aboutsummaryrefslogtreecommitdiff
path: root/lib/std/debug/ElfFile.zig
diff options
context:
space:
mode:
authormlugg <mlugg@mlugg.co.uk>2025-09-09 14:20:49 +0100
committermlugg <mlugg@mlugg.co.uk>2025-09-30 13:44:52 +0100
commitc1a30bd0d876330ce7a241fc297c66577ae7e6aa (patch)
treefbc6e50c11746e259fb5366caf57fce40c4d6964 /lib/std/debug/ElfFile.zig
parentf7980487395b660d5c568ba57891ab371a27102d (diff)
downloadzig-c1a30bd0d876330ce7a241fc297c66577ae7e6aa.tar.gz
zig-c1a30bd0d876330ce7a241fc297c66577ae7e6aa.zip
std: replace debug.Dwarf.ElfModule with debug.ElfFile
This abstraction isn't really tied to DWARF at all! Really, we're just loading some information from an ELF file which is useful for debugging. That *includes* DWARF, but it also includes other information. For instance, the other change here: Now, if DWARF information is missing, `debug.SelfInfo.ElfModule` will name symbols by finding a matching symtab entry. We actually already do this on Mach-O, so it makes obvious sense to do the same on ELF! This change is what motivated the restructuring to begin with. The symtab work is derived from #22077. Co-authored-by: geemili <opensource@geemili.xyz>
Diffstat (limited to 'lib/std/debug/ElfFile.zig')
-rw-r--r--lib/std/debug/ElfFile.zig536
1 files changed, 536 insertions, 0 deletions
diff --git a/lib/std/debug/ElfFile.zig b/lib/std/debug/ElfFile.zig
new file mode 100644
index 0000000000..b8f1bdf615
--- /dev/null
+++ b/lib/std/debug/ElfFile.zig
@@ -0,0 +1,536 @@
+//! A helper type for loading an ELF file and collecting its DWARF debug information, unwind
+//! information, and symbol table.
+
+is_64: bool,
+endian: Endian,
+
+/// This is `null` iff any of the required DWARF sections were missing. `ElfFile.load` does *not*
+/// call `Dwarf.open`, `Dwarf.scanAllFunctions`, etc; that is the caller's responsibility.
+dwarf: ?Dwarf,
+
+/// If non-`null`, describes the `.eh_frame` section, which can be used with `Dwarf.Unwind`.
+eh_frame: ?UnwindSection,
+/// If non-`null`, describes the `.debug_frame` section, which can be used with `Dwarf.Unwind`.
+debug_frame: ?UnwindSection,
+
+/// If non-`null`, this is the contents of the `.strtab` section.
+strtab: ?[]const u8,
+/// If non-`null`, describes the `.symtab` section.
+symtab: ?SymtabSection,
+
+/// Binary search table lazily populated by `searchSymtab`.
+symbol_search_table: ?[]u64,
+
+/// The memory-mapped ELF file, which is referenced by `dwarf`. This field is here only so that
+/// this memory can be unmapped by `ElfFile.deinit`.
+mapped_file: []align(std.heap.page_size_min) const u8,
+/// Sometimes, debug info is stored separately to the main ELF file. In that case, `mapped_file`
+/// is the mapped ELF binary, and `mapped_debug_file` is the mapped debug info file. Both must
+/// be unmapped by `ElfFile.deinit`.
+mapped_debug_file: ?[]align(std.heap.page_size_min) const u8,
+
+arena: std.heap.ArenaAllocator.State,
+
+pub const UnwindSection = struct {
+ vaddr: u64,
+ bytes: []const u8,
+};
+pub const SymtabSection = struct {
+ entry_size: u64,
+ bytes: []const u8,
+};
+
+pub const DebugInfoSearchPaths = struct {
+ /// The location of a debuginfod client directory, which acts as a search path for build IDs. If
+ /// given, we can load from this directory opportunistically, but make no effort to populate it.
+ /// To avoid allocation when building the search paths, this is given as two components which
+ /// will be concatenated.
+ debuginfod_client: ?[2][]const u8,
+ /// All "global debug directories" on the system. These are used as search paths for both debug
+ /// links and build IDs. On typical systems this is just "/usr/lib/debug".
+ global_debug: []const []const u8,
+ /// The path to the dirname of the ELF file, which acts as a search path for debug links.
+ exe_dir: ?[]const u8,
+
+ pub const none: DebugInfoSearchPaths = .{
+ .debuginfod_client = null,
+ .global_debug = &.{},
+ .exe_dir = null,
+ };
+
+ pub fn native(exe_path: []const u8) DebugInfoSearchPaths {
+ return .{
+ .debuginfod_client = p: {
+ if (std.posix.getenv("DEBUGINFOD_CACHE_PATH")) |p| {
+ break :p .{ p, "" };
+ }
+ if (std.posix.getenv("XDG_CACHE_HOME")) |cache_path| {
+ break :p .{ cache_path, "/debuginfod_client" };
+ }
+ if (std.posix.getenv("HOME")) |home_path| {
+ break :p .{ home_path, "/.cache/debuginfod_client" };
+ }
+ break :p null;
+ },
+ .global_debug = &.{
+ "/usr/lib/debug",
+ },
+ .exe_dir = std.fs.path.dirname(exe_path) orelse ".",
+ };
+ }
+};
+
+pub fn deinit(ef: *ElfFile, gpa: Allocator) void {
+ if (ef.dwarf) |*dwarf| dwarf.deinit(gpa);
+ if (ef.symbol_search_table) |t| gpa.free(t);
+ var arena = ef.arena.promote(gpa);
+ arena.deinit();
+
+ std.posix.munmap(ef.mapped_file);
+ if (ef.mapped_debug_file) |m| std.posix.munmap(m);
+
+ ef.* = undefined;
+}
+
+pub const LoadError = error{
+ OutOfMemory,
+ Overflow,
+ TruncatedElfFile,
+ InvalidCompressedSection,
+ InvalidElfMagic,
+ InvalidElfVersion,
+ InvalidElfClass,
+ InvalidElfEndian,
+ // The remaining errors all occur when attemping to stat or mmap a file.
+ SystemResources,
+ MemoryMappingNotSupported,
+ AccessDenied,
+ LockedMemoryLimitExceeded,
+ ProcessFdQuotaExceeded,
+ SystemFdQuotaExceeded,
+ Unexpected,
+};
+
+pub fn load(
+ gpa: Allocator,
+ elf_file: std.fs.File,
+ opt_build_id: ?[]const u8,
+ di_search_paths: *const DebugInfoSearchPaths,
+) LoadError!ElfFile {
+ var arena_instance: std.heap.ArenaAllocator = .init(gpa);
+ errdefer arena_instance.deinit();
+ const arena = arena_instance.allocator();
+
+ var result = loadInner(arena, elf_file, null) catch |err| switch (err) {
+ error.CrcMismatch => unreachable, // we passed crc as null
+ else => |e| return e,
+ };
+ errdefer std.posix.munmap(result.mapped_mem);
+
+ // `loadInner` did most of the work, but we might need to load an external debug info file
+
+ const di_mapped_mem: ?[]align(std.heap.page_size_min) const u8 = load_di: {
+ if (result.sections.get(.debug_info) != null and
+ result.sections.get(.debug_abbrev) != null and
+ result.sections.get(.debug_str) != null and
+ result.sections.get(.debug_line) != null)
+ {
+ // The info is already loaded from this file alone!
+ break :load_di null;
+ }
+
+ // We're missing some debug info---let's try and load it from a separate file.
+
+ build_id: {
+ const build_id = opt_build_id orelse break :build_id;
+ if (build_id.len < 3) break :build_id;
+
+ for (di_search_paths.global_debug) |global_debug| {
+ if (try loadSeparateDebugFile(arena, &result, null, "{s}/.build-id/{x}/{x}.debug", .{
+ global_debug,
+ build_id[0..1],
+ build_id[1..],
+ })) |mapped| break :load_di mapped;
+ }
+
+ if (di_search_paths.debuginfod_client) |components| {
+ if (try loadSeparateDebugFile(arena, &result, null, "{s}{s}/{x}/debuginfo", .{
+ components[0],
+ components[1],
+ build_id,
+ })) |mapped| break :load_di mapped;
+ }
+ }
+
+ debug_link: {
+ const section = result.sections.get(.gnu_debuglink) orelse break :debug_link;
+ const debug_filename = std.mem.sliceTo(section.bytes, 0);
+ const crc_offset = std.mem.alignForward(usize, debug_filename.len + 1, 4);
+ if (section.bytes.len < crc_offset + 4) break :debug_link;
+ const debug_crc = std.mem.readInt(u32, section.bytes[crc_offset..][0..4], result.endian);
+
+ const exe_dir = di_search_paths.exe_dir orelse break :debug_link;
+
+ if (try loadSeparateDebugFile(arena, &result, debug_crc, "{s}/{s}", .{
+ exe_dir,
+ debug_filename,
+ })) |mapped| break :load_di mapped;
+ if (try loadSeparateDebugFile(arena, &result, debug_crc, "{s}/.debug/{s}", .{
+ exe_dir,
+ debug_filename,
+ })) |mapped| break :load_di mapped;
+ for (di_search_paths.global_debug) |global_debug| {
+ // This looks like a bug; it isn't. They really do embed the absolute path to the
+ // exe's dirname, *under* the global debug path.
+ if (try loadSeparateDebugFile(arena, &result, debug_crc, "{s}/{s}/{s}", .{
+ global_debug,
+ exe_dir,
+ debug_filename,
+ })) |mapped| break :load_di mapped;
+ }
+ }
+
+ break :load_di null;
+ };
+ errdefer comptime unreachable;
+
+ return .{
+ .is_64 = result.is_64,
+ .endian = result.endian,
+ .dwarf = dwarf: {
+ if (result.sections.get(.debug_info) == null or
+ result.sections.get(.debug_abbrev) == null or
+ result.sections.get(.debug_str) == null or
+ result.sections.get(.debug_line) == null)
+ {
+ break :dwarf null; // debug info not present
+ }
+ var sections: Dwarf.SectionArray = @splat(null);
+ inline for (@typeInfo(Dwarf.Section.Id).@"enum".fields) |f| {
+ if (result.sections.get(@field(Section.Id, f.name))) |s| {
+ sections[f.value] = .{ .data = s.bytes, .owned = false };
+ }
+ }
+ break :dwarf .{ .sections = sections };
+ },
+ .eh_frame = if (result.sections.get(.eh_frame)) |s| .{
+ .vaddr = s.header.sh_addr,
+ .bytes = s.bytes,
+ } else null,
+ .debug_frame = if (result.sections.get(.debug_frame)) |s| .{
+ .vaddr = s.header.sh_addr,
+ .bytes = s.bytes,
+ } else null,
+ .strtab = if (result.sections.get(.strtab)) |s| s.bytes else null,
+ .symtab = if (result.sections.get(.symtab)) |s| .{
+ .entry_size = s.header.sh_entsize,
+ .bytes = s.bytes,
+ } else null,
+ .symbol_search_table = null,
+ .mapped_file = result.mapped_mem,
+ .mapped_debug_file = di_mapped_mem,
+ .arena = arena_instance.state,
+ };
+}
+
+pub fn searchSymtab(ef: *ElfFile, gpa: Allocator, vaddr: u64) error{
+ NoSymtab,
+ NoStrtab,
+ BadSymtab,
+ OutOfMemory,
+}!std.debug.Symbol {
+ const symtab = ef.symtab orelse return error.NoSymtab;
+ const strtab = ef.strtab orelse return error.NoStrtab;
+
+ if (symtab.bytes.len % symtab.entry_size != 0) return error.BadSymtab;
+
+ const swap_endian = ef.endian != @import("builtin").cpu.arch.endian();
+
+ switch (ef.is_64) {
+ inline true, false => |is_64| {
+ const Sym = if (is_64) elf.Elf64_Sym else elf.Elf32_Sym;
+ if (symtab.entry_size != @sizeOf(Sym)) return error.BadSymtab;
+ const symbols: []align(1) const Sym = @ptrCast(symtab.bytes);
+ if (ef.symbol_search_table == null) {
+ ef.symbol_search_table = try buildSymbolSearchTable(gpa, ef.endian, Sym, symbols);
+ }
+ const search_table = ef.symbol_search_table.?;
+ const SearchContext = struct {
+ swap_endian: bool,
+ target: u64,
+ symbols: []align(1) const Sym,
+ fn predicate(ctx: @This(), sym_index: u64) bool {
+ // We need to return `true` for the first N items, then `false` for the rest --
+ // the index we'll get out is the first `false` one. So, we'll return `true` iff
+ // the target address is after the *end* of this symbol. This synchronizes with
+ // the logic in `buildSymbolSearchTable` which sorts by *end* address.
+ var sym = ctx.symbols[sym_index];
+ if (ctx.swap_endian) std.mem.byteSwapAllFields(Sym, &sym);
+ const sym_end = sym.st_value + sym.st_size;
+ return ctx.target >= sym_end;
+ }
+ };
+ const sym_index_index = std.sort.partitionPoint(u64, search_table, @as(SearchContext, .{
+ .swap_endian = swap_endian,
+ .target = vaddr,
+ .symbols = symbols,
+ }), SearchContext.predicate);
+ if (sym_index_index == search_table.len) return .unknown;
+ var sym = symbols[search_table[sym_index_index]];
+ if (swap_endian) std.mem.byteSwapAllFields(Sym, &sym);
+ if (vaddr < sym.st_value or vaddr >= sym.st_value + sym.st_size) return .unknown;
+ return .{
+ .name = std.mem.sliceTo(strtab[sym.st_name..], 0),
+ .compile_unit_name = null,
+ .source_location = null,
+ };
+ },
+ }
+}
+
+fn buildSymbolSearchTable(gpa: Allocator, endian: Endian, comptime Sym: type, symbols: []align(1) const Sym) error{
+ OutOfMemory,
+ BadSymtab,
+}![]u64 {
+ var result: std.ArrayList(u64) = .empty;
+ defer result.deinit(gpa);
+
+ const swap_endian = endian != @import("builtin").cpu.arch.endian();
+
+ for (symbols, 0..) |sym_orig, sym_index| {
+ var sym = sym_orig;
+ if (swap_endian) std.mem.byteSwapAllFields(Sym, &sym);
+ if (sym.st_name == 0) continue;
+ if (sym.st_shndx == elf.SHN_UNDEF) continue;
+ try result.append(gpa, sym_index);
+ }
+
+ const SortContext = struct {
+ swap_endian: bool,
+ symbols: []align(1) const Sym,
+ fn lessThan(ctx: @This(), lhs_sym_index: u64, rhs_sym_index: u64) bool {
+ // We sort by *end* address, not start address. This matches up with logic in `searchSymtab`.
+ var lhs_sym = ctx.symbols[lhs_sym_index];
+ var rhs_sym = ctx.symbols[rhs_sym_index];
+ if (ctx.swap_endian) {
+ std.mem.byteSwapAllFields(Sym, &lhs_sym);
+ std.mem.byteSwapAllFields(Sym, &rhs_sym);
+ }
+ const lhs_val = lhs_sym.st_value + lhs_sym.st_size;
+ const rhs_val = rhs_sym.st_value + rhs_sym.st_size;
+ return lhs_val < rhs_val;
+ }
+ };
+ std.mem.sort(u64, result.items, @as(SortContext, .{
+ .swap_endian = swap_endian,
+ .symbols = symbols,
+ }), SortContext.lessThan);
+
+ return result.toOwnedSlice(gpa);
+}
+
+/// Only used locally, during `load`.
+const Section = struct {
+ header: elf.Elf64_Shdr,
+ bytes: []const u8,
+ const Id = enum {
+ // DWARF sections: see `Dwarf.Section.Id`.
+ debug_info,
+ debug_abbrev,
+ debug_str,
+ debug_str_offsets,
+ debug_line,
+ debug_line_str,
+ debug_ranges,
+ debug_loclists,
+ debug_rnglists,
+ debug_addr,
+ debug_names,
+ // Then anything else we're interested in.
+ gnu_debuglink,
+ eh_frame,
+ debug_frame,
+ symtab,
+ strtab,
+ };
+ const Array = std.enums.EnumArray(Section.Id, ?Section);
+};
+
+fn loadSeparateDebugFile(arena: Allocator, main_loaded: *LoadInnerResult, opt_crc: ?u32, comptime fmt: []const u8, args: anytype) Allocator.Error!?[]align(std.heap.page_size_min) const u8 {
+ const path = try std.fmt.allocPrint(arena, fmt, args);
+ const elf_file = std.fs.cwd().openFile(path, .{}) catch return null;
+ defer elf_file.close();
+
+ const result = loadInner(arena, elf_file, opt_crc) catch |err| switch (err) {
+ error.OutOfMemory => |e| return e,
+ error.CrcMismatch => return null,
+ else => return null,
+ };
+ errdefer comptime unreachable;
+
+ const have_debug_sections = inline for (@as([]const []const u8, &.{
+ "debug_info",
+ "debug_abbrev",
+ "debug_str",
+ "debug_line",
+ })) |name| {
+ const s = @field(Section.Id, name);
+ if (main_loaded.sections.get(s) == null and result.sections.get(s) != null) {
+ break false;
+ }
+ } else true;
+
+ if (result.is_64 != main_loaded.is_64 or
+ result.endian != main_loaded.endian or
+ !have_debug_sections)
+ {
+ std.posix.munmap(result.mapped_mem);
+ return null;
+ }
+
+ inline for (@typeInfo(Dwarf.Section.Id).@"enum".fields) |f| {
+ const id = @field(Section.Id, f.name);
+ if (main_loaded.sections.get(id) == null) {
+ main_loaded.sections.set(id, result.sections.get(id));
+ }
+ }
+
+ return result.mapped_mem;
+}
+
+const LoadInnerResult = struct {
+ is_64: bool,
+ endian: Endian,
+ sections: Section.Array,
+ mapped_mem: []align(std.heap.page_size_min) const u8,
+};
+fn loadInner(
+ arena: Allocator,
+ elf_file: std.fs.File,
+ opt_crc: ?u32,
+) (LoadError || error{CrcMismatch})!LoadInnerResult {
+ const mapped_mem: []align(std.heap.page_size_min) const u8 = mapped: {
+ const file_len = std.math.cast(
+ usize,
+ elf_file.getEndPos() catch |err| switch (err) {
+ error.PermissionDenied => unreachable, // not asking for PROT_EXEC
+ else => |e| return e,
+ },
+ ) orelse return error.Overflow;
+
+ break :mapped std.posix.mmap(
+ null,
+ file_len,
+ std.posix.PROT.READ,
+ .{ .TYPE = .SHARED },
+ elf_file.handle,
+ 0,
+ ) catch |err| switch (err) {
+ error.MappingAlreadyExists => unreachable, // not using FIXED_NOREPLACE
+ error.PermissionDenied => unreachable, // not asking for PROT_EXEC
+ else => |e| return e,
+ };
+ };
+
+ if (opt_crc) |crc| {
+ if (std.hash.crc.Crc32.hash(mapped_mem) != crc) {
+ return error.CrcMismatch;
+ }
+ }
+ errdefer std.posix.munmap(mapped_mem);
+
+ var fr: std.Io.Reader = .fixed(mapped_mem);
+
+ const header = elf.Header.read(&fr) catch |err| switch (err) {
+ error.ReadFailed => unreachable,
+ error.EndOfStream => return error.TruncatedElfFile,
+
+ error.InvalidElfMagic,
+ error.InvalidElfVersion,
+ error.InvalidElfClass,
+ error.InvalidElfEndian,
+ => |e| return e,
+ };
+ const endian = header.endian;
+
+ const shstrtab_shdr_off = try std.math.add(
+ u64,
+ header.shoff,
+ try std.math.mul(u64, header.shstrndx, header.shentsize),
+ );
+ fr.seek = std.math.cast(usize, shstrtab_shdr_off) orelse return error.Overflow;
+ const shstrtab: []const u8 = if (header.is_64) shstrtab: {
+ const shdr = fr.takeStruct(elf.Elf64_Shdr, endian) catch return error.TruncatedElfFile;
+ if (shdr.sh_offset + shdr.sh_size > mapped_mem.len) return error.TruncatedElfFile;
+ break :shstrtab mapped_mem[@intCast(shdr.sh_offset)..][0..@intCast(shdr.sh_size)];
+ } else shstrtab: {
+ const shdr = fr.takeStruct(elf.Elf32_Shdr, endian) catch return error.TruncatedElfFile;
+ if (shdr.sh_offset + shdr.sh_size > mapped_mem.len) return error.TruncatedElfFile;
+ break :shstrtab mapped_mem[@intCast(shdr.sh_offset)..][0..@intCast(shdr.sh_size)];
+ };
+
+ var sections: Section.Array = .initFill(null);
+
+ var it = header.iterateSectionHeadersBuffer(mapped_mem);
+ while (it.next() catch return error.TruncatedElfFile) |shdr| {
+ if (shdr.sh_type == elf.SHT_NULL or shdr.sh_type == elf.SHT_NOBITS) continue;
+ if (shdr.sh_name > shstrtab.len) return error.TruncatedElfFile;
+ const name = std.mem.sliceTo(shstrtab[@intCast(shdr.sh_name)..], 0);
+
+ const section_id: Section.Id = inline for (@typeInfo(Section.Id).@"enum".fields) |s| {
+ if (std.mem.eql(u8, "." ++ s.name, name)) {
+ break @enumFromInt(s.value);
+ }
+ } else continue;
+
+ if (sections.get(section_id) != null) continue;
+
+ if (shdr.sh_offset + shdr.sh_size > mapped_mem.len) return error.TruncatedElfFile;
+ const raw_section_bytes = mapped_mem[@intCast(shdr.sh_offset)..][0..@intCast(shdr.sh_size)];
+ const section_bytes: []const u8 = bytes: {
+ if ((shdr.sh_flags & elf.SHF_COMPRESSED) == 0) break :bytes raw_section_bytes;
+
+ var section_reader: std.Io.Reader = .fixed(raw_section_bytes);
+ const ch_type: elf.COMPRESS, const ch_size: u64 = if (header.is_64) ch: {
+ const chdr = section_reader.takeStruct(elf.Elf64_Chdr, endian) catch return error.InvalidCompressedSection;
+ break :ch .{ chdr.ch_type, chdr.ch_size };
+ } else ch: {
+ const chdr = section_reader.takeStruct(elf.Elf32_Chdr, endian) catch return error.InvalidCompressedSection;
+ break :ch .{ chdr.ch_type, chdr.ch_size };
+ };
+ if (ch_type != .ZLIB) {
+ // The compression algorithm is unsupported, but don't make that a hard error; the
+ // file might still be valid, and we might still be okay without this section.
+ continue;
+ }
+
+ const buf = try arena.alloc(u8, ch_size);
+ var fw: std.Io.Writer = .fixed(buf);
+ var decompress: std.compress.flate.Decompress = .init(&section_reader, .zlib, &.{});
+ const n = decompress.reader.streamRemaining(&fw) catch |err| switch (err) {
+ // If a write failed, then `buf` filled up, so `ch_size` was incorrect
+ error.WriteFailed => return error.InvalidCompressedSection,
+ // If a read failed, flate expected the section to have more data
+ error.ReadFailed => return error.InvalidCompressedSection,
+ };
+ // It's also an error if the data is shorter than expected.
+ if (n != buf.len) return error.InvalidCompressedSection;
+ break :bytes buf;
+ };
+ sections.set(section_id, .{ .header = shdr, .bytes = section_bytes });
+ }
+
+ return .{
+ .is_64 = header.is_64,
+ .endian = endian,
+ .sections = sections,
+ .mapped_mem = mapped_mem,
+ };
+}
+
+const std = @import("std");
+const Endian = std.builtin.Endian;
+const Dwarf = std.debug.Dwarf;
+const ElfFile = @This();
+const Allocator = std.mem.Allocator;
+const elf = std.elf;