aboutsummaryrefslogtreecommitdiff
path: root/lib/mbedtls-2.27.0/library/bignum.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/mbedtls-2.27.0/library/bignum.c')
-rw-r--r--lib/mbedtls-2.27.0/library/bignum.c3384
1 files changed, 3384 insertions, 0 deletions
diff --git a/lib/mbedtls-2.27.0/library/bignum.c b/lib/mbedtls-2.27.0/library/bignum.c
new file mode 100644
index 0000000..20afa22
--- /dev/null
+++ b/lib/mbedtls-2.27.0/library/bignum.c
@@ -0,0 +1,3384 @@
+/*
+ * Multi-precision integer library
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License"); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/*
+ * The following sources were referenced in the design of this Multi-precision
+ * Integer library:
+ *
+ * [1] Handbook of Applied Cryptography - 1997
+ * Menezes, van Oorschot and Vanstone
+ *
+ * [2] Multi-Precision Math
+ * Tom St Denis
+ * https://github.com/libtom/libtommath/blob/develop/tommath.pdf
+ *
+ * [3] GNU Multi-Precision Arithmetic Library
+ * https://gmplib.org/manual/index.html
+ *
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_BIGNUM_C)
+
+#include "mbedtls/bignum.h"
+#include "mbedtls/bn_mul.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+
+#include <string.h>
+
+#if defined(MBEDTLS_PLATFORM_C)
+#include "mbedtls/platform.h"
+#else
+#include <stdio.h>
+#include <stdlib.h>
+#define mbedtls_printf printf
+#define mbedtls_calloc calloc
+#define mbedtls_free free
+#endif
+
+#define MPI_VALIDATE_RET( cond ) \
+ MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_MPI_BAD_INPUT_DATA )
+#define MPI_VALIDATE( cond ) \
+ MBEDTLS_INTERNAL_VALIDATE( cond )
+
+#define ciL (sizeof(mbedtls_mpi_uint)) /* chars in limb */
+#define biL (ciL << 3) /* bits in limb */
+#define biH (ciL << 2) /* half limb size */
+
+#define MPI_SIZE_T_MAX ( (size_t) -1 ) /* SIZE_T_MAX is not standard */
+
+/*
+ * Convert between bits/chars and number of limbs
+ * Divide first in order to avoid potential overflows
+ */
+#define BITS_TO_LIMBS(i) ( (i) / biL + ( (i) % biL != 0 ) )
+#define CHARS_TO_LIMBS(i) ( (i) / ciL + ( (i) % ciL != 0 ) )
+
+/* Implementation that should never be optimized out by the compiler */
+static void mbedtls_mpi_zeroize( mbedtls_mpi_uint *v, size_t n )
+{
+ mbedtls_platform_zeroize( v, ciL * n );
+}
+
+/*
+ * Initialize one MPI
+ */
+void mbedtls_mpi_init( mbedtls_mpi *X )
+{
+ MPI_VALIDATE( X != NULL );
+
+ X->s = 1;
+ X->n = 0;
+ X->p = NULL;
+}
+
+/*
+ * Unallocate one MPI
+ */
+void mbedtls_mpi_free( mbedtls_mpi *X )
+{
+ if( X == NULL )
+ return;
+
+ if( X->p != NULL )
+ {
+ mbedtls_mpi_zeroize( X->p, X->n );
+ mbedtls_free( X->p );
+ }
+
+ X->s = 1;
+ X->n = 0;
+ X->p = NULL;
+}
+
+/*
+ * Enlarge to the specified number of limbs
+ */
+int mbedtls_mpi_grow( mbedtls_mpi *X, size_t nblimbs )
+{
+ mbedtls_mpi_uint *p;
+ MPI_VALIDATE_RET( X != NULL );
+
+ if( nblimbs > MBEDTLS_MPI_MAX_LIMBS )
+ return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
+
+ if( X->n < nblimbs )
+ {
+ if( ( p = (mbedtls_mpi_uint*)mbedtls_calloc( nblimbs, ciL ) ) == NULL )
+ return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
+
+ if( X->p != NULL )
+ {
+ memcpy( p, X->p, X->n * ciL );
+ mbedtls_mpi_zeroize( X->p, X->n );
+ mbedtls_free( X->p );
+ }
+
+ X->n = nblimbs;
+ X->p = p;
+ }
+
+ return( 0 );
+}
+
+/*
+ * Resize down as much as possible,
+ * while keeping at least the specified number of limbs
+ */
+int mbedtls_mpi_shrink( mbedtls_mpi *X, size_t nblimbs )
+{
+ mbedtls_mpi_uint *p;
+ size_t i;
+ MPI_VALIDATE_RET( X != NULL );
+
+ if( nblimbs > MBEDTLS_MPI_MAX_LIMBS )
+ return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
+
+ /* Actually resize up if there are currently fewer than nblimbs limbs. */
+ if( X->n <= nblimbs )
+ return( mbedtls_mpi_grow( X, nblimbs ) );
+ /* After this point, then X->n > nblimbs and in particular X->n > 0. */
+
+ for( i = X->n - 1; i > 0; i-- )
+ if( X->p[i] != 0 )
+ break;
+ i++;
+
+ if( i < nblimbs )
+ i = nblimbs;
+
+ if( ( p = (mbedtls_mpi_uint*)mbedtls_calloc( i, ciL ) ) == NULL )
+ return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
+
+ if( X->p != NULL )
+ {
+ memcpy( p, X->p, i * ciL );
+ mbedtls_mpi_zeroize( X->p, X->n );
+ mbedtls_free( X->p );
+ }
+
+ X->n = i;
+ X->p = p;
+
+ return( 0 );
+}
+
+/* Resize X to have exactly n limbs and set it to 0. */
+static int mbedtls_mpi_resize_clear( mbedtls_mpi *X, size_t limbs )
+{
+ if( limbs == 0 )
+ {
+ mbedtls_mpi_free( X );
+ return( 0 );
+ }
+ else if( X->n == limbs )
+ {
+ memset( X->p, 0, limbs * ciL );
+ X->s = 1;
+ return( 0 );
+ }
+ else
+ {
+ mbedtls_mpi_free( X );
+ return( mbedtls_mpi_grow( X, limbs ) );
+ }
+}
+
+/*
+ * Copy the contents of Y into X.
+ *
+ * This function is not constant-time. Leading zeros in Y may be removed.
+ *
+ * Ensure that X does not shrink. This is not guaranteed by the public API,
+ * but some code in the bignum module relies on this property, for example
+ * in mbedtls_mpi_exp_mod().
+ */
+int mbedtls_mpi_copy( mbedtls_mpi *X, const mbedtls_mpi *Y )
+{
+ int ret = 0;
+ size_t i;
+ MPI_VALIDATE_RET( X != NULL );
+ MPI_VALIDATE_RET( Y != NULL );
+
+ if( X == Y )
+ return( 0 );
+
+ if( Y->n == 0 )
+ {
+ if( X->n != 0 )
+ {
+ X->s = 1;
+ memset( X->p, 0, X->n * ciL );
+ }
+ return( 0 );
+ }
+
+ for( i = Y->n - 1; i > 0; i-- )
+ if( Y->p[i] != 0 )
+ break;
+ i++;
+
+ X->s = Y->s;
+
+ if( X->n < i )
+ {
+ MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i ) );
+ }
+ else
+ {
+ memset( X->p + i, 0, ( X->n - i ) * ciL );
+ }
+
+ memcpy( X->p, Y->p, i * ciL );
+
+cleanup:
+
+ return( ret );
+}
+
+/*
+ * Swap the contents of X and Y
+ */
+void mbedtls_mpi_swap( mbedtls_mpi *X, mbedtls_mpi *Y )
+{
+ mbedtls_mpi T;
+ MPI_VALIDATE( X != NULL );
+ MPI_VALIDATE( Y != NULL );
+
+ memcpy( &T, X, sizeof( mbedtls_mpi ) );
+ memcpy( X, Y, sizeof( mbedtls_mpi ) );
+ memcpy( Y, &T, sizeof( mbedtls_mpi ) );
+}
+
+/**
+ * Select between two sign values in constant-time.
+ *
+ * This is functionally equivalent to second ? a : b but uses only bit
+ * operations in order to avoid branches.
+ *
+ * \param[in] a The first sign; must be either +1 or -1.
+ * \param[in] b The second sign; must be either +1 or -1.
+ * \param[in] second Must be either 1 (return b) or 0 (return a).
+ *
+ * \return The selected sign value.
+ */
+static int mpi_safe_cond_select_sign( int a, int b, unsigned char second )
+{
+ /* In order to avoid questions about what we can reasonnably assume about
+ * the representations of signed integers, move everything to unsigned
+ * by taking advantage of the fact that a and b are either +1 or -1. */
+ unsigned ua = a + 1;
+ unsigned ub = b + 1;
+
+ /* second was 0 or 1, mask is 0 or 2 as are ua and ub */
+ const unsigned mask = second << 1;
+
+ /* select ua or ub */
+ unsigned ur = ( ua & ~mask ) | ( ub & mask );
+
+ /* ur is now 0 or 2, convert back to -1 or +1 */
+ return( (int) ur - 1 );
+}
+
+/*
+ * Conditionally assign dest = src, without leaking information
+ * about whether the assignment was made or not.
+ * dest and src must be arrays of limbs of size n.
+ * assign must be 0 or 1.
+ */
+static void mpi_safe_cond_assign( size_t n,
+ mbedtls_mpi_uint *dest,
+ const mbedtls_mpi_uint *src,
+ unsigned char assign )
+{
+ size_t i;
+
+ /* MSVC has a warning about unary minus on unsigned integer types,
+ * but this is well-defined and precisely what we want to do here. */
+#if defined(_MSC_VER)
+#pragma warning( push )
+#pragma warning( disable : 4146 )
+#endif
+
+ /* all-bits 1 if assign is 1, all-bits 0 if assign is 0 */
+ const mbedtls_mpi_uint mask = -assign;
+
+#if defined(_MSC_VER)
+#pragma warning( pop )
+#endif
+
+ for( i = 0; i < n; i++ )
+ dest[i] = ( src[i] & mask ) | ( dest[i] & ~mask );
+}
+
+/*
+ * Conditionally assign X = Y, without leaking information
+ * about whether the assignment was made or not.
+ * (Leaking information about the respective sizes of X and Y is ok however.)
+ */
+int mbedtls_mpi_safe_cond_assign( mbedtls_mpi *X, const mbedtls_mpi *Y, unsigned char assign )
+{
+ int ret = 0;
+ size_t i;
+ mbedtls_mpi_uint limb_mask;
+ MPI_VALIDATE_RET( X != NULL );
+ MPI_VALIDATE_RET( Y != NULL );
+
+ /* MSVC has a warning about unary minus on unsigned integer types,
+ * but this is well-defined and precisely what we want to do here. */
+#if defined(_MSC_VER)
+#pragma warning( push )
+#pragma warning( disable : 4146 )
+#endif
+
+ /* make sure assign is 0 or 1 in a time-constant manner */
+ assign = (assign | (unsigned char)-assign) >> (sizeof( assign ) * 8 - 1);
+ /* all-bits 1 if assign is 1, all-bits 0 if assign is 0 */
+ limb_mask = -assign;
+
+#if defined(_MSC_VER)
+#pragma warning( pop )
+#endif
+
+ MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, Y->n ) );
+
+ X->s = mpi_safe_cond_select_sign( X->s, Y->s, assign );
+
+ mpi_safe_cond_assign( Y->n, X->p, Y->p, assign );
+
+ for( i = Y->n; i < X->n; i++ )
+ X->p[i] &= ~limb_mask;
+
+cleanup:
+ return( ret );
+}
+
+/*
+ * Conditionally swap X and Y, without leaking information
+ * about whether the swap was made or not.
+ * Here it is not ok to simply swap the pointers, which whould lead to
+ * different memory access patterns when X and Y are used afterwards.
+ */
+int mbedtls_mpi_safe_cond_swap( mbedtls_mpi *X, mbedtls_mpi *Y, unsigned char swap )
+{
+ int ret, s;
+ size_t i;
+ mbedtls_mpi_uint limb_mask;
+ mbedtls_mpi_uint tmp;
+ MPI_VALIDATE_RET( X != NULL );
+ MPI_VALIDATE_RET( Y != NULL );
+
+ if( X == Y )
+ return( 0 );
+
+ /* MSVC has a warning about unary minus on unsigned integer types,
+ * but this is well-defined and precisely what we want to do here. */
+#if defined(_MSC_VER)
+#pragma warning( push )
+#pragma warning( disable : 4146 )
+#endif
+
+ /* make sure swap is 0 or 1 in a time-constant manner */
+ swap = (swap | (unsigned char)-swap) >> (sizeof( swap ) * 8 - 1);
+ /* all-bits 1 if swap is 1, all-bits 0 if swap is 0 */
+ limb_mask = -swap;
+
+#if defined(_MSC_VER)
+#pragma warning( pop )
+#endif
+
+ MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, Y->n ) );
+ MBEDTLS_MPI_CHK( mbedtls_mpi_grow( Y, X->n ) );
+
+ s = X->s;
+ X->s = mpi_safe_cond_select_sign( X->s, Y->s, swap );
+ Y->s = mpi_safe_cond_select_sign( Y->s, s, swap );
+
+
+ for( i = 0; i < X->n; i++ )
+ {
+ tmp = X->p[i];
+ X->p[i] = ( X->p[i] & ~limb_mask ) | ( Y->p[i] & limb_mask );
+ Y->p[i] = ( Y->p[i] & ~limb_mask ) | ( tmp & limb_mask );
+ }
+
+cleanup:
+ return( ret );
+}
+
+/*
+ * Set value from integer
+ */
+int mbedtls_mpi_lset( mbedtls_mpi *X, mbedtls_mpi_sint z )
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ MPI_VALIDATE_RET( X != NULL );
+
+ MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, 1 ) );
+ memset( X->p, 0, X->n * ciL );
+
+ X->p[0] = ( z < 0 ) ? -z : z;
+ X->s = ( z < 0 ) ? -1 : 1;
+
+cleanup:
+
+ return( ret );
+}
+
+/*
+ * Get a specific bit
+ */
+int mbedtls_mpi_get_bit( const mbedtls_mpi *X, size_t pos )
+{
+ MPI_VALIDATE_RET( X != NULL );
+
+ if( X->n * biL <= pos )
+ return( 0 );
+
+ return( ( X->p[pos / biL] >> ( pos % biL ) ) & 0x01 );
+}
+
+/* Get a specific byte, without range checks. */
+#define GET_BYTE( X, i ) \
+ ( ( ( X )->p[( i ) / ciL] >> ( ( ( i ) % ciL ) * 8 ) ) & 0xff )
+
+/*
+ * Set a bit to a specific value of 0 or 1
+ */
+int mbedtls_mpi_set_bit( mbedtls_mpi *X, size_t pos, unsigned char val )
+{
+ int ret = 0;
+ size_t off = pos / biL;
+ size_t idx = pos % biL;
+ MPI_VALIDATE_RET( X != NULL );
+
+ if( val != 0 && val != 1 )
+ return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
+
+ if( X->n * biL <= pos )
+ {
+ if( val == 0 )
+ return( 0 );
+
+ MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, off + 1 ) );
+ }
+
+ X->p[off] &= ~( (mbedtls_mpi_uint) 0x01 << idx );
+ X->p[off] |= (mbedtls_mpi_uint) val << idx;
+
+cleanup:
+
+ return( ret );
+}
+
+/*
+ * Return the number of less significant zero-bits
+ */
+size_t mbedtls_mpi_lsb( const mbedtls_mpi *X )
+{
+ size_t i, j, count = 0;
+ MBEDTLS_INTERNAL_VALIDATE_RET( X != NULL, 0 );
+
+ for( i = 0; i < X->n; i++ )
+ for( j = 0; j < biL; j++, count++ )
+ if( ( ( X->p[i] >> j ) & 1 ) != 0 )
+ return( count );
+
+ return( 0 );
+}
+
+/*
+ * Count leading zero bits in a given integer
+ */
+static size_t mbedtls_clz( const mbedtls_mpi_uint x )
+{
+ size_t j;
+ mbedtls_mpi_uint mask = (mbedtls_mpi_uint) 1 << (biL - 1);
+
+ for( j = 0; j < biL; j++ )
+ {
+ if( x & mask ) break;
+
+ mask >>= 1;
+ }
+
+ return j;
+}
+
+/*
+ * Return the number of bits
+ */
+size_t mbedtls_mpi_bitlen( const mbedtls_mpi *X )
+{
+ size_t i, j;
+
+ if( X->n == 0 )
+ return( 0 );
+
+ for( i = X->n - 1; i > 0; i-- )
+ if( X->p[i] != 0 )
+ break;
+
+ j = biL - mbedtls_clz( X->p[i] );
+
+ return( ( i * biL ) + j );
+}
+
+/*
+ * Return the total size in bytes
+ */
+size_t mbedtls_mpi_size( const mbedtls_mpi *X )
+{
+ return( ( mbedtls_mpi_bitlen( X ) + 7 ) >> 3 );
+}
+
+/*
+ * Convert an ASCII character to digit value
+ */
+static int mpi_get_digit( mbedtls_mpi_uint *d, int radix, char c )
+{
+ *d = 255;
+
+ if( c >= 0x30 && c <= 0x39 ) *d = c - 0x30;
+ if( c >= 0x41 && c <= 0x46 ) *d = c - 0x37;
+ if( c >= 0x61 && c <= 0x66 ) *d = c - 0x57;
+
+ if( *d >= (mbedtls_mpi_uint) radix )
+ return( MBEDTLS_ERR_MPI_INVALID_CHARACTER );
+
+ return( 0 );
+}
+
+/*
+ * Import from an ASCII string
+ */
+int mbedtls_mpi_read_string( mbedtls_mpi *X, int radix, const char *s )
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t i, j, slen, n;
+ int sign = 1;
+ mbedtls_mpi_uint d;
+ mbedtls_mpi T;
+ MPI_VALIDATE_RET( X != NULL );
+ MPI_VALIDATE_RET( s != NULL );
+
+ if( radix < 2 || radix > 16 )
+ return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
+
+ mbedtls_mpi_init( &T );
+
+ if( s[0] == 0 )
+ {
+ mbedtls_mpi_free( X );
+ return( 0 );
+ }
+
+ if( s[0] == '-' )
+ {
+ ++s;
+ sign = -1;
+ }
+
+ slen = strlen( s );
+
+ if( radix == 16 )
+ {
+ if( slen > MPI_SIZE_T_MAX >> 2 )
+ return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
+
+ n = BITS_TO_LIMBS( slen << 2 );
+
+ MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, n ) );
+ MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
+
+ for( i = slen, j = 0; i > 0; i--, j++ )
+ {
+ MBEDTLS_MPI_CHK( mpi_get_digit( &d, radix, s[i - 1] ) );
+ X->p[j / ( 2 * ciL )] |= d << ( ( j % ( 2 * ciL ) ) << 2 );
+ }
+ }
+ else
+ {
+ MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
+
+ for( i = 0; i < slen; i++ )
+ {
+ MBEDTLS_MPI_CHK( mpi_get_digit( &d, radix, s[i] ) );
+ MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T, X, radix ) );
+ MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, &T, d ) );
+ }
+ }
+
+ if( sign < 0 && mbedtls_mpi_bitlen( X ) != 0 )
+ X->s = -1;
+
+cleanup:
+
+ mbedtls_mpi_free( &T );
+
+ return( ret );
+}
+
+/*
+ * Helper to write the digits high-order first.
+ */
+static int mpi_write_hlp( mbedtls_mpi *X, int radix,
+ char **p, const size_t buflen )
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_mpi_uint r;
+ size_t length = 0;
+ char *p_end = *p + buflen;
+
+ do
+ {
+ if( length >= buflen )
+ {
+ return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
+ }
+
+ MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, radix ) );
+ MBEDTLS_MPI_CHK( mbedtls_mpi_div_int( X, NULL, X, radix ) );
+ /*
+ * Write the residue in the current position, as an ASCII character.
+ */
+ if( r < 0xA )
+ *(--p_end) = (char)( '0' + r );
+ else
+ *(--p_end) = (char)( 'A' + ( r - 0xA ) );
+
+ length++;
+ } while( mbedtls_mpi_cmp_int( X, 0 ) != 0 );
+
+ memmove( *p, p_end, length );
+ *p += length;
+
+cleanup:
+
+ return( ret );
+}
+
+/*
+ * Export into an ASCII string
+ */
+int mbedtls_mpi_write_string( const mbedtls_mpi *X, int radix,
+ char *buf, size_t buflen, size_t *olen )
+{
+ int ret = 0;
+ size_t n;
+ char *p;
+ mbedtls_mpi T;
+ MPI_VALIDATE_RET( X != NULL );
+ MPI_VALIDATE_RET( olen != NULL );
+ MPI_VALIDATE_RET( buflen == 0 || buf != NULL );
+
+ if( radix < 2 || radix > 16 )
+ return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
+
+ n = mbedtls_mpi_bitlen( X ); /* Number of bits necessary to present `n`. */
+ if( radix >= 4 ) n >>= 1; /* Number of 4-adic digits necessary to present
+ * `n`. If radix > 4, this might be a strict
+ * overapproximation of the number of
+ * radix-adic digits needed to present `n`. */
+ if( radix >= 16 ) n >>= 1; /* Number of hexadecimal digits necessary to
+ * present `n`. */
+
+ n += 1; /* Terminating null byte */
+ n += 1; /* Compensate for the divisions above, which round down `n`
+ * in case it's not even. */
+ n += 1; /* Potential '-'-sign. */
+ n += ( n & 1 ); /* Make n even to have enough space for hexadecimal writing,
+ * which always uses an even number of hex-digits. */
+
+ if( buflen < n )
+ {
+ *olen = n;
+ return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
+ }
+
+ p = buf;
+ mbedtls_mpi_init( &T );
+
+ if( X->s == -1 )
+ {
+ *p++ = '-';
+ buflen--;
+ }
+
+ if( radix == 16 )
+ {
+ int c;
+ size_t i, j, k;
+
+ for( i = X->n, k = 0; i > 0; i-- )
+ {
+ for( j = ciL; j > 0; j-- )
+ {
+ c = ( X->p[i - 1] >> ( ( j - 1 ) << 3) ) & 0xFF;
+
+ if( c == 0 && k == 0 && ( i + j ) != 2 )
+ continue;
+
+ *(p++) = "0123456789ABCDEF" [c / 16];
+ *(p++) = "0123456789ABCDEF" [c % 16];
+ k = 1;
+ }
+ }
+ }
+ else
+ {
+ MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &T, X ) );
+
+ if( T.s == -1 )
+ T.s = 1;
+
+ MBEDTLS_MPI_CHK( mpi_write_hlp( &T, radix, &p, buflen ) );
+ }
+
+ *p++ = '\0';
+ *olen = p - buf;
+
+cleanup:
+
+ mbedtls_mpi_free( &T );
+
+ return( ret );
+}
+
+#if defined(MBEDTLS_FS_IO)
+/*
+ * Read X from an opened file
+ */
+int mbedtls_mpi_read_file( mbedtls_mpi *X, int radix, FILE *fin )
+{
+ mbedtls_mpi_uint d;
+ size_t slen;
+ char *p;
+ /*
+ * Buffer should have space for (short) label and decimal formatted MPI,
+ * newline characters and '\0'
+ */
+ char s[ MBEDTLS_MPI_RW_BUFFER_SIZE ];
+
+ MPI_VALIDATE_RET( X != NULL );
+ MPI_VALIDATE_RET( fin != NULL );
+
+ if( radix < 2 || radix > 16 )
+ return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
+
+ memset( s, 0, sizeof( s ) );
+ if( fgets( s, sizeof( s ) - 1, fin ) == NULL )
+ return( MBEDTLS_ERR_MPI_FILE_IO_ERROR );
+
+ slen = strlen( s );
+ if( slen == sizeof( s ) - 2 )
+ return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
+
+ if( slen > 0 && s[slen - 1] == '\n' ) { slen--; s[slen] = '\0'; }
+ if( slen > 0 && s[slen - 1] == '\r' ) { slen--; s[slen] = '\0'; }
+
+ p = s + slen;
+ while( p-- > s )
+ if( mpi_get_digit( &d, radix, *p ) != 0 )
+ break;
+
+ return( mbedtls_mpi_read_string( X, radix, p + 1 ) );
+}
+
+/*
+ * Write X into an opened file (or stdout if fout == NULL)
+ */
+int mbedtls_mpi_write_file( const char *p, const mbedtls_mpi *X, int radix, FILE *fout )
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t n, slen, plen;
+ /*
+ * Buffer should have space for (short) label and decimal formatted MPI,
+ * newline characters and '\0'
+ */
+ char s[ MBEDTLS_MPI_RW_BUFFER_SIZE ];
+ MPI_VALIDATE_RET( X != NULL );
+
+ if( radix < 2 || radix > 16 )
+ return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
+
+ memset( s, 0, sizeof( s ) );
+
+ MBEDTLS_MPI_CHK( mbedtls_mpi_write_string( X, radix, s, sizeof( s ) - 2, &n ) );
+
+ if( p == NULL ) p = "";
+
+ plen = strlen( p );
+ slen = strlen( s );
+ s[slen++] = '\r';
+ s[slen++] = '\n';
+
+ if( fout != NULL )
+ {
+ if( fwrite( p, 1, plen, fout ) != plen ||
+ fwrite( s, 1, slen, fout ) != slen )
+ return( MBEDTLS_ERR_MPI_FILE_IO_ERROR );
+ }
+ else
+ mbedtls_printf( "%s%s", p, s );
+
+cleanup:
+
+ return( ret );
+}
+#endif /* MBEDTLS_FS_IO */
+
+
+/* Convert a big-endian byte array aligned to the size of mbedtls_mpi_uint
+ * into the storage form used by mbedtls_mpi. */
+
+static mbedtls_mpi_uint mpi_uint_bigendian_to_host_c( mbedtls_mpi_uint x )
+{
+ uint8_t i;
+ unsigned char *x_ptr;
+ mbedtls_mpi_uint tmp = 0;
+
+ for( i = 0, x_ptr = (unsigned char*) &x; i < ciL; i++, x_ptr++ )
+ {
+ tmp <<= CHAR_BIT;
+ tmp |= (mbedtls_mpi_uint) *x_ptr;
+ }
+
+ return( tmp );
+}
+
+static mbedtls_mpi_uint mpi_uint_bigendian_to_host( mbedtls_mpi_uint x )
+{
+#if defined(__BYTE_ORDER__)
+
+/* Nothing to do on bigendian systems. */
+#if ( __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ )
+ return( x );
+#endif /* __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ */
+
+#if ( __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ )
+
+/* For GCC and Clang, have builtins for byte swapping. */
+#if defined(__GNUC__) && defined(__GNUC_PREREQ)
+#if __GNUC_PREREQ(4,3)
+#define have_bswap
+#endif
+#endif
+
+#if defined(__clang__) && defined(__has_builtin)
+#if __has_builtin(__builtin_bswap32) && \
+ __has_builtin(__builtin_bswap64)
+#define have_bswap
+#endif
+#endif
+
+#if defined(have_bswap)
+ /* The compiler is hopefully able to statically evaluate this! */
+ switch( sizeof(mbedtls_mpi_uint) )
+ {
+ case 4:
+ return( __builtin_bswap32(x) );
+ case 8:
+ return( __builtin_bswap64(x) );
+ }
+#endif
+#endif /* __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ */
+#endif /* __BYTE_ORDER__ */
+
+ /* Fall back to C-based reordering if we don't know the byte order
+ * or we couldn't use a compiler-specific builtin. */
+ return( mpi_uint_bigendian_to_host_c( x ) );
+}
+
+static void mpi_bigendian_to_host( mbedtls_mpi_uint * const p, size_t limbs )
+{
+ mbedtls_mpi_uint *cur_limb_left;
+ mbedtls_mpi_uint *cur_limb_right;
+ if( limbs == 0 )
+ return;
+
+ /*
+ * Traverse limbs and
+ * - adapt byte-order in each limb
+ * - swap the limbs themselves.
+ * For that, simultaneously traverse the limbs from left to right
+ * and from right to left, as long as the left index is not bigger
+ * than the right index (it's not a problem if limbs is odd and the
+ * indices coincide in the last iteration).
+ */
+ for( cur_limb_left = p, cur_limb_right = p + ( limbs - 1 );
+ cur_limb_left <= cur_limb_right;
+ cur_limb_left++, cur_limb_right-- )
+ {
+ mbedtls_mpi_uint tmp;
+ /* Note that if cur_limb_left == cur_limb_right,
+ * this code effectively swaps the bytes only once. */
+ tmp = mpi_uint_bigendian_to_host( *cur_limb_left );
+ *cur_limb_left = mpi_uint_bigendian_to_host( *cur_limb_right );
+ *cur_limb_right = tmp;
+ }
+}
+
+/*
+ * Import X from unsigned binary data, little endian
+ */
+int mbedtls_mpi_read_binary_le( mbedtls_mpi *X,
+ const unsigned char *buf, size_t buflen )
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t i;
+ size_t const limbs = CHARS_TO_LIMBS( buflen );
+
+ /* Ensure that target MPI has exactly the necessary number of limbs */
+ MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, limbs ) );
+
+ for( i = 0; i < buflen; i++ )
+ X->p[i / ciL] |= ((mbedtls_mpi_uint) buf[i]) << ((i % ciL) << 3);
+
+cleanup:
+
+ /*
+ * This function is also used to import keys. However, wiping the buffers
+ * upon failure is not necessary because failure only can happen before any
+ * input is copied.
+ */
+ return( ret );
+}
+
+/*
+ * Import X from unsigned binary data, big endian
+ */
+int mbedtls_mpi_read_binary( mbedtls_mpi *X, const unsigned char *buf, size_t buflen )
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t const limbs = CHARS_TO_LIMBS( buflen );
+ size_t const overhead = ( limbs * ciL ) - buflen;
+ unsigned char *Xp;
+
+ MPI_VALIDATE_RET( X != NULL );
+ MPI_VALIDATE_RET( buflen == 0 || buf != NULL );
+
+ /* Ensure that target MPI has exactly the necessary number of limbs */
+ MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, limbs ) );
+
+ /* Avoid calling `memcpy` with NULL source or destination argument,
+ * even if buflen is 0. */
+ if( buflen != 0 )
+ {
+ Xp = (unsigned char*) X->p;
+ memcpy( Xp + overhead, buf, buflen );
+
+ mpi_bigendian_to_host( X->p, limbs );
+ }
+
+cleanup:
+
+ /*
+ * This function is also used to import keys. However, wiping the buffers
+ * upon failure is not necessary because failure only can happen before any
+ * input is copied.
+ */
+ return( ret );
+}
+
+/*
+ * Export X into unsigned binary data, little endian
+ */
+int mbedtls_mpi_write_binary_le( const mbedtls_mpi *X,
+ unsigned char *buf, size_t buflen )
+{
+ size_t stored_bytes = X->n * ciL;
+ size_t bytes_to_copy;
+ size_t i;
+
+ if( stored_bytes < buflen )
+ {
+ bytes_to_copy = stored_bytes;
+ }
+ else
+ {
+ bytes_to_copy = buflen;
+
+ /* The output buffer is smaller than the allocated size of X.
+ * However X may fit if its leading bytes are zero. */
+ for( i = bytes_to_copy; i < stored_bytes; i++ )
+ {
+ if( GET_BYTE( X, i ) != 0 )
+ return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
+ }
+ }
+
+ for( i = 0; i < bytes_to_copy; i++ )
+ buf[i] = GET_BYTE( X, i );
+
+ if( stored_bytes < buflen )
+ {
+ /* Write trailing 0 bytes */
+ memset( buf + stored_bytes, 0, buflen - stored_bytes );
+ }
+
+ return( 0 );
+}
+
+/*
+ * Export X into unsigned binary data, big endian
+ */
+int mbedtls_mpi_write_binary( const mbedtls_mpi *X,
+ unsigned char *buf, size_t buflen )
+{
+ size_t stored_bytes;
+ size_t bytes_to_copy;
+ unsigned char *p;
+ size_t i;
+
+ MPI_VALIDATE_RET( X != NULL );
+ MPI_VALIDATE_RET( buflen == 0 || buf != NULL );
+
+ stored_bytes = X->n * ciL;
+
+ if( stored_bytes < buflen )
+ {
+ /* There is enough space in the output buffer. Write initial
+ * null bytes and record the position at which to start
+ * writing the significant bytes. In this case, the execution
+ * trace of this function does not depend on the value of the
+ * number. */
+ bytes_to_copy = stored_bytes;
+ p = buf + buflen - stored_bytes;
+ memset( buf, 0, buflen - stored_bytes );
+ }
+ else
+ {
+ /* The output buffer is smaller than the allocated size of X.
+ * However X may fit if its leading bytes are zero. */
+ bytes_to_copy = buflen;
+ p = buf;
+ for( i = bytes_to_copy; i < stored_bytes; i++ )
+ {
+ if( GET_BYTE( X, i ) != 0 )
+ return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
+ }
+ }
+
+ for( i = 0; i < bytes_to_copy; i++ )
+ p[bytes_to_copy - i - 1] = GET_BYTE( X, i );
+
+ return( 0 );
+}
+
+/*
+ * Left-shift: X <<= count
+ */
+int mbedtls_mpi_shift_l( mbedtls_mpi *X, size_t count )
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t i, v0, t1;
+ mbedtls_mpi_uint r0 = 0, r1;
+ MPI_VALIDATE_RET( X != NULL );
+
+ v0 = count / (biL );
+ t1 = count & (biL - 1);
+
+ i = mbedtls_mpi_bitlen( X ) + count;
+
+ if( X->n * biL < i )
+ MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, BITS_TO_LIMBS( i ) ) );
+
+ ret = 0;
+
+ /*
+ * shift by count / limb_size
+ */
+ if( v0 > 0 )
+ {
+ for( i = X->n; i > v0; i-- )
+ X->p[i - 1] = X->p[i - v0 - 1];
+
+ for( ; i > 0; i-- )
+ X->p[i - 1] = 0;
+ }
+
+ /*
+ * shift by count % limb_size
+ */
+ if( t1 > 0 )
+ {
+ for( i = v0; i < X->n; i++ )
+ {
+ r1 = X->p[i] >> (biL - t1);
+ X->p[i] <<= t1;
+ X->p[i] |= r0;
+ r0 = r1;
+ }
+ }
+
+cleanup:
+
+ return( ret );
+}
+
+/*
+ * Right-shift: X >>= count
+ */
+int mbedtls_mpi_shift_r( mbedtls_mpi *X, size_t count )
+{
+ size_t i, v0, v1;
+ mbedtls_mpi_uint r0 = 0, r1;
+ MPI_VALIDATE_RET( X != NULL );
+
+ v0 = count / biL;
+ v1 = count & (biL - 1);
+
+ if( v0 > X->n || ( v0 == X->n && v1 > 0 ) )
+ return mbedtls_mpi_lset( X, 0 );
+
+ /*
+ * shift by count / limb_size
+ */
+ if( v0 > 0 )
+ {
+ for( i = 0; i < X->n - v0; i++ )
+ X->p[i] = X->p[i + v0];
+
+ for( ; i < X->n; i++ )
+ X->p[i] = 0;
+ }
+
+ /*
+ * shift by count % limb_size
+ */
+ if( v1 > 0 )
+ {
+ for( i = X->n; i > 0; i-- )
+ {
+ r1 = X->p[i - 1] << (biL - v1);
+ X->p[i - 1] >>= v1;
+ X->p[i - 1] |= r0;
+ r0 = r1;
+ }
+ }
+
+ return( 0 );
+}
+
+/*
+ * Compare unsigned values
+ */
+int mbedtls_mpi_cmp_abs( const mbedtls_mpi *X, const mbedtls_mpi *Y )
+{
+ size_t i, j;
+ MPI_VALIDATE_RET( X != NULL );
+ MPI_VALIDATE_RET( Y != NULL );
+
+ for( i = X->n; i > 0; i-- )
+ if( X->p[i - 1] != 0 )
+ break;
+
+ for( j = Y->n; j > 0; j-- )
+ if( Y->p[j - 1] != 0 )
+ break;
+
+ if( i == 0 && j == 0 )
+ return( 0 );
+
+ if( i > j ) return( 1 );
+ if( j > i ) return( -1 );
+
+ for( ; i > 0; i-- )
+ {
+ if( X->p[i - 1] > Y->p[i - 1] ) return( 1 );
+ if( X->p[i - 1] < Y->p[i - 1] ) return( -1 );
+ }
+
+ return( 0 );
+}
+
+/*
+ * Compare signed values
+ */
+int mbedtls_mpi_cmp_mpi( const mbedtls_mpi *X, const mbedtls_mpi *Y )
+{
+ size_t i, j;
+ MPI_VALIDATE_RET( X != NULL );
+ MPI_VALIDATE_RET( Y != NULL );
+
+ for( i = X->n; i > 0; i-- )
+ if( X->p[i - 1] != 0 )
+ break;
+
+ for( j = Y->n; j > 0; j-- )
+ if( Y->p[j - 1] != 0 )
+ break;
+
+ if( i == 0 && j == 0 )
+ return( 0 );
+
+ if( i > j ) return( X->s );
+ if( j > i ) return( -Y->s );
+
+ if( X->s > 0 && Y->s < 0 ) return( 1 );
+ if( Y->s > 0 && X->s < 0 ) return( -1 );
+
+ for( ; i > 0; i-- )
+ {
+ if( X->p[i - 1] > Y->p[i - 1] ) return( X->s );
+ if( X->p[i - 1] < Y->p[i - 1] ) return( -X->s );
+ }
+
+ return( 0 );
+}
+
+/** Decide if an integer is less than the other, without branches.
+ *
+ * \param x First integer.
+ * \param y Second integer.
+ *
+ * \return 1 if \p x is less than \p y, 0 otherwise
+ */
+static unsigned ct_lt_mpi_uint( const mbedtls_mpi_uint x,
+ const mbedtls_mpi_uint y )
+{
+ mbedtls_mpi_uint ret;
+ mbedtls_mpi_uint cond;
+
+ /*
+ * Check if the most significant bits (MSB) of the operands are different.
+ */
+ cond = ( x ^ y );
+ /*
+ * If the MSB are the same then the difference x-y will be negative (and
+ * have its MSB set to 1 during conversion to unsigned) if and only if x<y.
+ */
+ ret = ( x - y ) & ~cond;
+ /*
+ * If the MSB are different, then the operand with the MSB of 1 is the
+ * bigger. (That is if y has MSB of 1, then x<y is true and it is false if
+ * the MSB of y is 0.)
+ */
+ ret |= y & cond;
+
+
+ ret = ret >> ( biL - 1 );
+
+ return (unsigned) ret;
+}
+
+/*
+ * Compare signed values in constant time
+ */
+int mbedtls_mpi_lt_mpi_ct( const mbedtls_mpi *X, const mbedtls_mpi *Y,
+ unsigned *ret )
+{
+ size_t i;
+ /* The value of any of these variables is either 0 or 1 at all times. */
+ unsigned cond, done, X_is_negative, Y_is_negative;
+
+ MPI_VALIDATE_RET( X != NULL );
+ MPI_VALIDATE_RET( Y != NULL );
+ MPI_VALIDATE_RET( ret != NULL );
+
+ if( X->n != Y->n )
+ return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+
+ /*
+ * Set sign_N to 1 if N >= 0, 0 if N < 0.
+ * We know that N->s == 1 if N >= 0 and N->s == -1 if N < 0.
+ */
+ X_is_negative = ( X->s & 2 ) >> 1;
+ Y_is_negative = ( Y->s & 2 ) >> 1;
+
+ /*
+ * If the signs are different, then the positive operand is the bigger.
+ * That is if X is negative (X_is_negative == 1), then X < Y is true and it
+ * is false if X is positive (X_is_negative == 0).
+ */
+ cond = ( X_is_negative ^ Y_is_negative );
+ *ret = cond & X_is_negative;
+
+ /*
+ * This is a constant-time function. We might have the result, but we still
+ * need to go through the loop. Record if we have the result already.
+ */
+ done = cond;
+
+ for( i = X->n; i > 0; i-- )
+ {
+ /*
+ * If Y->p[i - 1] < X->p[i - 1] then X < Y is true if and only if both
+ * X and Y are negative.
+ *
+ * Again even if we can make a decision, we just mark the result and
+ * the fact that we are done and continue looping.
+ */
+ cond = ct_lt_mpi_uint( Y->p[i - 1], X->p[i - 1] );
+ *ret |= cond & ( 1 - done ) & X_is_negative;
+ done |= cond;
+
+ /*
+ * If X->p[i - 1] < Y->p[i - 1] then X < Y is true if and only if both
+ * X and Y are positive.
+ *
+ * Again even if we can make a decision, we just mark the result and
+ * the fact that we are done and continue looping.
+ */
+ cond = ct_lt_mpi_uint( X->p[i - 1], Y->p[i - 1] );
+ *ret |= cond & ( 1 - done ) & ( 1 - X_is_negative );
+ done |= cond;
+ }
+
+ return( 0 );
+}
+
+/*
+ * Compare signed values
+ */
+int mbedtls_mpi_cmp_int( const mbedtls_mpi *X, mbedtls_mpi_sint z )
+{
+ mbedtls_mpi Y;
+ mbedtls_mpi_uint p[1];
+ MPI_VALIDATE_RET( X != NULL );
+
+ *p = ( z < 0 ) ? -z : z;
+ Y.s = ( z < 0 ) ? -1 : 1;
+ Y.n = 1;
+ Y.p = p;
+
+ return( mbedtls_mpi_cmp_mpi( X, &Y ) );
+}
+
+/*
+ * Unsigned addition: X = |A| + |B| (HAC 14.7)
+ */
+int mbedtls_mpi_add_abs( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t i, j;
+ mbedtls_mpi_uint *o, *p, c, tmp;
+ MPI_VALIDATE_RET( X != NULL );
+ MPI_VALIDATE_RET( A != NULL );
+ MPI_VALIDATE_RET( B != NULL );
+
+ if( X == B )
+ {
+ const mbedtls_mpi *T = A; A = X; B = T;
+ }
+
+ if( X != A )
+ MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, A ) );
+
+ /*
+ * X should always be positive as a result of unsigned additions.
+ */
+ X->s = 1;
+
+ for( j = B->n; j > 0; j-- )
+ if( B->p[j - 1] != 0 )
+ break;
+
+ MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, j ) );
+
+ o = B->p; p = X->p; c = 0;
+
+ /*
+ * tmp is used because it might happen that p == o
+ */
+ for( i = 0; i < j; i++, o++, p++ )
+ {
+ tmp= *o;
+ *p += c; c = ( *p < c );
+ *p += tmp; c += ( *p < tmp );
+ }
+
+ while( c != 0 )
+ {
+ if( i >= X->n )
+ {
+ MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i + 1 ) );
+ p = X->p + i;
+ }
+
+ *p += c; c = ( *p < c ); i++; p++;
+ }
+
+cleanup:
+
+ return( ret );
+}
+
+/**
+ * Helper for mbedtls_mpi subtraction.
+ *
+ * Calculate l - r where l and r have the same size.
+ * This function operates modulo (2^ciL)^n and returns the carry
+ * (1 if there was a wraparound, i.e. if `l < r`, and 0 otherwise).
+ *
+ * d may be aliased to l or r.
+ *
+ * \param n Number of limbs of \p d, \p l and \p r.
+ * \param[out] d The result of the subtraction.
+ * \param[in] l The left operand.
+ * \param[in] r The right operand.
+ *
+ * \return 1 if `l < r`.
+ * 0 if `l >= r`.
+ */
+static mbedtls_mpi_uint mpi_sub_hlp( size_t n,
+ mbedtls_mpi_uint *d,
+ const mbedtls_mpi_uint *l,
+ const mbedtls_mpi_uint *r )
+{
+ size_t i;
+ mbedtls_mpi_uint c = 0, t, z;
+
+ for( i = 0; i < n; i++ )
+ {
+ z = ( l[i] < c ); t = l[i] - c;
+ c = ( t < r[i] ) + z; d[i] = t - r[i];
+ }
+
+ return( c );
+}
+
+/*
+ * Unsigned subtraction: X = |A| - |B| (HAC 14.9, 14.10)
+ */
+int mbedtls_mpi_sub_abs( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t n;
+ mbedtls_mpi_uint carry;
+ MPI_VALIDATE_RET( X != NULL );
+ MPI_VALIDATE_RET( A != NULL );
+ MPI_VALIDATE_RET( B != NULL );
+
+ for( n = B->n; n > 0; n-- )
+ if( B->p[n - 1] != 0 )
+ break;
+ if( n > A->n )
+ {
+ /* B >= (2^ciL)^n > A */
+ ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
+ goto cleanup;
+ }
+
+ MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, A->n ) );
+
+ /* Set the high limbs of X to match A. Don't touch the lower limbs
+ * because X might be aliased to B, and we must not overwrite the
+ * significant digits of B. */
+ if( A->n > n )
+ memcpy( X->p + n, A->p + n, ( A->n - n ) * ciL );
+ if( X->n > A->n )
+ memset( X->p + A->n, 0, ( X->n - A->n ) * ciL );
+
+ carry = mpi_sub_hlp( n, X->p, A->p, B->p );
+ if( carry != 0 )
+ {
+ /* Propagate the carry to the first nonzero limb of X. */
+ for( ; n < X->n && X->p[n] == 0; n++ )
+ --X->p[n];
+ /* If we ran out of space for the carry, it means that the result
+ * is negative. */
+ if( n == X->n )
+ {
+ ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
+ goto cleanup;
+ }
+ --X->p[n];
+ }
+
+ /* X should always be positive as a result of unsigned subtractions. */
+ X->s = 1;
+
+cleanup:
+ return( ret );
+}
+
+/*
+ * Signed addition: X = A + B
+ */
+int mbedtls_mpi_add_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
+{
+ int ret, s;
+ MPI_VALIDATE_RET( X != NULL );
+ MPI_VALIDATE_RET( A != NULL );
+ MPI_VALIDATE_RET( B != NULL );
+
+ s = A->s;
+ if( A->s * B->s < 0 )
+ {
+ if( mbedtls_mpi_cmp_abs( A, B ) >= 0 )
+ {
+ MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, A, B ) );
+ X->s = s;
+ }
+ else
+ {
+ MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, B, A ) );
+ X->s = -s;
+ }
+ }
+ else
+ {
+ MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( X, A, B ) );
+ X->s = s;
+ }
+
+cleanup:
+
+ return( ret );
+}
+
+/*
+ * Signed subtraction: X = A - B
+ */
+int mbedtls_mpi_sub_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
+{
+ int ret, s;
+ MPI_VALIDATE_RET( X != NULL );
+ MPI_VALIDATE_RET( A != NULL );
+ MPI_VALIDATE_RET( B != NULL );
+
+ s = A->s;
+ if( A->s * B->s > 0 )
+ {
+ if( mbedtls_mpi_cmp_abs( A, B ) >= 0 )
+ {
+ MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, A, B ) );
+ X->s = s;
+ }
+ else
+ {
+ MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, B, A ) );
+ X->s = -s;
+ }
+ }
+ else
+ {
+ MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( X, A, B ) );
+ X->s = s;
+ }
+
+cleanup:
+
+ return( ret );
+}
+
+/*
+ * Signed addition: X = A + b
+ */
+int mbedtls_mpi_add_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b )
+{
+ mbedtls_mpi _B;
+ mbedtls_mpi_uint p[1];
+ MPI_VALIDATE_RET( X != NULL );
+ MPI_VALIDATE_RET( A != NULL );
+
+ p[0] = ( b < 0 ) ? -b : b;
+ _B.s = ( b < 0 ) ? -1 : 1;
+ _B.n = 1;
+ _B.p = p;
+
+ return( mbedtls_mpi_add_mpi( X, A, &_B ) );
+}
+
+/*
+ * Signed subtraction: X = A - b
+ */
+int mbedtls_mpi_sub_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b )
+{
+ mbedtls_mpi _B;
+ mbedtls_mpi_uint p[1];
+ MPI_VALIDATE_RET( X != NULL );
+ MPI_VALIDATE_RET( A != NULL );
+
+ p[0] = ( b < 0 ) ? -b : b;
+ _B.s = ( b < 0 ) ? -1 : 1;
+ _B.n = 1;
+ _B.p = p;
+
+ return( mbedtls_mpi_sub_mpi( X, A, &_B ) );
+}
+
+/** Helper for mbedtls_mpi multiplication.
+ *
+ * Add \p b * \p s to \p d.
+ *
+ * \param i The number of limbs of \p s.
+ * \param[in] s A bignum to multiply, of size \p i.
+ * It may overlap with \p d, but only if
+ * \p d <= \p s.
+ * Its leading limb must not be \c 0.
+ * \param[in,out] d The bignum to add to.
+ * It must be sufficiently large to store the
+ * result of the multiplication. This means
+ * \p i + 1 limbs if \p d[\p i - 1] started as 0 and \p b
+ * is not known a priori.
+ * \param b A scalar to multiply.
+ */
+static
+#if defined(__APPLE__) && defined(__arm__)
+/*
+ * Apple LLVM version 4.2 (clang-425.0.24) (based on LLVM 3.2svn)
+ * appears to need this to prevent bad ARM code generation at -O3.
+ */
+__attribute__ ((noinline))
+#endif
+void mpi_mul_hlp( size_t i,
+ const mbedtls_mpi_uint *s,
+ mbedtls_mpi_uint *d,
+ mbedtls_mpi_uint b )
+{
+ mbedtls_mpi_uint c = 0, t = 0;
+
+#if defined(MULADDC_HUIT)
+ for( ; i >= 8; i -= 8 )
+ {
+ MULADDC_INIT
+ MULADDC_HUIT
+ MULADDC_STOP
+ }
+
+ for( ; i > 0; i-- )
+ {
+ MULADDC_INIT
+ MULADDC_CORE
+ MULADDC_STOP
+ }
+#else /* MULADDC_HUIT */
+ for( ; i >= 16; i -= 16 )
+ {
+ MULADDC_INIT
+ MULADDC_CORE MULADDC_CORE
+ MULADDC_CORE MULADDC_CORE
+ MULADDC_CORE MULADDC_CORE
+ MULADDC_CORE MULADDC_CORE
+
+ MULADDC_CORE MULADDC_CORE
+ MULADDC_CORE MULADDC_CORE
+ MULADDC_CORE MULADDC_CORE
+ MULADDC_CORE MULADDC_CORE
+ MULADDC_STOP
+ }
+
+ for( ; i >= 8; i -= 8 )
+ {
+ MULADDC_INIT
+ MULADDC_CORE MULADDC_CORE
+ MULADDC_CORE MULADDC_CORE
+
+ MULADDC_CORE MULADDC_CORE
+ MULADDC_CORE MULADDC_CORE
+ MULADDC_STOP
+ }
+
+ for( ; i > 0; i-- )
+ {
+ MULADDC_INIT
+ MULADDC_CORE
+ MULADDC_STOP
+ }
+#endif /* MULADDC_HUIT */
+
+ t++;
+
+ while( c != 0 )
+ {
+ *d += c; c = ( *d < c ); d++;
+ }
+}
+
+/*
+ * Baseline multiplication: X = A * B (HAC 14.12)
+ */
+int mbedtls_mpi_mul_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t i, j;
+ mbedtls_mpi TA, TB;
+ int result_is_zero = 0;
+ MPI_VALIDATE_RET( X != NULL );
+ MPI_VALIDATE_RET( A != NULL );
+ MPI_VALIDATE_RET( B != NULL );
+
+ mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TB );
+
+ if( X == A ) { MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TA, A ) ); A = &TA; }
+ if( X == B ) { MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, B ) ); B = &TB; }
+
+ for( i = A->n; i > 0; i-- )
+ if( A->p[i - 1] != 0 )
+ break;
+ if( i == 0 )
+ result_is_zero = 1;
+
+ for( j = B->n; j > 0; j-- )
+ if( B->p[j - 1] != 0 )
+ break;
+ if( j == 0 )
+ result_is_zero = 1;
+
+ MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i + j ) );
+ MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
+
+ for( ; j > 0; j-- )
+ mpi_mul_hlp( i, A->p, X->p + j - 1, B->p[j - 1] );
+
+ /* If the result is 0, we don't shortcut the operation, which reduces
+ * but does not eliminate side channels leaking the zero-ness. We do
+ * need to take care to set the sign bit properly since the library does
+ * not fully support an MPI object with a value of 0 and s == -1. */
+ if( result_is_zero )
+ X->s = 1;
+ else
+ X->s = A->s * B->s;
+
+cleanup:
+
+ mbedtls_mpi_free( &TB ); mbedtls_mpi_free( &TA );
+
+ return( ret );
+}
+
+/*
+ * Baseline multiplication: X = A * b
+ */
+int mbedtls_mpi_mul_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_uint b )
+{
+ MPI_VALIDATE_RET( X != NULL );
+ MPI_VALIDATE_RET( A != NULL );
+
+ /* mpi_mul_hlp can't deal with a leading 0. */
+ size_t n = A->n;
+ while( n > 0 && A->p[n - 1] == 0 )
+ --n;
+
+ /* The general method below doesn't work if n==0 or b==0. By chance
+ * calculating the result is trivial in those cases. */
+ if( b == 0 || n == 0 )
+ {
+ return( mbedtls_mpi_lset( X, 0 ) );
+ }
+
+ /* Calculate A*b as A + A*(b-1) to take advantage of mpi_mul_hlp */
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ /* In general, A * b requires 1 limb more than b. If
+ * A->p[n - 1] * b / b == A->p[n - 1], then A * b fits in the same
+ * number of limbs as A and the call to grow() is not required since
+ * copy() will take care of the growth if needed. However, experimentally,
+ * making the call to grow() unconditional causes slightly fewer
+ * calls to calloc() in ECP code, presumably because it reuses the
+ * same mpi for a while and this way the mpi is more likely to directly
+ * grow to its final size. */
+ MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, n + 1 ) );
+ MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, A ) );
+ mpi_mul_hlp( n, A->p, X->p, b - 1 );
+
+cleanup:
+ return( ret );
+}
+
+/*
+ * Unsigned integer divide - double mbedtls_mpi_uint dividend, u1/u0, and
+ * mbedtls_mpi_uint divisor, d
+ */
+static mbedtls_mpi_uint mbedtls_int_div_int( mbedtls_mpi_uint u1,
+ mbedtls_mpi_uint u0, mbedtls_mpi_uint d, mbedtls_mpi_uint *r )
+{
+#if defined(MBEDTLS_HAVE_UDBL)
+ mbedtls_t_udbl dividend, quotient;
+#else
+ const mbedtls_mpi_uint radix = (mbedtls_mpi_uint) 1 << biH;
+ const mbedtls_mpi_uint uint_halfword_mask = ( (mbedtls_mpi_uint) 1 << biH ) - 1;
+ mbedtls_mpi_uint d0, d1, q0, q1, rAX, r0, quotient;
+ mbedtls_mpi_uint u0_msw, u0_lsw;
+ size_t s;
+#endif
+
+ /*
+ * Check for overflow
+ */
+ if( 0 == d || u1 >= d )
+ {
+ if (r != NULL) *r = ~0;
+
+ return ( ~0 );
+ }
+
+#if defined(MBEDTLS_HAVE_UDBL)
+ dividend = (mbedtls_t_udbl) u1 << biL;
+ dividend |= (mbedtls_t_udbl) u0;
+ quotient = dividend / d;
+ if( quotient > ( (mbedtls_t_udbl) 1 << biL ) - 1 )
+ quotient = ( (mbedtls_t_udbl) 1 << biL ) - 1;
+
+ if( r != NULL )
+ *r = (mbedtls_mpi_uint)( dividend - (quotient * d ) );
+
+ return (mbedtls_mpi_uint) quotient;
+#else
+
+ /*
+ * Algorithm D, Section 4.3.1 - The Art of Computer Programming
+ * Vol. 2 - Seminumerical Algorithms, Knuth
+ */
+
+ /*
+ * Normalize the divisor, d, and dividend, u0, u1
+ */
+ s = mbedtls_clz( d );
+ d = d << s;
+
+ u1 = u1 << s;
+ u1 |= ( u0 >> ( biL - s ) ) & ( -(mbedtls_mpi_sint)s >> ( biL - 1 ) );
+ u0 = u0 << s;
+
+ d1 = d >> biH;
+ d0 = d & uint_halfword_mask;
+
+ u0_msw = u0 >> biH;
+ u0_lsw = u0 & uint_halfword_mask;
+
+ /*
+ * Find the first quotient and remainder
+ */
+ q1 = u1 / d1;
+ r0 = u1 - d1 * q1;
+
+ while( q1 >= radix || ( q1 * d0 > radix * r0 + u0_msw ) )
+ {
+ q1 -= 1;
+ r0 += d1;
+
+ if ( r0 >= radix ) break;
+ }
+
+ rAX = ( u1 * radix ) + ( u0_msw - q1 * d );
+ q0 = rAX / d1;
+ r0 = rAX - q0 * d1;
+
+ while( q0 >= radix || ( q0 * d0 > radix * r0 + u0_lsw ) )
+ {
+ q0 -= 1;
+ r0 += d1;
+
+ if ( r0 >= radix ) break;
+ }
+
+ if (r != NULL)
+ *r = ( rAX * radix + u0_lsw - q0 * d ) >> s;
+
+ quotient = q1 * radix + q0;
+
+ return quotient;
+#endif
+}
+
+/*
+ * Division by mbedtls_mpi: A = Q * B + R (HAC 14.20)
+ */
+int mbedtls_mpi_div_mpi( mbedtls_mpi *Q, mbedtls_mpi *R, const mbedtls_mpi *A,
+ const mbedtls_mpi *B )
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t i, n, t, k;
+ mbedtls_mpi X, Y, Z, T1, T2;
+ mbedtls_mpi_uint TP2[3];
+ MPI_VALIDATE_RET( A != NULL );
+ MPI_VALIDATE_RET( B != NULL );
+
+ if( mbedtls_mpi_cmp_int( B, 0 ) == 0 )
+ return( MBEDTLS_ERR_MPI_DIVISION_BY_ZERO );
+
+ mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &Z );
+ mbedtls_mpi_init( &T1 );
+ /*
+ * Avoid dynamic memory allocations for constant-size T2.
+ *
+ * T2 is used for comparison only and the 3 limbs are assigned explicitly,
+ * so nobody increase the size of the MPI and we're safe to use an on-stack
+ * buffer.
+ */
+ T2.s = 1;
+ T2.n = sizeof( TP2 ) / sizeof( *TP2 );
+ T2.p = TP2;
+
+ if( mbedtls_mpi_cmp_abs( A, B ) < 0 )
+ {
+ if( Q != NULL ) MBEDTLS_MPI_CHK( mbedtls_mpi_lset( Q, 0 ) );
+ if( R != NULL ) MBEDTLS_MPI_CHK( mbedtls_mpi_copy( R, A ) );
+ return( 0 );
+ }
+
+ MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &X, A ) );
+ MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Y, B ) );
+ X.s = Y.s = 1;
+
+ MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &Z, A->n + 2 ) );
+ MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &Z, 0 ) );
+ MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &T1, A->n + 2 ) );
+
+ k = mbedtls_mpi_bitlen( &Y ) % biL;
+ if( k < biL - 1 )
+ {
+ k = biL - 1 - k;
+ MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &X, k ) );
+ MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &Y, k ) );
+ }
+ else k = 0;
+
+ n = X.n - 1;
+ t = Y.n - 1;
+ MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &Y, biL * ( n - t ) ) );
+
+ while( mbedtls_mpi_cmp_mpi( &X, &Y ) >= 0 )
+ {
+ Z.p[n - t]++;
+ MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X, &X, &Y ) );
+ }
+ MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Y, biL * ( n - t ) ) );
+
+ for( i = n; i > t ; i-- )
+ {
+ if( X.p[i] >= Y.p[t] )
+ Z.p[i - t - 1] = ~0;
+ else
+ {
+ Z.p[i - t - 1] = mbedtls_int_div_int( X.p[i], X.p[i - 1],
+ Y.p[t], NULL);
+ }
+
+ T2.p[0] = ( i < 2 ) ? 0 : X.p[i - 2];
+ T2.p[1] = ( i < 1 ) ? 0 : X.p[i - 1];
+ T2.p[2] = X.p[i];
+
+ Z.p[i - t - 1]++;
+ do
+ {
+ Z.p[i - t - 1]--;
+
+ MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &T1, 0 ) );
+ T1.p[0] = ( t < 1 ) ? 0 : Y.p[t - 1];
+ T1.p[1] = Y.p[t];
+ MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1, &T1, Z.p[i - t - 1] ) );
+ }
+ while( mbedtls_mpi_cmp_mpi( &T1, &T2 ) > 0 );
+
+ MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1, &Y, Z.p[i - t - 1] ) );
+ MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T1, biL * ( i - t - 1 ) ) );
+ MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X, &X, &T1 ) );
+
+ if( mbedtls_mpi_cmp_int( &X, 0 ) < 0 )
+ {
+ MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &T1, &Y ) );
+ MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T1, biL * ( i - t - 1 ) ) );
+ MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &X, &X, &T1 ) );
+ Z.p[i - t - 1]--;
+ }
+ }
+
+ if( Q != NULL )
+ {
+ MBEDTLS_MPI_CHK( mbedtls_mpi_copy( Q, &Z ) );
+ Q->s = A->s * B->s;
+ }
+
+ if( R != NULL )
+ {
+ MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &X, k ) );
+ X.s = A->s;
+ MBEDTLS_MPI_CHK( mbedtls_mpi_copy( R, &X ) );
+
+ if( mbedtls_mpi_cmp_int( R, 0 ) == 0 )
+ R->s = 1;
+ }
+
+cleanup:
+
+ mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &Z );
+ mbedtls_mpi_free( &T1 );
+ mbedtls_platform_zeroize( TP2, sizeof( TP2 ) );
+
+ return( ret );
+}
+
+/*
+ * Division by int: A = Q * b + R
+ */
+int mbedtls_mpi_div_int( mbedtls_mpi *Q, mbedtls_mpi *R,
+ const mbedtls_mpi *A,
+ mbedtls_mpi_sint b )
+{
+ mbedtls_mpi _B;
+ mbedtls_mpi_uint p[1];
+ MPI_VALIDATE_RET( A != NULL );
+
+ p[0] = ( b < 0 ) ? -b : b;
+ _B.s = ( b < 0 ) ? -1 : 1;
+ _B.n = 1;
+ _B.p = p;
+
+ return( mbedtls_mpi_div_mpi( Q, R, A, &_B ) );
+}
+
+/*
+ * Modulo: R = A mod B
+ */
+int mbedtls_mpi_mod_mpi( mbedtls_mpi *R, const mbedtls_mpi *A, const mbedtls_mpi *B )
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ MPI_VALIDATE_RET( R != NULL );
+ MPI_VALIDATE_RET( A != NULL );
+ MPI_VALIDATE_RET( B != NULL );
+
+ if( mbedtls_mpi_cmp_int( B, 0 ) < 0 )
+ return( MBEDTLS_ERR_MPI_NEGATIVE_VALUE );
+
+ MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( NULL, R, A, B ) );
+
+ while( mbedtls_mpi_cmp_int( R, 0 ) < 0 )
+ MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( R, R, B ) );
+
+ while( mbedtls_mpi_cmp_mpi( R, B ) >= 0 )
+ MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( R, R, B ) );
+
+cleanup:
+
+ return( ret );
+}
+
+/*
+ * Modulo: r = A mod b
+ */
+int mbedtls_mpi_mod_int( mbedtls_mpi_uint *r, const mbedtls_mpi *A, mbedtls_mpi_sint b )
+{
+ size_t i;
+ mbedtls_mpi_uint x, y, z;
+ MPI_VALIDATE_RET( r != NULL );
+ MPI_VALIDATE_RET( A != NULL );
+
+ if( b == 0 )
+ return( MBEDTLS_ERR_MPI_DIVISION_BY_ZERO );
+
+ if( b < 0 )
+ return( MBEDTLS_ERR_MPI_NEGATIVE_VALUE );
+
+ /*
+ * handle trivial cases
+ */
+ if( b == 1 )
+ {
+ *r = 0;
+ return( 0 );
+ }
+
+ if( b == 2 )
+ {
+ *r = A->p[0] & 1;
+ return( 0 );
+ }
+
+ /*
+ * general case
+ */
+ for( i = A->n, y = 0; i > 0; i-- )
+ {
+ x = A->p[i - 1];
+ y = ( y << biH ) | ( x >> biH );
+ z = y / b;
+ y -= z * b;
+
+ x <<= biH;
+ y = ( y << biH ) | ( x >> biH );
+ z = y / b;
+ y -= z * b;
+ }
+
+ /*
+ * If A is negative, then the current y represents a negative value.
+ * Flipping it to the positive side.
+ */
+ if( A->s < 0 && y != 0 )
+ y = b - y;
+
+ *r = y;
+
+ return( 0 );
+}
+
+/*
+ * Fast Montgomery initialization (thanks to Tom St Denis)
+ */
+static void mpi_montg_init( mbedtls_mpi_uint *mm, const mbedtls_mpi *N )
+{
+ mbedtls_mpi_uint x, m0 = N->p[0];
+ unsigned int i;
+
+ x = m0;
+ x += ( ( m0 + 2 ) & 4 ) << 1;
+
+ for( i = biL; i >= 8; i /= 2 )
+ x *= ( 2 - ( m0 * x ) );
+
+ *mm = ~x + 1;
+}
+
+/** Montgomery multiplication: A = A * B * R^-1 mod N (HAC 14.36)
+ *
+ * \param[in,out] A One of the numbers to multiply.
+ * It must have at least as many limbs as N
+ * (A->n >= N->n), and any limbs beyond n are ignored.
+ * On successful completion, A contains the result of
+ * the multiplication A * B * R^-1 mod N where
+ * R = (2^ciL)^n.
+ * \param[in] B One of the numbers to multiply.
+ * It must be nonzero and must not have more limbs than N
+ * (B->n <= N->n).
+ * \param[in] N The modulo. N must be odd.
+ * \param mm The value calculated by `mpi_montg_init(&mm, N)`.
+ * This is -N^-1 mod 2^ciL.
+ * \param[in,out] T A bignum for temporary storage.
+ * It must be at least twice the limb size of N plus 2
+ * (T->n >= 2 * (N->n + 1)).
+ * Its initial content is unused and
+ * its final content is indeterminate.
+ * Note that unlike the usual convention in the library
+ * for `const mbedtls_mpi*`, the content of T can change.
+ */
+static void mpi_montmul( mbedtls_mpi *A, const mbedtls_mpi *B, const mbedtls_mpi *N, mbedtls_mpi_uint mm,
+ const mbedtls_mpi *T )
+{
+ size_t i, n, m;
+ mbedtls_mpi_uint u0, u1, *d;
+
+ memset( T->p, 0, T->n * ciL );
+
+ d = T->p;
+ n = N->n;
+ m = ( B->n < n ) ? B->n : n;
+
+ for( i = 0; i < n; i++ )
+ {
+ /*
+ * T = (T + u0*B + u1*N) / 2^biL
+ */
+ u0 = A->p[i];
+ u1 = ( d[0] + u0 * B->p[0] ) * mm;
+
+ mpi_mul_hlp( m, B->p, d, u0 );
+ mpi_mul_hlp( n, N->p, d, u1 );
+
+ *d++ = u0; d[n + 1] = 0;
+ }
+
+ /* At this point, d is either the desired result or the desired result
+ * plus N. We now potentially subtract N, avoiding leaking whether the
+ * subtraction is performed through side channels. */
+
+ /* Copy the n least significant limbs of d to A, so that
+ * A = d if d < N (recall that N has n limbs). */
+ memcpy( A->p, d, n * ciL );
+ /* If d >= N then we want to set A to d - N. To prevent timing attacks,
+ * do the calculation without using conditional tests. */
+ /* Set d to d0 + (2^biL)^n - N where d0 is the current value of d. */
+ d[n] += 1;
+ d[n] -= mpi_sub_hlp( n, d, d, N->p );
+ /* If d0 < N then d < (2^biL)^n
+ * so d[n] == 0 and we want to keep A as it is.
+ * If d0 >= N then d >= (2^biL)^n, and d <= (2^biL)^n + N < 2 * (2^biL)^n
+ * so d[n] == 1 and we want to set A to the result of the subtraction
+ * which is d - (2^biL)^n, i.e. the n least significant limbs of d.
+ * This exactly corresponds to a conditional assignment. */
+ mpi_safe_cond_assign( n, A->p, d, (unsigned char) d[n] );
+}
+
+/*
+ * Montgomery reduction: A = A * R^-1 mod N
+ *
+ * See mpi_montmul() regarding constraints and guarantees on the parameters.
+ */
+static void mpi_montred( mbedtls_mpi *A, const mbedtls_mpi *N,
+ mbedtls_mpi_uint mm, const mbedtls_mpi *T )
+{
+ mbedtls_mpi_uint z = 1;
+ mbedtls_mpi U;
+
+ U.n = U.s = (int) z;
+ U.p = &z;
+
+ mpi_montmul( A, &U, N, mm, T );
+}
+
+/*
+ * Constant-flow boolean "equal" comparison:
+ * return x == y
+ *
+ * This function can be used to write constant-time code by replacing branches
+ * with bit operations - it can be used in conjunction with
+ * mbedtls_ssl_cf_mask_from_bit().
+ *
+ * This function is implemented without using comparison operators, as those
+ * might be translated to branches by some compilers on some platforms.
+ */
+static size_t mbedtls_mpi_cf_bool_eq( size_t x, size_t y )
+{
+ /* diff = 0 if x == y, non-zero otherwise */
+ const size_t diff = x ^ y;
+
+ /* MSVC has a warning about unary minus on unsigned integer types,
+ * but this is well-defined and precisely what we want to do here. */
+#if defined(_MSC_VER)
+#pragma warning( push )
+#pragma warning( disable : 4146 )
+#endif
+
+ /* diff_msb's most significant bit is equal to x != y */
+ const size_t diff_msb = ( diff | (size_t) -diff );
+
+#if defined(_MSC_VER)
+#pragma warning( pop )
+#endif
+
+ /* diff1 = (x != y) ? 1 : 0 */
+ const size_t diff1 = diff_msb >> ( sizeof( diff_msb ) * 8 - 1 );
+
+ return( 1 ^ diff1 );
+}
+
+/**
+ * Select an MPI from a table without leaking the index.
+ *
+ * This is functionally equivalent to mbedtls_mpi_copy(R, T[idx]) except it
+ * reads the entire table in order to avoid leaking the value of idx to an
+ * attacker able to observe memory access patterns.
+ *
+ * \param[out] R Where to write the selected MPI.
+ * \param[in] T The table to read from.
+ * \param[in] T_size The number of elements in the table.
+ * \param[in] idx The index of the element to select;
+ * this must satisfy 0 <= idx < T_size.
+ *
+ * \return \c 0 on success, or a negative error code.
+ */
+static int mpi_select( mbedtls_mpi *R, const mbedtls_mpi *T, size_t T_size, size_t idx )
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ for( size_t i = 0; i < T_size; i++ )
+ {
+ MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( R, &T[i],
+ (unsigned char) mbedtls_mpi_cf_bool_eq( i, idx ) ) );
+ }
+
+cleanup:
+ return( ret );
+}
+
+/*
+ * Sliding-window exponentiation: X = A^E mod N (HAC 14.85)
+ */
+int mbedtls_mpi_exp_mod( mbedtls_mpi *X, const mbedtls_mpi *A,
+ const mbedtls_mpi *E, const mbedtls_mpi *N,
+ mbedtls_mpi *_RR )
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t wbits, wsize, one = 1;
+ size_t i, j, nblimbs;
+ size_t bufsize, nbits;
+ mbedtls_mpi_uint ei, mm, state;
+ mbedtls_mpi RR, T, W[ 1 << MBEDTLS_MPI_WINDOW_SIZE ], WW, Apos;
+ int neg;
+
+ MPI_VALIDATE_RET( X != NULL );
+ MPI_VALIDATE_RET( A != NULL );
+ MPI_VALIDATE_RET( E != NULL );
+ MPI_VALIDATE_RET( N != NULL );
+
+ if( mbedtls_mpi_cmp_int( N, 0 ) <= 0 || ( N->p[0] & 1 ) == 0 )
+ return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
+
+ if( mbedtls_mpi_cmp_int( E, 0 ) < 0 )
+ return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
+
+ if( mbedtls_mpi_bitlen( E ) > MBEDTLS_MPI_MAX_BITS ||
+ mbedtls_mpi_bitlen( N ) > MBEDTLS_MPI_MAX_BITS )
+ return ( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
+
+ /*
+ * Init temps and window size
+ */
+ mpi_montg_init( &mm, N );
+ mbedtls_mpi_init( &RR ); mbedtls_mpi_init( &T );
+ mbedtls_mpi_init( &Apos );
+ mbedtls_mpi_init( &WW );
+ memset( W, 0, sizeof( W ) );
+
+ i = mbedtls_mpi_bitlen( E );
+
+ wsize = ( i > 671 ) ? 6 : ( i > 239 ) ? 5 :
+ ( i > 79 ) ? 4 : ( i > 23 ) ? 3 : 1;
+
+#if( MBEDTLS_MPI_WINDOW_SIZE < 6 )
+ if( wsize > MBEDTLS_MPI_WINDOW_SIZE )
+ wsize = MBEDTLS_MPI_WINDOW_SIZE;
+#endif
+
+ j = N->n + 1;
+ /* All W[i] and X must have at least N->n limbs for the mpi_montmul()
+ * and mpi_montred() calls later. Here we ensure that W[1] and X are
+ * large enough, and later we'll grow other W[i] to the same length.
+ * They must not be shrunk midway through this function!
+ */
+ MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, j ) );
+ MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[1], j ) );
+ MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &T, j * 2 ) );
+
+ /*
+ * Compensate for negative A (and correct at the end)
+ */
+ neg = ( A->s == -1 );
+ if( neg )
+ {
+ MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Apos, A ) );
+ Apos.s = 1;
+ A = &Apos;
+ }
+
+ /*
+ * If 1st call, pre-compute R^2 mod N
+ */
+ if( _RR == NULL || _RR->p == NULL )
+ {
+ MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &RR, 1 ) );
+ MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &RR, N->n * 2 * biL ) );
+ MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &RR, &RR, N ) );
+
+ if( _RR != NULL )
+ memcpy( _RR, &RR, sizeof( mbedtls_mpi ) );
+ }
+ else
+ memcpy( &RR, _RR, sizeof( mbedtls_mpi ) );
+
+ /*
+ * W[1] = A * R^2 * R^-1 mod N = A * R mod N
+ */
+ if( mbedtls_mpi_cmp_mpi( A, N ) >= 0 )
+ {
+ MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &W[1], A, N ) );
+ /* This should be a no-op because W[1] is already that large before
+ * mbedtls_mpi_mod_mpi(), but it's necessary to avoid an overflow
+ * in mpi_montmul() below, so let's make sure. */
+ MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[1], N->n + 1 ) );
+ }
+ else
+ MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[1], A ) );
+
+ /* Note that this is safe because W[1] always has at least N->n limbs
+ * (it grew above and was preserved by mbedtls_mpi_copy()). */
+ mpi_montmul( &W[1], &RR, N, mm, &T );
+
+ /*
+ * X = R^2 * R^-1 mod N = R mod N
+ */
+ MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, &RR ) );
+ mpi_montred( X, N, mm, &T );
+
+ if( wsize > 1 )
+ {
+ /*
+ * W[1 << (wsize - 1)] = W[1] ^ (wsize - 1)
+ */
+ j = one << ( wsize - 1 );
+
+ MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[j], N->n + 1 ) );
+ MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[j], &W[1] ) );
+
+ for( i = 0; i < wsize - 1; i++ )
+ mpi_montmul( &W[j], &W[j], N, mm, &T );
+
+ /*
+ * W[i] = W[i - 1] * W[1]
+ */
+ for( i = j + 1; i < ( one << wsize ); i++ )
+ {
+ MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[i], N->n + 1 ) );
+ MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[i], &W[i - 1] ) );
+
+ mpi_montmul( &W[i], &W[1], N, mm, &T );
+ }
+ }
+
+ nblimbs = E->n;
+ bufsize = 0;
+ nbits = 0;
+ wbits = 0;
+ state = 0;
+
+ while( 1 )
+ {
+ if( bufsize == 0 )
+ {
+ if( nblimbs == 0 )
+ break;
+
+ nblimbs--;
+
+ bufsize = sizeof( mbedtls_mpi_uint ) << 3;
+ }
+
+ bufsize--;
+
+ ei = (E->p[nblimbs] >> bufsize) & 1;
+
+ /*
+ * skip leading 0s
+ */
+ if( ei == 0 && state == 0 )
+ continue;
+
+ if( ei == 0 && state == 1 )
+ {
+ /*
+ * out of window, square X
+ */
+ mpi_montmul( X, X, N, mm, &T );
+ continue;
+ }
+
+ /*
+ * add ei to current window
+ */
+ state = 2;
+
+ nbits++;
+ wbits |= ( ei << ( wsize - nbits ) );
+
+ if( nbits == wsize )
+ {
+ /*
+ * X = X^wsize R^-1 mod N
+ */
+ for( i = 0; i < wsize; i++ )
+ mpi_montmul( X, X, N, mm, &T );
+
+ /*
+ * X = X * W[wbits] R^-1 mod N
+ */
+ MBEDTLS_MPI_CHK( mpi_select( &WW, W, (size_t) 1 << wsize, wbits ) );
+ mpi_montmul( X, &WW, N, mm, &T );
+
+ state--;
+ nbits = 0;
+ wbits = 0;
+ }
+ }
+
+ /*
+ * process the remaining bits
+ */
+ for( i = 0; i < nbits; i++ )
+ {
+ mpi_montmul( X, X, N, mm, &T );
+
+ wbits <<= 1;
+
+ if( ( wbits & ( one << wsize ) ) != 0 )
+ mpi_montmul( X, &W[1], N, mm, &T );
+ }
+
+ /*
+ * X = A^E * R * R^-1 mod N = A^E mod N
+ */
+ mpi_montred( X, N, mm, &T );
+
+ if( neg && E->n != 0 && ( E->p[0] & 1 ) != 0 )
+ {
+ X->s = -1;
+ MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( X, N, X ) );
+ }
+
+cleanup:
+
+ for( i = ( one << ( wsize - 1 ) ); i < ( one << wsize ); i++ )
+ mbedtls_mpi_free( &W[i] );
+
+ mbedtls_mpi_free( &W[1] ); mbedtls_mpi_free( &T ); mbedtls_mpi_free( &Apos );
+ mbedtls_mpi_free( &WW );
+
+ if( _RR == NULL || _RR->p == NULL )
+ mbedtls_mpi_free( &RR );
+
+ return( ret );
+}
+
+/*
+ * Greatest common divisor: G = gcd(A, B) (HAC 14.54)
+ */
+int mbedtls_mpi_gcd( mbedtls_mpi *G, const mbedtls_mpi *A, const mbedtls_mpi *B )
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t lz, lzt;
+ mbedtls_mpi TA, TB;
+
+ MPI_VALIDATE_RET( G != NULL );
+ MPI_VALIDATE_RET( A != NULL );
+ MPI_VALIDATE_RET( B != NULL );
+
+ mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TB );
+
+ MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TA, A ) );
+ MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, B ) );
+
+ lz = mbedtls_mpi_lsb( &TA );
+ lzt = mbedtls_mpi_lsb( &TB );
+
+ /* The loop below gives the correct result when A==0 but not when B==0.
+ * So have a special case for B==0. Leverage the fact that we just
+ * calculated the lsb and lsb(B)==0 iff B is odd or 0 to make the test
+ * slightly more efficient than cmp_int(). */
+ if( lzt == 0 && mbedtls_mpi_get_bit( &TB, 0 ) == 0 )
+ {
+ ret = mbedtls_mpi_copy( G, A );
+ goto cleanup;
+ }
+
+ if( lzt < lz )
+ lz = lzt;
+
+ TA.s = TB.s = 1;
+
+ /* We mostly follow the procedure described in HAC 14.54, but with some
+ * minor differences:
+ * - Sequences of multiplications or divisions by 2 are grouped into a
+ * single shift operation.
+ * - The procedure in HAC assumes that 0 < TB <= TA.
+ * - The condition TB <= TA is not actually necessary for correctness.
+ * TA and TB have symmetric roles except for the loop termination
+ * condition, and the shifts at the beginning of the loop body
+ * remove any significance from the ordering of TA vs TB before
+ * the shifts.
+ * - If TA = 0, the loop goes through 0 iterations and the result is
+ * correctly TB.
+ * - The case TB = 0 was short-circuited above.
+ *
+ * For the correctness proof below, decompose the original values of
+ * A and B as
+ * A = sa * 2^a * A' with A'=0 or A' odd, and sa = +-1
+ * B = sb * 2^b * B' with B'=0 or B' odd, and sb = +-1
+ * Then gcd(A, B) = 2^{min(a,b)} * gcd(A',B'),
+ * and gcd(A',B') is odd or 0.
+ *
+ * At the beginning, we have TA = |A| and TB = |B| so gcd(A,B) = gcd(TA,TB).
+ * The code maintains the following invariant:
+ * gcd(A,B) = 2^k * gcd(TA,TB) for some k (I)
+ */
+
+ /* Proof that the loop terminates:
+ * At each iteration, either the right-shift by 1 is made on a nonzero
+ * value and the nonnegative integer bitlen(TA) + bitlen(TB) decreases
+ * by at least 1, or the right-shift by 1 is made on zero and then
+ * TA becomes 0 which ends the loop (TB cannot be 0 if it is right-shifted
+ * since in that case TB is calculated from TB-TA with the condition TB>TA).
+ */
+ while( mbedtls_mpi_cmp_int( &TA, 0 ) != 0 )
+ {
+ /* Divisions by 2 preserve the invariant (I). */
+ MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TA, mbedtls_mpi_lsb( &TA ) ) );
+ MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TB, mbedtls_mpi_lsb( &TB ) ) );
+
+ /* Set either TA or TB to |TA-TB|/2. Since TA and TB are both odd,
+ * TA-TB is even so the division by 2 has an integer result.
+ * Invariant (I) is preserved since any odd divisor of both TA and TB
+ * also divides |TA-TB|/2, and any odd divisor of both TA and |TA-TB|/2
+ * also divides TB, and any odd divisior of both TB and |TA-TB|/2 also
+ * divides TA.
+ */
+ if( mbedtls_mpi_cmp_mpi( &TA, &TB ) >= 0 )
+ {
+ MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &TA, &TA, &TB ) );
+ MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TA, 1 ) );
+ }
+ else
+ {
+ MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &TB, &TB, &TA ) );
+ MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TB, 1 ) );
+ }
+ /* Note that one of TA or TB is still odd. */
+ }
+
+ /* By invariant (I), gcd(A,B) = 2^k * gcd(TA,TB) for some k.
+ * At the loop exit, TA = 0, so gcd(TA,TB) = TB.
+ * - If there was at least one loop iteration, then one of TA or TB is odd,
+ * and TA = 0, so TB is odd and gcd(TA,TB) = gcd(A',B'). In this case,
+ * lz = min(a,b) so gcd(A,B) = 2^lz * TB.
+ * - If there was no loop iteration, then A was 0, and gcd(A,B) = B.
+ * In this case, lz = 0 and B = TB so gcd(A,B) = B = 2^lz * TB as well.
+ */
+
+ MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &TB, lz ) );
+ MBEDTLS_MPI_CHK( mbedtls_mpi_copy( G, &TB ) );
+
+cleanup:
+
+ mbedtls_mpi_free( &TA ); mbedtls_mpi_free( &TB );
+
+ return( ret );
+}
+
+/* Fill X with n_bytes random bytes.
+ * X must already have room for those bytes.
+ * The ordering of the bytes returned from the RNG is suitable for
+ * deterministic ECDSA (see RFC 6979 §3.3 and mbedtls_mpi_random()).
+ * The size and sign of X are unchanged.
+ * n_bytes must not be 0.
+ */
+static int mpi_fill_random_internal(
+ mbedtls_mpi *X, size_t n_bytes,
+ int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ const size_t limbs = CHARS_TO_LIMBS( n_bytes );
+ const size_t overhead = ( limbs * ciL ) - n_bytes;
+
+ if( X->n < limbs )
+ return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
+
+ memset( X->p, 0, overhead );
+ memset( (unsigned char *) X->p + limbs * ciL, 0, ( X->n - limbs ) * ciL );
+ MBEDTLS_MPI_CHK( f_rng( p_rng, (unsigned char *) X->p + overhead, n_bytes ) );
+ mpi_bigendian_to_host( X->p, limbs );
+
+cleanup:
+ return( ret );
+}
+
+/*
+ * Fill X with size bytes of random.
+ *
+ * Use a temporary bytes representation to make sure the result is the same
+ * regardless of the platform endianness (useful when f_rng is actually
+ * deterministic, eg for tests).
+ */
+int mbedtls_mpi_fill_random( mbedtls_mpi *X, size_t size,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng )
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t const limbs = CHARS_TO_LIMBS( size );
+
+ MPI_VALIDATE_RET( X != NULL );
+ MPI_VALIDATE_RET( f_rng != NULL );
+
+ /* Ensure that target MPI has exactly the necessary number of limbs */
+ MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, limbs ) );
+ if( size == 0 )
+ return( 0 );
+
+ ret = mpi_fill_random_internal( X, size, f_rng, p_rng );
+
+cleanup:
+ return( ret );
+}
+
+int mbedtls_mpi_random( mbedtls_mpi *X,
+ mbedtls_mpi_sint min,
+ const mbedtls_mpi *N,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng )
+{
+ int ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ int count;
+ unsigned lt_lower = 1, lt_upper = 0;
+ size_t n_bits = mbedtls_mpi_bitlen( N );
+ size_t n_bytes = ( n_bits + 7 ) / 8;
+ mbedtls_mpi lower_bound;
+
+ if( min < 0 )
+ return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
+ if( mbedtls_mpi_cmp_int( N, min ) <= 0 )
+ return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
+
+ /*
+ * When min == 0, each try has at worst a probability 1/2 of failing
+ * (the msb has a probability 1/2 of being 0, and then the result will
+ * be < N), so after 30 tries failure probability is a most 2**(-30).
+ *
+ * When N is just below a power of 2, as is the case when generating
+ * a random scalar on most elliptic curves, 1 try is enough with
+ * overwhelming probability. When N is just above a power of 2,
+ * as when generating a random scalar on secp224k1, each try has
+ * a probability of failing that is almost 1/2.
+ *
+ * The probabilities are almost the same if min is nonzero but negligible
+ * compared to N. This is always the case when N is crypto-sized, but
+ * it's convenient to support small N for testing purposes. When N
+ * is small, use a higher repeat count, otherwise the probability of
+ * failure is macroscopic.
+ */
+ count = ( n_bytes > 4 ? 30 : 250 );
+
+ mbedtls_mpi_init( &lower_bound );
+
+ /* Ensure that target MPI has exactly the same number of limbs
+ * as the upper bound, even if the upper bound has leading zeros.
+ * This is necessary for the mbedtls_mpi_lt_mpi_ct() check. */
+ MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, N->n ) );
+ MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &lower_bound, N->n ) );
+ MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &lower_bound, min ) );
+
+ /*
+ * Match the procedure given in RFC 6979 §3.3 (deterministic ECDSA)
+ * when f_rng is a suitably parametrized instance of HMAC_DRBG:
+ * - use the same byte ordering;
+ * - keep the leftmost n_bits bits of the generated octet string;
+ * - try until result is in the desired range.
+ * This also avoids any bias, which is especially important for ECDSA.
+ */
+ do
+ {
+ MBEDTLS_MPI_CHK( mpi_fill_random_internal( X, n_bytes, f_rng, p_rng ) );
+ MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( X, 8 * n_bytes - n_bits ) );
+
+ if( --count == 0 )
+ {
+ ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
+ goto cleanup;
+ }
+
+ MBEDTLS_MPI_CHK( mbedtls_mpi_lt_mpi_ct( X, &lower_bound, &lt_lower ) );
+ MBEDTLS_MPI_CHK( mbedtls_mpi_lt_mpi_ct( X, N, &lt_upper ) );
+ }
+ while( lt_lower != 0 || lt_upper == 0 );
+
+cleanup:
+ mbedtls_mpi_free( &lower_bound );
+ return( ret );
+}
+
+/*
+ * Modular inverse: X = A^-1 mod N (HAC 14.61 / 14.64)
+ */
+int mbedtls_mpi_inv_mod( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *N )
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_mpi G, TA, TU, U1, U2, TB, TV, V1, V2;
+ MPI_VALIDATE_RET( X != NULL );
+ MPI_VALIDATE_RET( A != NULL );
+ MPI_VALIDATE_RET( N != NULL );
+
+ if( mbedtls_mpi_cmp_int( N, 1 ) <= 0 )
+ return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
+
+ mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TU ); mbedtls_mpi_init( &U1 ); mbedtls_mpi_init( &U2 );
+ mbedtls_mpi_init( &G ); mbedtls_mpi_init( &TB ); mbedtls_mpi_init( &TV );
+ mbedtls_mpi_init( &V1 ); mbedtls_mpi_init( &V2 );
+
+ MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &G, A, N ) );
+
+ if( mbedtls_mpi_cmp_int( &G, 1 ) != 0 )
+ {
+ ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
+ goto cleanup;
+ }
+
+ MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &TA, A, N ) );
+ MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TU, &TA ) );
+ MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, N ) );
+ MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TV, N ) );
+
+ MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &U1, 1 ) );
+ MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &U2, 0 ) );
+ MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &V1, 0 ) );
+ MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &V2, 1 ) );
+
+ do
+ {
+ while( ( TU.p[0] & 1 ) == 0 )
+ {
+ MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TU, 1 ) );
+
+ if( ( U1.p[0] & 1 ) != 0 || ( U2.p[0] & 1 ) != 0 )
+ {
+ MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &U1, &U1, &TB ) );
+ MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U2, &U2, &TA ) );
+ }
+
+ MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &U1, 1 ) );
+ MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &U2, 1 ) );
+ }
+
+ while( ( TV.p[0] & 1 ) == 0 )
+ {
+ MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TV, 1 ) );
+
+ if( ( V1.p[0] & 1 ) != 0 || ( V2.p[0] & 1 ) != 0 )
+ {
+ MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &V1, &V1, &TB ) );
+ MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V2, &V2, &TA ) );
+ }
+
+ MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &V1, 1 ) );
+ MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &V2, 1 ) );
+ }
+
+ if( mbedtls_mpi_cmp_mpi( &TU, &TV ) >= 0 )
+ {
+ MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &TU, &TU, &TV ) );
+ MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U1, &U1, &V1 ) );
+ MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U2, &U2, &V2 ) );
+ }
+ else
+ {
+ MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &TV, &TV, &TU ) );
+ MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V1, &V1, &U1 ) );
+ MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V2, &V2, &U2 ) );
+ }
+ }
+ while( mbedtls_mpi_cmp_int( &TU, 0 ) != 0 );
+
+ while( mbedtls_mpi_cmp_int( &V1, 0 ) < 0 )
+ MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &V1, &V1, N ) );
+
+ while( mbedtls_mpi_cmp_mpi( &V1, N ) >= 0 )
+ MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V1, &V1, N ) );
+
+ MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, &V1 ) );
+
+cleanup:
+
+ mbedtls_mpi_free( &TA ); mbedtls_mpi_free( &TU ); mbedtls_mpi_free( &U1 ); mbedtls_mpi_free( &U2 );
+ mbedtls_mpi_free( &G ); mbedtls_mpi_free( &TB ); mbedtls_mpi_free( &TV );
+ mbedtls_mpi_free( &V1 ); mbedtls_mpi_free( &V2 );
+
+ return( ret );
+}
+
+#if defined(MBEDTLS_GENPRIME)
+
+static const int small_prime[] =
+{
+ 3, 5, 7, 11, 13, 17, 19, 23,
+ 29, 31, 37, 41, 43, 47, 53, 59,
+ 61, 67, 71, 73, 79, 83, 89, 97,
+ 101, 103, 107, 109, 113, 127, 131, 137,
+ 139, 149, 151, 157, 163, 167, 173, 179,
+ 181, 191, 193, 197, 199, 211, 223, 227,
+ 229, 233, 239, 241, 251, 257, 263, 269,
+ 271, 277, 281, 283, 293, 307, 311, 313,
+ 317, 331, 337, 347, 349, 353, 359, 367,
+ 373, 379, 383, 389, 397, 401, 409, 419,
+ 421, 431, 433, 439, 443, 449, 457, 461,
+ 463, 467, 479, 487, 491, 499, 503, 509,
+ 521, 523, 541, 547, 557, 563, 569, 571,
+ 577, 587, 593, 599, 601, 607, 613, 617,
+ 619, 631, 641, 643, 647, 653, 659, 661,
+ 673, 677, 683, 691, 701, 709, 719, 727,
+ 733, 739, 743, 751, 757, 761, 769, 773,
+ 787, 797, 809, 811, 821, 823, 827, 829,
+ 839, 853, 857, 859, 863, 877, 881, 883,
+ 887, 907, 911, 919, 929, 937, 941, 947,
+ 953, 967, 971, 977, 983, 991, 997, -103
+};
+
+/*
+ * Small divisors test (X must be positive)
+ *
+ * Return values:
+ * 0: no small factor (possible prime, more tests needed)
+ * 1: certain prime
+ * MBEDTLS_ERR_MPI_NOT_ACCEPTABLE: certain non-prime
+ * other negative: error
+ */
+static int mpi_check_small_factors( const mbedtls_mpi *X )
+{
+ int ret = 0;
+ size_t i;
+ mbedtls_mpi_uint r;
+
+ if( ( X->p[0] & 1 ) == 0 )
+ return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
+
+ for( i = 0; small_prime[i] > 0; i++ )
+ {
+ if( mbedtls_mpi_cmp_int( X, small_prime[i] ) <= 0 )
+ return( 1 );
+
+ MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, small_prime[i] ) );
+
+ if( r == 0 )
+ return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
+ }
+
+cleanup:
+ return( ret );
+}
+
+/*
+ * Miller-Rabin pseudo-primality test (HAC 4.24)
+ */
+static int mpi_miller_rabin( const mbedtls_mpi *X, size_t rounds,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng )
+{
+ int ret, count;
+ size_t i, j, k, s;
+ mbedtls_mpi W, R, T, A, RR;
+
+ MPI_VALIDATE_RET( X != NULL );
+ MPI_VALIDATE_RET( f_rng != NULL );
+
+ mbedtls_mpi_init( &W ); mbedtls_mpi_init( &R );
+ mbedtls_mpi_init( &T ); mbedtls_mpi_init( &A );
+ mbedtls_mpi_init( &RR );
+
+ /*
+ * W = |X| - 1
+ * R = W >> lsb( W )
+ */
+ MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &W, X, 1 ) );
+ s = mbedtls_mpi_lsb( &W );
+ MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R, &W ) );
+ MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &R, s ) );
+
+ for( i = 0; i < rounds; i++ )
+ {
+ /*
+ * pick a random A, 1 < A < |X| - 1
+ */
+ count = 0;
+ do {
+ MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &A, X->n * ciL, f_rng, p_rng ) );
+
+ j = mbedtls_mpi_bitlen( &A );
+ k = mbedtls_mpi_bitlen( &W );
+ if (j > k) {
+ A.p[A.n - 1] &= ( (mbedtls_mpi_uint) 1 << ( k - ( A.n - 1 ) * biL - 1 ) ) - 1;
+ }
+
+ if (count++ > 30) {
+ ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
+ goto cleanup;
+ }
+
+ } while ( mbedtls_mpi_cmp_mpi( &A, &W ) >= 0 ||
+ mbedtls_mpi_cmp_int( &A, 1 ) <= 0 );
+
+ /*
+ * A = A^R mod |X|
+ */
+ MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &A, &A, &R, X, &RR ) );
+
+ if( mbedtls_mpi_cmp_mpi( &A, &W ) == 0 ||
+ mbedtls_mpi_cmp_int( &A, 1 ) == 0 )
+ continue;
+
+ j = 1;
+ while( j < s && mbedtls_mpi_cmp_mpi( &A, &W ) != 0 )
+ {
+ /*
+ * A = A * A mod |X|
+ */
+ MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &A, &A ) );
+ MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &A, &T, X ) );
+
+ if( mbedtls_mpi_cmp_int( &A, 1 ) == 0 )
+ break;
+
+ j++;
+ }
+
+ /*
+ * not prime if A != |X| - 1 or A == 1
+ */
+ if( mbedtls_mpi_cmp_mpi( &A, &W ) != 0 ||
+ mbedtls_mpi_cmp_int( &A, 1 ) == 0 )
+ {
+ ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
+ break;
+ }
+ }
+
+cleanup:
+ mbedtls_mpi_free( &W ); mbedtls_mpi_free( &R );
+ mbedtls_mpi_free( &T ); mbedtls_mpi_free( &A );
+ mbedtls_mpi_free( &RR );
+
+ return( ret );
+}
+
+/*
+ * Pseudo-primality test: small factors, then Miller-Rabin
+ */
+int mbedtls_mpi_is_prime_ext( const mbedtls_mpi *X, int rounds,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng )
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_mpi XX;
+ MPI_VALIDATE_RET( X != NULL );
+ MPI_VALIDATE_RET( f_rng != NULL );
+
+ XX.s = 1;
+ XX.n = X->n;
+ XX.p = X->p;
+
+ if( mbedtls_mpi_cmp_int( &XX, 0 ) == 0 ||
+ mbedtls_mpi_cmp_int( &XX, 1 ) == 0 )
+ return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
+
+ if( mbedtls_mpi_cmp_int( &XX, 2 ) == 0 )
+ return( 0 );
+
+ if( ( ret = mpi_check_small_factors( &XX ) ) != 0 )
+ {
+ if( ret == 1 )
+ return( 0 );
+
+ return( ret );
+ }
+
+ return( mpi_miller_rabin( &XX, rounds, f_rng, p_rng ) );
+}
+
+#if !defined(MBEDTLS_DEPRECATED_REMOVED)
+/*
+ * Pseudo-primality test, error probability 2^-80
+ */
+int mbedtls_mpi_is_prime( const mbedtls_mpi *X,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng )
+{
+ MPI_VALIDATE_RET( X != NULL );
+ MPI_VALIDATE_RET( f_rng != NULL );
+
+ /*
+ * In the past our key generation aimed for an error rate of at most
+ * 2^-80. Since this function is deprecated, aim for the same certainty
+ * here as well.
+ */
+ return( mbedtls_mpi_is_prime_ext( X, 40, f_rng, p_rng ) );
+}
+#endif
+
+/*
+ * Prime number generation
+ *
+ * To generate an RSA key in a way recommended by FIPS 186-4, both primes must
+ * be either 1024 bits or 1536 bits long, and flags must contain
+ * MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR.
+ */
+int mbedtls_mpi_gen_prime( mbedtls_mpi *X, size_t nbits, int flags,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng )
+{
+#ifdef MBEDTLS_HAVE_INT64
+// ceil(2^63.5)
+#define CEIL_MAXUINT_DIV_SQRT2 0xb504f333f9de6485ULL
+#else
+// ceil(2^31.5)
+#define CEIL_MAXUINT_DIV_SQRT2 0xb504f334U
+#endif
+ int ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
+ size_t k, n;
+ int rounds;
+ mbedtls_mpi_uint r;
+ mbedtls_mpi Y;
+
+ MPI_VALIDATE_RET( X != NULL );
+ MPI_VALIDATE_RET( f_rng != NULL );
+
+ if( nbits < 3 || nbits > MBEDTLS_MPI_MAX_BITS )
+ return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
+
+ mbedtls_mpi_init( &Y );
+
+ n = BITS_TO_LIMBS( nbits );
+
+ if( ( flags & MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR ) == 0 )
+ {
+ /*
+ * 2^-80 error probability, number of rounds chosen per HAC, table 4.4
+ */
+ rounds = ( ( nbits >= 1300 ) ? 2 : ( nbits >= 850 ) ? 3 :
+ ( nbits >= 650 ) ? 4 : ( nbits >= 350 ) ? 8 :
+ ( nbits >= 250 ) ? 12 : ( nbits >= 150 ) ? 18 : 27 );
+ }
+ else
+ {
+ /*
+ * 2^-100 error probability, number of rounds computed based on HAC,
+ * fact 4.48
+ */
+ rounds = ( ( nbits >= 1450 ) ? 4 : ( nbits >= 1150 ) ? 5 :
+ ( nbits >= 1000 ) ? 6 : ( nbits >= 850 ) ? 7 :
+ ( nbits >= 750 ) ? 8 : ( nbits >= 500 ) ? 13 :
+ ( nbits >= 250 ) ? 28 : ( nbits >= 150 ) ? 40 : 51 );
+ }
+
+ while( 1 )
+ {
+ MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( X, n * ciL, f_rng, p_rng ) );
+ /* make sure generated number is at least (nbits-1)+0.5 bits (FIPS 186-4 §B.3.3 steps 4.4, 5.5) */
+ if( X->p[n-1] < CEIL_MAXUINT_DIV_SQRT2 ) continue;
+
+ k = n * biL;
+ if( k > nbits ) MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( X, k - nbits ) );
+ X->p[0] |= 1;
+
+ if( ( flags & MBEDTLS_MPI_GEN_PRIME_FLAG_DH ) == 0 )
+ {
+ ret = mbedtls_mpi_is_prime_ext( X, rounds, f_rng, p_rng );
+
+ if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
+ goto cleanup;
+ }
+ else
+ {
+ /*
+ * An necessary condition for Y and X = 2Y + 1 to be prime
+ * is X = 2 mod 3 (which is equivalent to Y = 2 mod 3).
+ * Make sure it is satisfied, while keeping X = 3 mod 4
+ */
+
+ X->p[0] |= 2;
+
+ MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, 3 ) );
+ if( r == 0 )
+ MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 8 ) );
+ else if( r == 1 )
+ MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 4 ) );
+
+ /* Set Y = (X-1) / 2, which is X / 2 because X is odd */
+ MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Y, X ) );
+ MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Y, 1 ) );
+
+ while( 1 )
+ {
+ /*
+ * First, check small factors for X and Y
+ * before doing Miller-Rabin on any of them
+ */
+ if( ( ret = mpi_check_small_factors( X ) ) == 0 &&
+ ( ret = mpi_check_small_factors( &Y ) ) == 0 &&
+ ( ret = mpi_miller_rabin( X, rounds, f_rng, p_rng ) )
+ == 0 &&
+ ( ret = mpi_miller_rabin( &Y, rounds, f_rng, p_rng ) )
+ == 0 )
+ goto cleanup;
+
+ if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
+ goto cleanup;
+
+ /*
+ * Next candidates. We want to preserve Y = (X-1) / 2 and
+ * Y = 1 mod 2 and Y = 2 mod 3 (eq X = 3 mod 4 and X = 2 mod 3)
+ * so up Y by 6 and X by 12.
+ */
+ MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 12 ) );
+ MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &Y, &Y, 6 ) );
+ }
+ }
+ }
+
+cleanup:
+
+ mbedtls_mpi_free( &Y );
+
+ return( ret );
+}
+
+#endif /* MBEDTLS_GENPRIME */
+
+#if defined(MBEDTLS_SELF_TEST)
+
+#define GCD_PAIR_COUNT 3
+
+static const int gcd_pairs[GCD_PAIR_COUNT][3] =
+{
+ { 693, 609, 21 },
+ { 1764, 868, 28 },
+ { 768454923, 542167814, 1 }
+};
+
+/*
+ * Checkup routine
+ */
+int mbedtls_mpi_self_test( int verbose )
+{
+ int ret, i;
+ mbedtls_mpi A, E, N, X, Y, U, V;
+
+ mbedtls_mpi_init( &A ); mbedtls_mpi_init( &E ); mbedtls_mpi_init( &N ); mbedtls_mpi_init( &X );
+ mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &U ); mbedtls_mpi_init( &V );
+
+ MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &A, 16,
+ "EFE021C2645FD1DC586E69184AF4A31E" \
+ "D5F53E93B5F123FA41680867BA110131" \
+ "944FE7952E2517337780CB0DB80E61AA" \
+ "E7C8DDC6C5C6AADEB34EB38A2F40D5E6" ) );
+
+ MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &E, 16,
+ "B2E7EFD37075B9F03FF989C7C5051C20" \
+ "34D2A323810251127E7BF8625A4F49A5" \
+ "F3E27F4DA8BD59C47D6DAABA4C8127BD" \
+ "5B5C25763222FEFCCFC38B832366C29E" ) );
+
+ MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &N, 16,
+ "0066A198186C18C10B2F5ED9B522752A" \
+ "9830B69916E535C8F047518A889A43A5" \
+ "94B6BED27A168D31D4A52F88925AA8F5" ) );
+
+ MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &X, &A, &N ) );
+
+ MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
+ "602AB7ECA597A3D6B56FF9829A5E8B85" \
+ "9E857EA95A03512E2BAE7391688D264A" \
+ "A5663B0341DB9CCFD2C4C5F421FEC814" \
+ "8001B72E848A38CAE1C65F78E56ABDEF" \
+ "E12D3C039B8A02D6BE593F0BBBDA56F1" \
+ "ECF677152EF804370C1A305CAF3B5BF1" \
+ "30879B56C61DE584A0F53A2447A51E" ) );
+
+ if( verbose != 0 )
+ mbedtls_printf( " MPI test #1 (mul_mpi): " );
+
+ if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
+ {
+ if( verbose != 0 )
+ mbedtls_printf( "failed\n" );
+
+ ret = 1;
+ goto cleanup;
+ }
+
+ if( verbose != 0 )
+ mbedtls_printf( "passed\n" );
+
+ MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( &X, &Y, &A, &N ) );
+
+ MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
+ "256567336059E52CAE22925474705F39A94" ) );
+
+ MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &V, 16,
+ "6613F26162223DF488E9CD48CC132C7A" \
+ "0AC93C701B001B092E4E5B9F73BCD27B" \
+ "9EE50D0657C77F374E903CDFA4C642" ) );
+
+ if( verbose != 0 )
+ mbedtls_printf( " MPI test #2 (div_mpi): " );
+
+ if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 ||
+ mbedtls_mpi_cmp_mpi( &Y, &V ) != 0 )
+ {
+ if( verbose != 0 )
+ mbedtls_printf( "failed\n" );
+
+ ret = 1;
+ goto cleanup;
+ }
+
+ if( verbose != 0 )
+ mbedtls_printf( "passed\n" );
+
+ MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &X, &A, &E, &N, NULL ) );
+
+ MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
+ "36E139AEA55215609D2816998ED020BB" \
+ "BD96C37890F65171D948E9BC7CBAA4D9" \
+ "325D24D6A3C12710F10A09FA08AB87" ) );
+
+ if( verbose != 0 )
+ mbedtls_printf( " MPI test #3 (exp_mod): " );
+
+ if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
+ {
+ if( verbose != 0 )
+ mbedtls_printf( "failed\n" );
+
+ ret = 1;
+ goto cleanup;
+ }
+
+ if( verbose != 0 )
+ mbedtls_printf( "passed\n" );
+
+ MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &X, &A, &N ) );
+
+ MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
+ "003A0AAEDD7E784FC07D8F9EC6E3BFD5" \
+ "C3DBA76456363A10869622EAC2DD84EC" \
+ "C5B8A74DAC4D09E03B5E0BE779F2DF61" ) );
+
+ if( verbose != 0 )
+ mbedtls_printf( " MPI test #4 (inv_mod): " );
+
+ if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
+ {
+ if( verbose != 0 )
+ mbedtls_printf( "failed\n" );
+
+ ret = 1;
+ goto cleanup;
+ }
+
+ if( verbose != 0 )
+ mbedtls_printf( "passed\n" );
+
+ if( verbose != 0 )
+ mbedtls_printf( " MPI test #5 (simple gcd): " );
+
+ for( i = 0; i < GCD_PAIR_COUNT; i++ )
+ {
+ MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &X, gcd_pairs[i][0] ) );
+ MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &Y, gcd_pairs[i][1] ) );
+
+ MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &A, &X, &Y ) );
+
+ if( mbedtls_mpi_cmp_int( &A, gcd_pairs[i][2] ) != 0 )
+ {
+ if( verbose != 0 )
+ mbedtls_printf( "failed at %d\n", i );
+
+ ret = 1;
+ goto cleanup;
+ }
+ }
+
+ if( verbose != 0 )
+ mbedtls_printf( "passed\n" );
+
+cleanup:
+
+ if( ret != 0 && verbose != 0 )
+ mbedtls_printf( "Unexpected error, return code = %08X\n", (unsigned int) ret );
+
+ mbedtls_mpi_free( &A ); mbedtls_mpi_free( &E ); mbedtls_mpi_free( &N ); mbedtls_mpi_free( &X );
+ mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &U ); mbedtls_mpi_free( &V );
+
+ if( verbose != 0 )
+ mbedtls_printf( "\n" );
+
+ return( ret );
+}
+
+#endif /* MBEDTLS_SELF_TEST */
+
+#endif /* MBEDTLS_BIGNUM_C */