aboutsummaryrefslogtreecommitdiff
path: root/lib/std/math/float.zig
diff options
context:
space:
mode:
authorAndrew Kelley <andrew@ziglang.org>2022-07-12 23:29:21 -0700
committerAndrew Kelley <andrew@ziglang.org>2022-07-13 11:14:46 -0700
commitefe34243c674a06ead171adcce67a71efdf057e3 (patch)
treec78340f97422ff6dc6d25c60606a5bb1f41505e6 /lib/std/math/float.zig
parent1fee9eac8bb5d2e3e78c098b9cebe2cda332e7cf (diff)
downloadzig-efe34243c674a06ead171adcce67a71efdf057e3.tar.gz
zig-efe34243c674a06ead171adcce67a71efdf057e3.zip
std.math: add `inline` to some functions
These functions semantically benefit from being inline; it makes sense that `isInf(x)` where `x` is comptime-known should have a comptime-known result.
Diffstat (limited to 'lib/std/math/float.zig')
-rw-r--r--lib/std/math/float.zig24
1 files changed, 12 insertions, 12 deletions
diff --git a/lib/std/math/float.zig b/lib/std/math/float.zig
index 72c7f086ac..1e44778576 100644
--- a/lib/std/math/float.zig
+++ b/lib/std/math/float.zig
@@ -3,19 +3,19 @@ const assert = std.debug.assert;
const expect = std.testing.expect;
/// Creates a raw "1.0" mantissa for floating point type T. Used to dedupe f80 logic.
-fn mantissaOne(comptime T: type) comptime_int {
+inline fn mantissaOne(comptime T: type) comptime_int {
return if (@typeInfo(T).Float.bits == 80) 1 << floatFractionalBits(T) else 0;
}
/// Creates floating point type T from an unbiased exponent and raw mantissa.
-fn reconstructFloat(comptime T: type, exponent: comptime_int, mantissa: comptime_int) T {
+inline fn reconstructFloat(comptime T: type, exponent: comptime_int, mantissa: comptime_int) T {
const TBits = std.meta.Int(.unsigned, @bitSizeOf(T));
const biased_exponent = @as(TBits, exponent + floatExponentMax(T));
return @bitCast(T, (biased_exponent << floatMantissaBits(T)) | @as(TBits, mantissa));
}
/// Returns the number of bits in the exponent of floating point type T.
-pub fn floatExponentBits(comptime T: type) comptime_int {
+pub inline fn floatExponentBits(comptime T: type) comptime_int {
assert(@typeInfo(T) == .Float);
return switch (@typeInfo(T).Float.bits) {
@@ -29,7 +29,7 @@ pub fn floatExponentBits(comptime T: type) comptime_int {
}
/// Returns the number of bits in the mantissa of floating point type T.
-pub fn floatMantissaBits(comptime T: type) comptime_int {
+pub inline fn floatMantissaBits(comptime T: type) comptime_int {
assert(@typeInfo(T) == .Float);
return switch (@typeInfo(T).Float.bits) {
@@ -43,7 +43,7 @@ pub fn floatMantissaBits(comptime T: type) comptime_int {
}
/// Returns the number of fractional bits in the mantissa of floating point type T.
-pub fn floatFractionalBits(comptime T: type) comptime_int {
+pub inline fn floatFractionalBits(comptime T: type) comptime_int {
assert(@typeInfo(T) == .Float);
// standard IEEE floats have an implicit 0.m or 1.m integer part
@@ -61,39 +61,39 @@ pub fn floatFractionalBits(comptime T: type) comptime_int {
/// Returns the minimum exponent that can represent
/// a normalised value in floating point type T.
-pub fn floatExponentMin(comptime T: type) comptime_int {
+pub inline fn floatExponentMin(comptime T: type) comptime_int {
return -floatExponentMax(T) + 1;
}
/// Returns the maximum exponent that can represent
/// a normalised value in floating point type T.
-pub fn floatExponentMax(comptime T: type) comptime_int {
+pub inline fn floatExponentMax(comptime T: type) comptime_int {
return (1 << (floatExponentBits(T) - 1)) - 1;
}
/// Returns the smallest subnormal number representable in floating point type T.
-pub fn floatTrueMin(comptime T: type) T {
+pub inline fn floatTrueMin(comptime T: type) T {
return reconstructFloat(T, floatExponentMin(T) - 1, 1);
}
/// Returns the smallest normal number representable in floating point type T.
-pub fn floatMin(comptime T: type) T {
+pub inline fn floatMin(comptime T: type) T {
return reconstructFloat(T, floatExponentMin(T), mantissaOne(T));
}
/// Returns the largest normal number representable in floating point type T.
-pub fn floatMax(comptime T: type) T {
+pub inline fn floatMax(comptime T: type) T {
const all1s_mantissa = (1 << floatMantissaBits(T)) - 1;
return reconstructFloat(T, floatExponentMax(T), all1s_mantissa);
}
/// Returns the machine epsilon of floating point type T.
-pub fn floatEps(comptime T: type) T {
+pub inline fn floatEps(comptime T: type) T {
return reconstructFloat(T, -floatFractionalBits(T), mantissaOne(T));
}
/// Returns the value inf for floating point type T.
-pub fn inf(comptime T: type) T {
+pub inline fn inf(comptime T: type) T {
return reconstructFloat(T, floatExponentMax(T) + 1, mantissaOne(T));
}