <= max_bytes); + try deflate_w.writer.writeAll(bytes); + expected_hash.update(bytes); + expected_size += @intCast(bytes.len); + } + + try deflate_w.writer.flush(); + try testingCheckDecompressedMatches(flate_w.buffered(), expected_size, expected_hash); +} + +/// Does not compress data +pub const Raw = struct { + /// After `flush` is called, all vtable calls with result in `error.WriteFailed.` + writer: Writer, + output: *Writer, + hasher: flate.Container.Hasher, - pub const Strategy = enum { huffman, store }; + const max_block_size: u16 = 65535; + const full_header: [5]u8 = .{ + BlockHeader.int(.{ .final = false, .kind = .stored }), + 255, + 255, + 0, + 0, + }; - pub fn init(output: *Writer, buffer: []u8, container: Container, strategy: Strategy) !Simple { - const header = container.header(); - try output.writeAll(header); + /// While there is no minimum buffer size, it is recommended + /// to be at least `flate.max_window_len` for optimal output. + pub fn init(output: *Writer, buffer: []u8, container: flate.Container) Writer.Error!Raw { + try output.writeAll(container.header()); return .{ - .buffer = buffer, - .wp = 0, - .block_writer = .init(output), + .writer = .{ + .buffer = buffer, + .vtable = &.{ + .drain = Raw.drain, + .flush = Raw.flush, + .rebase = Raw.rebase, + }, + }, + .output = output, .hasher = .init(container), - .strategy = strategy, }; } - pub fn flush(self: *Simple) !void { - try self.flushBuffer(false); - try self.block_writer.storedBlock("", false); - try self.block_writer.flush(); + fn drain(w: *Writer, data: []const []const u8, splat: usize) Writer.Error!usize { + errdefer w.* = .failing; + const r: *Raw = @fieldParentPtr("writer", w); + const min_block = @min(w.buffer.len, max_block_size); + const pattern = data[data.len - 1]; + var partial_header: [5]u8 = undefined; + + var vecs: [16][]const u8 = undefined; + var vecs_n: usize = 0; + const data_bytes = Writer.countSplat(data, splat); + const total_bytes = w.end + data_bytes; + var rem_bytes = total_bytes; + var rem_splat = splat; + var rem_data = data; + var rem_data_elem: []const u8 = w.buffered(); + + assert(rem_bytes > min_block); + while (rem_bytes > min_block) { // not >= to allow `min_block` blocks to be marked as final + // also, it handles the case of `min_block` being zero (no buffer) + const block_size: u16 = @min(rem_bytes, max_block_size); + rem_bytes -= block_size; + + if (vecs_n == vecs.len) { + try r.output.writeVecAll(&vecs); + vecs_n = 0; + } + vecs[vecs_n] = if (block_size == 65535) + &full_header + else header: { + partial_header[0] = BlockHeader.int(.{ .final = false, .kind = .stored }); + mem.writeInt(u16, partial_header[1..3], block_size, .little); + mem.writeInt(u16, partial_header[3..5], ~block_size, .little); + break :header &partial_header; + }; + vecs_n += 1; + + var block_limit: Io.Limit = .limited(block_size); + while (true) { + if (vecs_n == vecs.len) { + try r.output.writeVecAll(&vecs); + vecs_n = 0; + } + + const vec = block_limit.sliceConst(rem_data_elem); + vecs[vecs_n] = vec; + vecs_n += 1; + r.hasher.update(vec); + + const is_pattern = rem_splat != splat and vec.len == pattern.len; + if (is_pattern) assert(pattern.len != 0); // exceeded countSplat + + if (!is_pattern or rem_splat == 0 or pattern.len > @intFromEnum(block_limit) / 2) { + rem_data_elem = rem_data_elem[vec.len..]; + block_limit = block_limit.subtract(vec.len).?; + + if (rem_data_elem.len == 0) { + rem_data_elem = rem_data[0]; + if (rem_data.len != 1) { + rem_data = rem_data[1..]; + } else if (rem_splat != 0) { + rem_splat -= 1; + } else { + // All of `data` has been consumed. + assert(block_limit == .nothing); + assert(rem_bytes == 0); + // Since `rem_bytes` and `block_limit` are zero, these won't be used. + rem_data = undefined; + rem_data_elem = undefined; + rem_splat = undefined; + } + } + if (block_limit == .nothing) break; + } else { + const out_splat = @intFromEnum(block_limit) / pattern.len; + assert(out_splat >= 2); + + try r.output.writeSplatAll(vecs[0..vecs_n], out_splat); + for (1..out_splat) |_| r.hasher.update(vec); + + vecs_n = 0; + block_limit = block_limit.subtract(pattern.len * out_splat).?; + if (rem_splat >= out_splat) { + // `out_splat` contains `rem_data`, however one more needs subtracted + // anyways since the next pattern is also being taken. + rem_splat -= out_splat; + } else { + // All of `data` has been consumed. + assert(block_limit == .nothing); + assert(rem_bytes == 0); + // Since `rem_bytes` and `block_limit` are zero, these won't be used. + rem_data = undefined; + rem_data_elem = undefined; + rem_splat = undefined; + } + if (block_limit == .nothing) break; + } + } + } + + if (vecs_n != 0) { // can be the case if a splat was sent + try r.output.writeVecAll(vecs[0..vecs_n]); + } + + if (rem_bytes > data_bytes) { + assert(rem_bytes - data_bytes == rem_data_elem.len); + assert(&rem_data_elem[0] == &w.buffer[total_bytes - rem_bytes]); + } + return w.consume(total_bytes - rem_bytes); + } + + fn flush(w: *Writer) Writer.Error!void { + defer w.* = .failing; + try Raw.rebaseInner(w, 0, w.buffer.len, true); } - pub fn finish(self: *Simple) !void { - try self.flushBuffer(true); - try self.block_writer.flush(); - try self.hasher.container().writeFooter(&self.hasher, self.block_writer.output); + fn rebase(w: *Writer, preserve: usize, capacity: usize) Writer.Error!void { + errdefer w.* = .failing; + try Raw.rebaseInner(w, preserve, capacity, false); } - fn flushBuffer(self: *Simple, final: bool) !void { - const buf = self.buffer[0..self.wp]; - switch (self.strategy) { - .huffman => try self.block_writer.huffmanBlock(buf, final), - .store => try self.block_writer.storedBlock(buf, final), + fn rebaseInner(w: *Writer, preserve: usize, capacity: usize, eos: bool) Writer.Error!void { + const r: *Raw = @fieldParentPtr("writer", w); + assert(preserve + capacity <= w.buffer.len); + if (eos) assert(capacity == w.buffer.len); + + var partial_header: [5]u8 = undefined; + var footer_buf: [8]u8 = undefined; + const preserved = @min(w.end, preserve); + var remaining = w.buffer[0 .. w.end - preserved]; + + var vecs: [16][]const u8 = undefined; + var vecs_n: usize = 0; + while (remaining.len > max_block_size) { // not >= so there is always a block down below + if (vecs_n == vecs.len) { + try r.output.writeVecAll(&vecs); + vecs_n = 0; + } + vecs[vecs_n + 0] = &full_header; + vecs[vecs_n + 1] = remaining[0..max_block_size]; + r.hasher.update(vecs[vecs_n + 1]); + vecs_n += 2; + remaining = remaining[max_block_size..]; + } + + // eos check required for empty block + if (w.buffer.len - (remaining.len + preserved) < capacity or eos) { + // A partial write is necessary to reclaim enough buffer space + const block_size: u16 = @intCast(remaining.len); + partial_header[0] = BlockHeader.int(.{ .final = eos, .kind = .stored }); + mem.writeInt(u16, partial_header[1..3], block_size, .little); + mem.writeInt(u16, partial_header[3..5], ~block_size, .little); + + if (vecs_n == vecs.len) { + try r.output.writeVecAll(&vecs); + vecs_n = 0; + } + vecs[vecs_n + 0] = &partial_header; + vecs[vecs_n + 1] = remaining[0..block_size]; + r.hasher.update(vecs[vecs_n + 1]); + vecs_n += 2; + remaining = remaining[block_size..]; + assert(remaining.len == 0); + + if (eos and r.hasher != .raw) { + // the footer is done here instead of `flush` so it can be included in the vector + var footer_w: Writer = .fixed(&footer_buf); + r.hasher.writeFooter(&footer_w) catch unreachable; + assert(footer_w.end != 0); + + if (vecs_n == vecs.len) { + try r.output.writeVecAll(&vecs); + return r.output.writeAll(footer_w.buffered()); + } else { + vecs[vecs_n] = footer_w.buffered(); + vecs_n += 1; + } + } } - self.wp = 0; + + try r.output.writeVecAll(vecs[0..vecs_n]); + _ = w.consume(w.end - preserved - remaining.len); } }; -test "generate a Huffman code from an array of frequencies" { - var freqs: [19]u16 = [_]u16{ - 8, // 0 - 1, // 1 - 1, // 2 - 2, // 3 - 5, // 4 - 10, // 5 - 9, // 6 - 1, // 7 - 0, // 8 - 0, // 9 - 0, // 10 - 0, // 11 - 0, // 12 - 0, // 13 - 0, // 14 - 0, // 15 - 1, // 16 - 3, // 17 - 5, // 18 +test Raw { + const data_buf = try std.testing.allocator.create([4 * 65536]u8); + defer if (!builtin.fuzz) std.testing.allocator.destroy(data_buf); + var prng: std.Random.DefaultPrng = .init(std.testing.random_seed); + prng.random().bytes(data_buf); + try std.testing.fuzz(data_buf, testFuzzedRawInput, .{}); +} + +fn countVec(data: []const []const u8) usize { + var bytes: usize = 0; + for (data) |d| bytes += d.len; + return bytes; +} + +fn testFuzzedRawInput(data_buf: *const [4 * 65536]u8, input: []const u8) !void { + const HashedStoreWriter = struct { + writer: Writer, + state: enum { + header, + block_header, + block_body, + final_block_body, + footer, + end, + }, + block_remaining: u16, + container: flate.Container, + data_hash: flate.Container.Hasher, + data_size: usize, + footer_hash: u32, + footer_size: u32, + + pub fn init(buf: []u8, container: flate.Container) @This() { + return .{ + .writer = .{ + .vtable = &.{ + .drain = @This().drain, + .flush = @This().flush, + }, + .buffer = buf, + }, + .state = .header, + .block_remaining = 0, + .container = container, + .data_hash = .init(container), + .data_size = 0, + .footer_hash = undefined, + .footer_size = undefined, + }; + } + + /// Note that this implementation is somewhat dependent on the implementation of + /// `Raw` by expecting headers / footers to be continous in data elements. It + /// also expects the header to be the same as `flate.Container.header` and not + /// for multiple streams to be concatenated. + fn drain(w: *Writer, data: []const []const u8, splat: usize) Writer.Error!usize { + errdefer w.* = .failing; + var h: *@This() = @fieldParentPtr("writer", w); + + var rem_splat = splat; + var rem_data = data; + var rem_data_elem: []const u8 = w.buffered(); + + data_loop: while (true) { + const wanted = switch (h.state) { + .header => h.container.headerSize(), + .block_header => 5, + .block_body, .final_block_body => h.block_remaining, + .footer => h.container.footerSize(), + .end => 1, + }; + + if (wanted != 0) { + while (rem_data_elem.len == 0) { + rem_data_elem = rem_data[0]; + if (rem_data.len != 1) { + rem_data = rem_data[1..]; + } else { + if (rem_splat == 0) { + break :data_loop; + } else { + rem_splat -= 1; + } + } + } + } + + const bytes = Io.Limit.limited(wanted).sliceConst(rem_data_elem); + rem_data_elem = rem_data_elem[bytes.len..]; + + switch (h.state) { + .header => { + if (bytes.len < wanted) + return error.WriteFailed; // header eos + if (!mem.eql(u8, bytes, h.container.header())) + return error.WriteFailed; // wrong header + h.state = .block_header; + }, + .block_header => { + if (bytes.len < wanted) + return error.WriteFailed; // store block header eos + const header: BlockHeader = @bitCast(@as(u3, @truncate(bytes[0]))); + if (header.kind != .stored) + return error.WriteFailed; // non-store block + const len = mem.readInt(u16, bytes[1..3], .little); + const nlen = mem.readInt(u16, bytes[3..5], .little); + if (nlen != ~len) + return error.WriteFailed; // wrong nlen + h.block_remaining = len; + h.state = if (!header.final) .block_body else .final_block_body; + }, + .block_body, .final_block_body => { + h.data_hash.update(bytes); + h.data_size += bytes.len; + h.block_remaining -= @intCast(bytes.len); + if (h.block_remaining == 0) { + h.state = if (h.state != .final_block_body) .block_header else .footer; + } + }, + .footer => { + if (bytes.len < wanted) + return error.WriteFailed; // footer eos + switch (h.container) { + .raw => {}, + .gzip => { + h.footer_hash = mem.readInt(u32, bytes[0..4], .little); + h.footer_size = mem.readInt(u32, bytes[4..8], .little); + }, + .zlib => { + h.footer_hash = mem.readInt(u32, bytes[0..4], .big); + }, + } + h.state = .end; + }, + .end => return error.WriteFailed, // data past end + } + } + + w.end = 0; + return Writer.countSplat(data, splat); + } + + fn flush(w: *Writer) Writer.Error!void { + defer w.* = .failing; // Clears buffer even if state hasn't reached `end` + _ = try @This().drain(w, &.{""}, 0); + } }; - var codes: [19]HuffmanEncoder.Code = undefined; - var enc: HuffmanEncoder = .{ - .codes = &codes, - .freq_cache = undefined, - .bit_count = undefined, - .lns = undefined, - .lfs = undefined, + var in: Io.Reader = .fixed(input); + const opts: packed struct(u19) { + container: PackedContainer, + buf_len: u17, + } = @bitCast(in.takeLeb128(u19) catch 0); + var output: HashedStoreWriter = .init(&.{}, opts.container.val()); + var r_buf: [2 * 65536]u8 = undefined; + var r: Raw = try .init( + &output.writer, + r_buf[0 .. opts.buf_len +% flate.max_window_len], + opts.container.val(), + ); + + var data_base: u18 = 0; + var expected_hash: flate.Container.Hasher = .init(opts.container.val()); + var expected_size: u32 = 0; + var vecs: [32][]const u8 = undefined; + var vecs_n: usize = 0; + + while (in.seek != in.end) { + const VecInfo = packed struct(u58) { + output: bool, + /// If set, `data_len` and `splat` are reinterpreted as `capacity` + /// and `preserve_len` respectively and `output` is treated as set. + rebase: bool, + block_aligning_len: bool, + block_aligning_splat: bool, + data_len: u18, + splat: u18, + data_off: u18, + }; + var vec_info: VecInfo = @bitCast(in.takeLeb128(u58) catch |e| switch (e) { + error.ReadFailed => unreachable, + error.Overflow, error.EndOfStream => 0, + }); + + { + const buffered = r.writer.buffered().len + countVec(vecs[0..vecs_n]); + const to_align = mem.alignForwardAnyAlign(usize, buffered, Raw.max_block_size) - buffered; + assert((buffered + to_align) % Raw.max_block_size == 0); + + if (vec_info.block_aligning_len) { + vec_info.data_len = @intCast(to_align); + } else if (vec_info.block_aligning_splat and vec_info.data_len != 0 and + to_align % vec_info.data_len == 0) + { + vec_info.splat = @divExact(@as(u18, @intCast(to_align)), vec_info.data_len) -% 1; + } + } + + var splat = if (vec_info.output and !vec_info.rebase) vec_info.splat +% 1 else 1; + add_vec: { + if (vec_info.rebase) break :add_vec; + if (expected_size +| math.mulWide(u18, vec_info.data_len, splat) > + 10 * (1 << 16)) + { + // Skip this vector to avoid this test taking too long. + // 10 maximum sized blocks is choosen as the limit since it is two more + // than the maximum the implementation can output in one drain. + splat = 1; + break :add_vec; + } + + vecs[vecs_n] = data_buf[@min( + data_base +% vec_info.data_off, + data_buf.len - vec_info.data_len, + )..][0..vec_info.data_len]; + + data_base +%= vec_info.data_len +% 3; // extra 3 to help catch aliasing bugs + + for (0..splat) |_| expected_hash.update(vecs[vecs_n]); + expected_size += @as(u32, @intCast(vecs[vecs_n].len)) * splat; + vecs_n += 1; + } + + const want_drain = vecs_n == vecs.len or vec_info.output or vec_info.rebase or + in.seek == in.end; + if (want_drain and vecs_n != 0) { + try r.writer.writeSplatAll(vecs[0..vecs_n], splat); + vecs_n = 0; + } else assert(splat == 1); + + if (vec_info.rebase) { + try r.writer.rebase(vec_info.data_len, @min( + r.writer.buffer.len -| vec_info.data_len, + vec_info.splat, + )); + } + } + + try r.writer.flush(); + try output.writer.flush(); + + try std.testing.expectEqual(.end, output.state); + try std.testing.expectEqual(expected_size, output.data_size); + switch (output.data_hash) { + .raw => {}, + .gzip => |gz| { + const expected_crc = expected_hash.gzip.crc.final(); + try std.testing.expectEqual(expected_crc, gz.crc.final()); + try std.testing.expectEqual(expected_crc, output.footer_hash); + try std.testing.expectEqual(expected_size, output.footer_size); + }, + .zlib => |zl| { + const expected_adler = expected_hash.zlib.adler; + try std.testing.expectEqual(expected_adler, zl.adler); + try std.testing.expectEqual(expected_adler, output.footer_hash); + }, + } +} + +/// Only performs huffman compression on data, does no matching. +pub const Huffman = struct { + writer: Writer, + bit_writer: BitWriter, + hasher: flate.Container.Hasher, + + const max_tokens: u16 = 65535 - 1; // one is reserved for EOF + + /// While there is no minimum buffer size, it is recommended + /// to be at least `flate.max_window_len` to improve compression. + /// + /// It is asserted `output` has a capacity of at least 8 bytes. + pub fn init(output: *Writer, buffer: []u8, container: flate.Container) Writer.Error!Huffman { + assert(output.buffer.len > 8); + + try output.writeAll(container.header()); + return .{ + .writer = .{ + .buffer = buffer, + .vtable = &.{ + .drain = Huffman.drain, + .flush = Huffman.flush, + .rebase = Huffman.rebase, + }, + }, + .bit_writer = .init(output), + .hasher = .init(container), + }; + } + + fn drain(w: *Writer, data: []const []const u8, splat: usize) Writer.Error!usize { + { + //std.debug.print("drain {} (buffered)", .{w.buffered().len}); + //for (data) |d| std.debug.print("\n\t+ {}", .{d.len}); + //std.debug.print(" x {}\n\n", .{splat}); + } + + const h: *Huffman = @fieldParentPtr("writer", w); + const min_block = @min(w.buffer.len, max_tokens); + const pattern = data[data.len - 1]; + + const data_bytes = Writer.countSplat(data, splat); + const total_bytes = w.end + data_bytes; + var rem_bytes = total_bytes; + var rem_splat = splat; + var rem_data = data; + var rem_data_elem: []const u8 = w.buffered(); + + assert(rem_bytes > min_block); + while (rem_bytes > min_block) { // not >= to allow `min_block` blocks to be marked as final + // also, it handles the case of `min_block` being zero (no buffer) + const block_size: u16 = @min(rem_bytes, max_tokens); + rem_bytes -= block_size; + + // Count frequencies + comptime assert(max_tokens != 65535); + var freqs: [257]u16 = @splat(0); + freqs[256] = 1; + + const start_splat = rem_splat; + const start_data = rem_data; + const start_data_elem = rem_data_elem; + + var block_limit: Io.Limit = .limited(block_size); + while (true) { + const bytes = block_limit.sliceConst(rem_data_elem); + const is_pattern = rem_splat != splat and bytes.len == pattern.len; + + const mul = if (!is_pattern) 1 else @intFromEnum(block_limit) / pattern.len; + assert(mul != 0); + if (is_pattern) assert(mul <= rem_splat + 1); // one more for `rem_data` + + for (bytes) |b| freqs[b] += @intCast(mul); + rem_data_elem = rem_data_elem[bytes.len..]; + block_limit = block_limit.subtract(bytes.len * mul).?; + + if (rem_data_elem.len == 0) { + rem_data_elem = rem_data[0]; + if (rem_data.len != 1) { + rem_data = rem_data[1..]; + } else if (rem_splat >= mul) { + // if the counter was not the pattern, `mul` is always one, otherwise, + // `mul` contains `rem_data`, however one more needs subtracted anyways + // since the next pattern is also being taken. + rem_splat -= mul; + } else { + // All of `data` has been consumed. + assert(block_limit == .nothing); + assert(rem_bytes == 0); + // Since `rem_bytes` and `block_limit` are zero, these won't be used. + rem_data = undefined; + rem_data_elem = undefined; + rem_splat = undefined; + } + } + if (block_limit == .nothing) break; + } + + // Output block + rem_splat = start_splat; + rem_data = start_data; + rem_data_elem = start_data_elem; + block_limit = .limited(block_size); + + var codes_buf: CodesBuf = .init; + if (try h.outputHeader(&freqs, &codes_buf, block_size, false)) |table| { + while (true) { + const bytes = block_limit.sliceConst(rem_data_elem); + rem_data_elem = rem_data_elem[bytes.len..]; + block_limit = block_limit.subtract(bytes.len).?; + + h.hasher.update(bytes); + for (bytes) |b| { + try h.bit_writer.write(table.codes[b], table.bits[b]); + } + + if (rem_data_elem.len == 0) { + rem_data_elem = rem_data[0]; + if (rem_data.len != 1) { + rem_data = rem_data[1..]; + } else if (rem_splat != 0) { + rem_splat -= 1; + } else { + // All of `data` has been consumed. + assert(block_limit == .nothing); + assert(rem_bytes == 0); + // Since `rem_bytes` and `block_limit` are zero, these won't be used. + rem_data = undefined; + rem_data_elem = undefined; + rem_splat = undefined; + } + } + if (block_limit == .nothing) break; + } + try h.bit_writer.write(table.codes[256], table.bits[256]); + } else while (true) { + // Store block + + // Write data that is not a full vector element + const in_pattern = rem_splat != splat; + const vec_elem_i, const in_data = + @subWithOverflow(data.len - (rem_data.len - @intFromBool(in_pattern)), 1); + const is_elem = in_data == 0 and data[vec_elem_i].len == rem_data_elem.len; + + if (!is_elem or rem_data_elem.len > @intFromEnum(block_limit)) { + block_limit = block_limit.subtract(rem_data_elem.len) orelse { + try h.bit_writer.output.writeAll(rem_data_elem[0..@intFromEnum(block_limit)]); + h.hasher.update(rem_data_elem[0..@intFromEnum(block_limit)]); + rem_data_elem = rem_data_elem[@intFromEnum(block_limit)..]; + assert(rem_data_elem.len != 0); + break; + }; + try h.bit_writer.output.writeAll(rem_data_elem); + h.hasher.update(rem_data_elem); + } else { + // Put `rem_data_elem` back in `rem_data` + if (!in_pattern) { + rem_data = data[vec_elem_i..]; + } else { + rem_splat += 1; + } + } + rem_data_elem = undefined; // it is always updated below + + // Send through as much of the original vector as possible + var vec_n: usize = 0; + var vlimit = block_limit; + const vec_splat = while (rem_data[vec_n..].len != 1) { + vlimit = vlimit.subtract(rem_data[vec_n].len) orelse break 1; + vec_n += 1; + } else vec_splat: { + // For `pattern.len == 0`, the value of `vec_splat` does not matter. + const vec_splat = @intFromEnum(vlimit) / @max(1, pattern.len); + if (pattern.len != 0) assert(vec_splat <= rem_splat + 1); + vlimit = vlimit.subtract(pattern.len * vec_splat).?; + vec_n += 1; + break :vec_splat vec_splat; + }; + + const n = if (vec_n != 0) n: { + assert(@intFromEnum(block_limit) - @intFromEnum(vlimit) == + Writer.countSplat(rem_data[0..vec_n], vec_splat)); + break :n try h.bit_writer.output.writeSplat(rem_data[0..vec_n], vec_splat); + } else 0; // Still go into the case below to advance the vector + block_limit = block_limit.subtract(n).?; + var consumed: Io.Limit = .limited(n); + + while (rem_data.len != 1) { + const elem = rem_data[0]; + rem_data = rem_data[1..]; + consumed = consumed.subtract(elem.len) orelse { + h.hasher.update(elem[0..@intFromEnum(consumed)]); + rem_data_elem = elem[@intFromEnum(consumed)..]; + break; + }; + h.hasher.update(elem); + } else { + if (pattern.len == 0) { + // All of `data` has been consumed. However, the general + // case below does not work since it divides by zero. + assert(consumed == .nothing); + assert(block_limit == .nothing); + assert(rem_bytes == 0); + // Since `rem_bytes` and `block_limit` are zero, these won't be used. + rem_splat = undefined; + rem_data = undefined; + rem_data_elem = undefined; + break; + } + + const splatted = @intFromEnum(consumed) / pattern.len; + const partial = @intFromEnum(consumed) % pattern.len; + for (0..splatted) |_| h.hasher.update(pattern); + h.hasher.update(pattern[0..partial]); + + const taken_splat = splatted + 1; + if (rem_splat >= taken_splat) { + rem_splat -= taken_splat; + rem_data_elem = pattern[partial..]; + } else { + // All of `data` has been consumed. + assert(partial == 0); + assert(block_limit == .nothing); + assert(rem_bytes == 0); + // Since `rem_bytes` and `block_limit` are zero, these won't be used. + rem_data = undefined; + rem_data_elem = undefined; + rem_splat = undefined; + } + } + + if (block_limit == .nothing) break; + } + } + + if (rem_bytes > data_bytes) { + assert(rem_bytes - data_bytes == rem_data_elem.len); + assert(&rem_data_elem[0] == &w.buffer[total_bytes - rem_bytes]); + } + return w.consume(total_bytes - rem_bytes); + } + + fn flush(w: *Writer) Writer.Error!void { + defer w.* = .failing; + const h: *Huffman = @fieldParentPtr("writer", w); + try Huffman.rebaseInner(w, 0, w.buffer.len, true); + try h.bit_writer.output.rebase(0, 1); + h.bit_writer.byteAlign(); + try h.hasher.writeFooter(h.bit_writer.output); + } + + fn rebase(w: *Writer, preserve: usize, capacity: usize) Writer.Error!void { + errdefer w.* = .failing; + try Huffman.rebaseInner(w, preserve, capacity, false); + } + + fn rebaseInner(w: *Writer, preserve: usize, capacity: usize, eos: bool) Writer.Error!void { + const h: *Huffman = @fieldParentPtr("writer", w); + assert(preserve + capacity <= w.buffer.len); + if (eos) assert(capacity == w.buffer.len); + + const preserved = @min(w.end, preserve); + var remaining = w.buffer[0 .. w.end - preserved]; + while (remaining.len > max_tokens) { // not >= so there is always a block down below + const bytes = remaining[0..max_tokens]; + remaining = remaining[max_tokens..]; + try h.outputBytes(bytes, false); + } + + // eos check required for empty block + if (w.buffer.len - (remaining.len + preserved) < capacity or eos) { + const bytes = remaining; + remaining = &.{}; + try h.outputBytes(bytes, eos); + } + + _ = w.consume(w.end - preserved - remaining.len); + } + + fn outputBytes(h: *Huffman, bytes: []const u8, eos: bool) Writer.Error!void { + comptime assert(max_tokens != 65535); + assert(bytes.len <= max_tokens); + var freqs: [257]u16 = @splat(0); + freqs[256] = 1; + for (bytes) |b| freqs[b] += 1; + h.hasher.update(bytes); + + var codes_buf: CodesBuf = .init; + if (try h.outputHeader(&freqs, &codes_buf, @intCast(bytes.len), eos)) |table| { + for (bytes) |b| { + try h.bit_writer.write(table.codes[b], table.bits[b]); + } + try h.bit_writer.write(table.codes[256], table.bits[256]); + } else { + try h.bit_writer.output.writeAll(bytes); + } + } + + const CodesBuf = struct { + dyn_codes: [258]u16, + dyn_bits: [258]u4, + + pub const init: CodesBuf = .{ + .dyn_codes = @as([257]u16, undefined) ++ .{0}, + .dyn_bits = @as([257]u4, @splat(0)) ++ .{1}, + }; }; - enc.generate(freqs[0..], 7); - - try testing.expectEqual(@as(u32, 141), enc.bitLength(freqs[0..])); - - try testing.expectEqual(@as(usize, 3), enc.codes[0].len); - try testing.expectEqual(@as(usize, 6), enc.codes[1].len); - try testing.expectEqual(@as(usize, 6), enc.codes[2].len); - try testing.expectEqual(@as(usize, 5), enc.codes[3].len); - try testing.expectEqual(@as(usize, 3), enc.codes[4].len); - try testing.expectEqual(@as(usize, 2), enc.codes[5].len); - try testing.expectEqual(@as(usize, 2), enc.codes[6].len); - try testing.expectEqual(@as(usize, 6), enc.codes[7].len); - try testing.expectEqual(@as(usize, 0), enc.codes[8].len); - try testing.expectEqual(@as(usize, 0), enc.codes[9].len); - try testing.expectEqual(@as(usize, 0), enc.codes[10].len); - try testing.expectEqual(@as(usize, 0), enc.codes[11].len); - try testing.expectEqual(@as(usize, 0), enc.codes[12].len); - try testing.expectEqual(@as(usize, 0), enc.codes[13].len); - try testing.expectEqual(@as(usize, 0), enc.codes[14].len); - try testing.expectEqual(@as(usize, 0), enc.codes[15].len); - try testing.expectEqual(@as(usize, 6), enc.codes[16].len); - try testing.expectEqual(@as(usize, 5), enc.codes[17].len); - try testing.expectEqual(@as(usize, 3), enc.codes[18].len); - - try testing.expectEqual(@as(u16, 0x0), enc.codes[5].code); - try testing.expectEqual(@as(u16, 0x2), enc.codes[6].code); - try testing.expectEqual(@as(u16, 0x1), enc.codes[0].code); - try testing.expectEqual(@as(u16, 0x5), enc.codes[4].code); - try testing.expectEqual(@as(u16, 0x3), enc.codes[18].code); - try testing.expectEqual(@as(u16, 0x7), enc.codes[3].code); - try testing.expectEqual(@as(u16, 0x17), enc.codes[17].code); - try testing.expectEqual(@as(u16, 0x0f), enc.codes[1].code); - try testing.expectEqual(@as(u16, 0x2f), enc.codes[2].code); - try testing.expectEqual(@as(u16, 0x1f), enc.codes[7].code); - try testing.expectEqual(@as(u16, 0x3f), enc.codes[16].code); + + /// Returns null if the block is stored. + fn outputHeader( + h: *Huffman, + freqs: *const [257]u16, + buf: *CodesBuf, + bytes: u16, + eos: bool, + ) Writer.Error!?struct { + codes: *const [257]u16, + bits: *const [257]u4, + } { + assert(freqs[256] == 1); + const dyn_codes_bitsize, _ = huffman.build( + freqs, + buf.dyn_codes[0..257], + buf.dyn_bits[0..257], + 15, + true, + ); + + var clen_values: [258]u8 = undefined; + var clen_extra: [258]u8 = undefined; + var clen_freqs: [19]u16 = @splat(0); + const clen_len, const clen_extra_bitsize = buildClen( + &buf.dyn_bits, + &clen_values, + &clen_extra, + &clen_freqs, + ); + + var clen_codes: [19]u16 = undefined; + var clen_bits: [19]u4 = @splat(0); + const clen_codes_bitsize, _ = huffman.build( + &clen_freqs, + &clen_codes, + &clen_bits, + 7, + false, + ); + const hclen = clenHlen(clen_freqs); + + const dynamic_bitsize = @as(u32, 14) + + (4 + @as(u6, hclen)) * 3 + clen_codes_bitsize + clen_extra_bitsize + + dyn_codes_bitsize; + const fixed_bitsize = n: { + const freq7 = 1; // eos + var freq9: u16 = 0; + for (freqs[144..256]) |f| freq9 += f; + const freq8: u16 = bytes - freq9; + break :n @as(u32, freq7) * 7 + @as(u32, freq8) * 8 + @as(u32, freq9) * 9; + }; + const stored_bitsize = n: { + const stored_align_bits = -%(h.bit_writer.buffered_n +% 3); + break :n stored_align_bits + @as(u32, 32) + @as(u32, bytes) * 8; + }; + + //std.debug.print("@ {}{{{}}} ", .{ h.bit_writer.output.end, h.bit_writer.buffered_n }); + //std.debug.print("#{} -> s {} f {} d {}\n", .{ bytes, stored_bitsize, fixed_bitsize, dynamic_bitsize }); + + if (stored_bitsize <= @min(dynamic_bitsize, fixed_bitsize)) { + try h.bit_writer.write(BlockHeader.int(.{ .kind = .stored, .final = eos }), 3); + try h.bit_writer.output.rebase(0, 5); + h.bit_writer.byteAlign(); + h.bit_writer.output.writeInt(u16, bytes, .little) catch unreachable; + h.bit_writer.output.writeInt(u16, ~bytes, .little) catch unreachable; + return null; + } + + if (fixed_bitsize <= dynamic_bitsize) { + try h.bit_writer.write(BlockHeader.int(.{ .final = eos, .kind = .fixed }), 3); + return .{ + .codes = token.fixed_lit_codes[0..257], + .bits = token.fixed_lit_bits[0..257], + }; + } else { + try h.bit_writer.write(BlockHeader.Dynamic.int(.{ + .regular = .{ .final = eos, .kind = .dynamic }, + .hlit = 0, + .hdist = 0, + .hclen = hclen, + }), 17); + try h.bit_writer.writeClen( + hclen, + clen_values[0..clen_len], + clen_extra[0..clen_len], + clen_codes, + clen_bits, + ); + return .{ .codes = buf.dyn_codes[0..257], .bits = buf.dyn_bits[0..257] }; + } + } +}; + +test Huffman { + const fbufs = try testingFreqBufs(); + defer if (!builtin.fuzz) std.testing.allocator.destroy(fbufs); + try std.testing.fuzz(fbufs, testFuzzedHuffmanInput, .{}); +} + +/// This function is derived from `testFuzzedRawInput` with a few changes for fuzzing `Huffman`. +fn testFuzzedHuffmanInput(fbufs: *const [2][65536]u8, input: []const u8) !void { + var in: Io.Reader = .fixed(input); + const opts: packed struct(u19) { + container: PackedContainer, + buf_len: u17, + } = @bitCast(in.takeLeb128(u19) catch 0); + var flate_buf: [2 * 65536]u8 = undefined; + var flate_w: Writer = .fixed(&flate_buf); + var h_buf: [2 * 65536]u8 = undefined; + var h: Huffman = try .init( + &flate_w, + h_buf[0 .. opts.buf_len +% flate.max_window_len], + opts.container.val(), + ); + + var expected_hash: flate.Container.Hasher = .init(opts.container.val()); + var expected_size: u32 = 0; + var vecs: [32][]const u8 = undefined; + var vecs_n: usize = 0; + + while (in.seek != in.end) { + const VecInfo = packed struct(u55) { + output: bool, + /// If set, `data_len` and `splat` are reinterpreted as `capacity` + /// and `preserve_len` respectively and `output` is treated as set. + rebase: bool, + block_aligning_len: bool, + block_aligning_splat: bool, + data_off_hi: u8, + random_data: u1, + data_len: u16, + splat: u18, + /// This is less useful as each value is part of the same gradient 'step' + data_off_lo: u8, + }; + var vec_info: VecInfo = @bitCast(in.takeLeb128(u55) catch |e| switch (e) { + error.ReadFailed => unreachable, + error.Overflow, error.EndOfStream => 0, + }); + + { + const buffered = h.writer.buffered().len + countVec(vecs[0..vecs_n]); + const to_align = mem.alignForwardAnyAlign(usize, buffered, Huffman.max_tokens) - buffered; + assert((buffered + to_align) % Huffman.max_tokens == 0); + + if (vec_info.block_aligning_len) { + vec_info.data_len = @intCast(to_align); + } else if (vec_info.block_aligning_splat and vec_info.data_len != 0 and + to_align % vec_info.data_len == 0) + { + vec_info.splat = @divExact(@as(u18, @intCast(to_align)), vec_info.data_len) -% 1; + } + } + + var splat = if (vec_info.output and !vec_info.rebase) vec_info.splat +% 1 else 1; + add_vec: { + if (vec_info.rebase) break :add_vec; + if (expected_size +| math.mulWide(u18, vec_info.data_len, splat) > 4 * (1 << 16)) { + // Skip this vector to avoid this test taking too long. + splat = 1; + break :add_vec; + } + + const data_buf = &fbufs[vec_info.random_data]; + vecs[vecs_n] = data_buf[@min( + (@as(u16, vec_info.data_off_hi) << 8) | vec_info.data_off_lo, + data_buf.len - vec_info.data_len, + )..][0..vec_info.data_len]; + + for (0..splat) |_| expected_hash.update(vecs[vecs_n]); + expected_size += @as(u32, @intCast(vecs[vecs_n].len)) * splat; + vecs_n += 1; + } + + const want_drain = vecs_n == vecs.len or vec_info.output or vec_info.rebase or + in.seek == in.end; + if (want_drain and vecs_n != 0) { + var n = h.writer.buffered().len + Writer.countSplat(vecs[0..vecs_n], splat); + const oos = h.writer.writeSplatAll(vecs[0..vecs_n], splat) == error.WriteFailed; + n -= h.writer.buffered().len; + const block_lim = math.divCeil(usize, n, Huffman.max_tokens) catch unreachable; + const lim = flate_w.end + 6 * block_lim + n; // 6 since block header may span two bytes + if (flate_w.end > lim) return error.OverheadTooLarge; + if (oos) return; + + vecs_n = 0; + } else assert(splat == 1); + + if (vec_info.rebase) { + const old_end = flate_w.end; + var n = h.writer.buffered().len; + const oos = h.writer.rebase(vec_info.data_len, @min( + h.writer.buffer.len -| vec_info.data_len, + vec_info.splat, + )) == error.WriteFailed; + n -= h.writer.buffered().len; + const block_lim = math.divCeil(usize, n, Huffman.max_tokens) catch unreachable; + const lim = old_end + 6 * block_lim + n; // 6 since block header may span two bytes + if (flate_w.end > lim) return error.OverheadTooLarge; + if (oos) return; + } + } + + { + const old_end = flate_w.end; + const n = h.writer.buffered().len; + const oos = h.writer.flush() == error.WriteFailed; + assert(h.writer.buffered().len == 0); + const block_lim = @max(1, math.divCeil(usize, n, Huffman.max_tokens) catch unreachable); + const lim = old_end + 6 * block_lim + n + opts.container.val().footerSize(); + if (flate_w.end > lim) return error.OverheadTooLarge; + if (oos) return; + } + + try testingCheckDecompressedMatches(flate_w.buffered(), expected_size, expected_hash); } |
