diff options
Diffstat (limited to 'lib/mbedtls-2.27.0/include/mbedtls/ecp_internal.h')
-rw-r--r-- | lib/mbedtls-2.27.0/include/mbedtls/ecp_internal.h | 297 |
1 files changed, 0 insertions, 297 deletions
diff --git a/lib/mbedtls-2.27.0/include/mbedtls/ecp_internal.h b/lib/mbedtls-2.27.0/include/mbedtls/ecp_internal.h deleted file mode 100644 index 6a47a8f..0000000 --- a/lib/mbedtls-2.27.0/include/mbedtls/ecp_internal.h +++ /dev/null @@ -1,297 +0,0 @@ -/** - * \file ecp_internal.h - * - * \brief Function declarations for alternative implementation of elliptic curve - * point arithmetic. - */ -/* - * Copyright The Mbed TLS Contributors - * SPDX-License-Identifier: Apache-2.0 - * - * Licensed under the Apache License, Version 2.0 (the "License"); you may - * not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT - * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -/* - * References: - * - * [1] BERNSTEIN, Daniel J. Curve25519: new Diffie-Hellman speed records. - * <http://cr.yp.to/ecdh/curve25519-20060209.pdf> - * - * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis - * for elliptic curve cryptosystems. In : Cryptographic Hardware and - * Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302. - * <http://link.springer.com/chapter/10.1007/3-540-48059-5_25> - * - * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to - * render ECC resistant against Side Channel Attacks. IACR Cryptology - * ePrint Archive, 2004, vol. 2004, p. 342. - * <http://eprint.iacr.org/2004/342.pdf> - * - * [4] Certicom Research. SEC 2: Recommended Elliptic Curve Domain Parameters. - * <http://www.secg.org/sec2-v2.pdf> - * - * [5] HANKERSON, Darrel, MENEZES, Alfred J., VANSTONE, Scott. Guide to Elliptic - * Curve Cryptography. - * - * [6] Digital Signature Standard (DSS), FIPS 186-4. - * <http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf> - * - * [7] Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer - * Security (TLS), RFC 4492. - * <https://tools.ietf.org/search/rfc4492> - * - * [8] <http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html> - * - * [9] COHEN, Henri. A Course in Computational Algebraic Number Theory. - * Springer Science & Business Media, 1 Aug 2000 - */ - -#ifndef MBEDTLS_ECP_INTERNAL_H -#define MBEDTLS_ECP_INTERNAL_H - -#if !defined(MBEDTLS_CONFIG_FILE) -#include "mbedtls/config.h" -#else -#include MBEDTLS_CONFIG_FILE -#endif - -#if defined(MBEDTLS_ECP_INTERNAL_ALT) - -/** - * \brief Indicate if the Elliptic Curve Point module extension can - * handle the group. - * - * \param grp The pointer to the elliptic curve group that will be the - * basis of the cryptographic computations. - * - * \return Non-zero if successful. - */ -unsigned char mbedtls_internal_ecp_grp_capable( const mbedtls_ecp_group *grp ); - -/** - * \brief Initialise the Elliptic Curve Point module extension. - * - * If mbedtls_internal_ecp_grp_capable returns true for a - * group, this function has to be able to initialise the - * module for it. - * - * This module can be a driver to a crypto hardware - * accelerator, for which this could be an initialise function. - * - * \param grp The pointer to the group the module needs to be - * initialised for. - * - * \return 0 if successful. - */ -int mbedtls_internal_ecp_init( const mbedtls_ecp_group *grp ); - -/** - * \brief Frees and deallocates the Elliptic Curve Point module - * extension. - * - * \param grp The pointer to the group the module was initialised for. - */ -void mbedtls_internal_ecp_free( const mbedtls_ecp_group *grp ); - -#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) - -#if defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT) -/** - * \brief Randomize jacobian coordinates: - * (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l. - * - * \param grp Pointer to the group representing the curve. - * - * \param pt The point on the curve to be randomised, given with Jacobian - * coordinates. - * - * \param f_rng A function pointer to the random number generator. - * - * \param p_rng A pointer to the random number generator state. - * - * \return 0 if successful. - */ -int mbedtls_internal_ecp_randomize_jac( const mbedtls_ecp_group *grp, - mbedtls_ecp_point *pt, int (*f_rng)(void *, unsigned char *, size_t), - void *p_rng ); -#endif - -#if defined(MBEDTLS_ECP_ADD_MIXED_ALT) -/** - * \brief Addition: R = P + Q, mixed affine-Jacobian coordinates. - * - * The coordinates of Q must be normalized (= affine), - * but those of P don't need to. R is not normalized. - * - * This function is used only as a subrutine of - * ecp_mul_comb(). - * - * Special cases: (1) P or Q is zero, (2) R is zero, - * (3) P == Q. - * None of these cases can happen as intermediate step in - * ecp_mul_comb(): - * - at each step, P, Q and R are multiples of the base - * point, the factor being less than its order, so none of - * them is zero; - * - Q is an odd multiple of the base point, P an even - * multiple, due to the choice of precomputed points in the - * modified comb method. - * So branches for these cases do not leak secret information. - * - * We accept Q->Z being unset (saving memory in tables) as - * meaning 1. - * - * Cost in field operations if done by [5] 3.22: - * 1A := 8M + 3S - * - * \param grp Pointer to the group representing the curve. - * - * \param R Pointer to a point structure to hold the result. - * - * \param P Pointer to the first summand, given with Jacobian - * coordinates - * - * \param Q Pointer to the second summand, given with affine - * coordinates. - * - * \return 0 if successful. - */ -int mbedtls_internal_ecp_add_mixed( const mbedtls_ecp_group *grp, - mbedtls_ecp_point *R, const mbedtls_ecp_point *P, - const mbedtls_ecp_point *Q ); -#endif - -/** - * \brief Point doubling R = 2 P, Jacobian coordinates. - * - * Cost: 1D := 3M + 4S (A == 0) - * 4M + 4S (A == -3) - * 3M + 6S + 1a otherwise - * when the implementation is based on the "dbl-1998-cmo-2" - * doubling formulas in [8] and standard optimizations are - * applied when curve parameter A is one of { 0, -3 }. - * - * \param grp Pointer to the group representing the curve. - * - * \param R Pointer to a point structure to hold the result. - * - * \param P Pointer to the point that has to be doubled, given with - * Jacobian coordinates. - * - * \return 0 if successful. - */ -#if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) -int mbedtls_internal_ecp_double_jac( const mbedtls_ecp_group *grp, - mbedtls_ecp_point *R, const mbedtls_ecp_point *P ); -#endif - -/** - * \brief Normalize jacobian coordinates of an array of (pointers to) - * points. - * - * Using Montgomery's trick to perform only one inversion mod P - * the cost is: - * 1N(t) := 1I + (6t - 3)M + 1S - * (See for example Algorithm 10.3.4. in [9]) - * - * This function is used only as a subrutine of - * ecp_mul_comb(). - * - * Warning: fails (returning an error) if one of the points is - * zero! - * This should never happen, see choice of w in ecp_mul_comb(). - * - * \param grp Pointer to the group representing the curve. - * - * \param T Array of pointers to the points to normalise. - * - * \param t_len Number of elements in the array. - * - * \return 0 if successful, - * an error if one of the points is zero. - */ -#if defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT) -int mbedtls_internal_ecp_normalize_jac_many( const mbedtls_ecp_group *grp, - mbedtls_ecp_point *T[], size_t t_len ); -#endif - -/** - * \brief Normalize jacobian coordinates so that Z == 0 || Z == 1. - * - * Cost in field operations if done by [5] 3.2.1: - * 1N := 1I + 3M + 1S - * - * \param grp Pointer to the group representing the curve. - * - * \param pt pointer to the point to be normalised. This is an - * input/output parameter. - * - * \return 0 if successful. - */ -#if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT) -int mbedtls_internal_ecp_normalize_jac( const mbedtls_ecp_group *grp, - mbedtls_ecp_point *pt ); -#endif - -#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */ - -#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED) - -#if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT) -int mbedtls_internal_ecp_double_add_mxz( const mbedtls_ecp_group *grp, - mbedtls_ecp_point *R, mbedtls_ecp_point *S, const mbedtls_ecp_point *P, - const mbedtls_ecp_point *Q, const mbedtls_mpi *d ); -#endif - -/** - * \brief Randomize projective x/z coordinates: - * (X, Z) -> (l X, l Z) for random l - * - * \param grp pointer to the group representing the curve - * - * \param P the point on the curve to be randomised given with - * projective coordinates. This is an input/output parameter. - * - * \param f_rng a function pointer to the random number generator - * - * \param p_rng a pointer to the random number generator state - * - * \return 0 if successful - */ -#if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT) -int mbedtls_internal_ecp_randomize_mxz( const mbedtls_ecp_group *grp, - mbedtls_ecp_point *P, int (*f_rng)(void *, unsigned char *, size_t), - void *p_rng ); -#endif - -/** - * \brief Normalize Montgomery x/z coordinates: X = X/Z, Z = 1. - * - * \param grp pointer to the group representing the curve - * - * \param P pointer to the point to be normalised. This is an - * input/output parameter. - * - * \return 0 if successful - */ -#if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT) -int mbedtls_internal_ecp_normalize_mxz( const mbedtls_ecp_group *grp, - mbedtls_ecp_point *P ); -#endif - -#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */ - -#endif /* MBEDTLS_ECP_INTERNAL_ALT */ - -#endif /* ecp_internal.h */ - |