aboutsummaryrefslogtreecommitdiff
path: root/lib/mbedtls-2.27.0/include/mbedtls/ecp_internal.h
diff options
context:
space:
mode:
Diffstat (limited to 'lib/mbedtls-2.27.0/include/mbedtls/ecp_internal.h')
-rw-r--r--lib/mbedtls-2.27.0/include/mbedtls/ecp_internal.h297
1 files changed, 0 insertions, 297 deletions
diff --git a/lib/mbedtls-2.27.0/include/mbedtls/ecp_internal.h b/lib/mbedtls-2.27.0/include/mbedtls/ecp_internal.h
deleted file mode 100644
index 6a47a8f..0000000
--- a/lib/mbedtls-2.27.0/include/mbedtls/ecp_internal.h
+++ /dev/null
@@ -1,297 +0,0 @@
-/**
- * \file ecp_internal.h
- *
- * \brief Function declarations for alternative implementation of elliptic curve
- * point arithmetic.
- */
-/*
- * Copyright The Mbed TLS Contributors
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the "License"); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-/*
- * References:
- *
- * [1] BERNSTEIN, Daniel J. Curve25519: new Diffie-Hellman speed records.
- * <http://cr.yp.to/ecdh/curve25519-20060209.pdf>
- *
- * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis
- * for elliptic curve cryptosystems. In : Cryptographic Hardware and
- * Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
- * <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
- *
- * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to
- * render ECC resistant against Side Channel Attacks. IACR Cryptology
- * ePrint Archive, 2004, vol. 2004, p. 342.
- * <http://eprint.iacr.org/2004/342.pdf>
- *
- * [4] Certicom Research. SEC 2: Recommended Elliptic Curve Domain Parameters.
- * <http://www.secg.org/sec2-v2.pdf>
- *
- * [5] HANKERSON, Darrel, MENEZES, Alfred J., VANSTONE, Scott. Guide to Elliptic
- * Curve Cryptography.
- *
- * [6] Digital Signature Standard (DSS), FIPS 186-4.
- * <http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf>
- *
- * [7] Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer
- * Security (TLS), RFC 4492.
- * <https://tools.ietf.org/search/rfc4492>
- *
- * [8] <http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html>
- *
- * [9] COHEN, Henri. A Course in Computational Algebraic Number Theory.
- * Springer Science & Business Media, 1 Aug 2000
- */
-
-#ifndef MBEDTLS_ECP_INTERNAL_H
-#define MBEDTLS_ECP_INTERNAL_H
-
-#if !defined(MBEDTLS_CONFIG_FILE)
-#include "mbedtls/config.h"
-#else
-#include MBEDTLS_CONFIG_FILE
-#endif
-
-#if defined(MBEDTLS_ECP_INTERNAL_ALT)
-
-/**
- * \brief Indicate if the Elliptic Curve Point module extension can
- * handle the group.
- *
- * \param grp The pointer to the elliptic curve group that will be the
- * basis of the cryptographic computations.
- *
- * \return Non-zero if successful.
- */
-unsigned char mbedtls_internal_ecp_grp_capable( const mbedtls_ecp_group *grp );
-
-/**
- * \brief Initialise the Elliptic Curve Point module extension.
- *
- * If mbedtls_internal_ecp_grp_capable returns true for a
- * group, this function has to be able to initialise the
- * module for it.
- *
- * This module can be a driver to a crypto hardware
- * accelerator, for which this could be an initialise function.
- *
- * \param grp The pointer to the group the module needs to be
- * initialised for.
- *
- * \return 0 if successful.
- */
-int mbedtls_internal_ecp_init( const mbedtls_ecp_group *grp );
-
-/**
- * \brief Frees and deallocates the Elliptic Curve Point module
- * extension.
- *
- * \param grp The pointer to the group the module was initialised for.
- */
-void mbedtls_internal_ecp_free( const mbedtls_ecp_group *grp );
-
-#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
-
-#if defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
-/**
- * \brief Randomize jacobian coordinates:
- * (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l.
- *
- * \param grp Pointer to the group representing the curve.
- *
- * \param pt The point on the curve to be randomised, given with Jacobian
- * coordinates.
- *
- * \param f_rng A function pointer to the random number generator.
- *
- * \param p_rng A pointer to the random number generator state.
- *
- * \return 0 if successful.
- */
-int mbedtls_internal_ecp_randomize_jac( const mbedtls_ecp_group *grp,
- mbedtls_ecp_point *pt, int (*f_rng)(void *, unsigned char *, size_t),
- void *p_rng );
-#endif
-
-#if defined(MBEDTLS_ECP_ADD_MIXED_ALT)
-/**
- * \brief Addition: R = P + Q, mixed affine-Jacobian coordinates.
- *
- * The coordinates of Q must be normalized (= affine),
- * but those of P don't need to. R is not normalized.
- *
- * This function is used only as a subrutine of
- * ecp_mul_comb().
- *
- * Special cases: (1) P or Q is zero, (2) R is zero,
- * (3) P == Q.
- * None of these cases can happen as intermediate step in
- * ecp_mul_comb():
- * - at each step, P, Q and R are multiples of the base
- * point, the factor being less than its order, so none of
- * them is zero;
- * - Q is an odd multiple of the base point, P an even
- * multiple, due to the choice of precomputed points in the
- * modified comb method.
- * So branches for these cases do not leak secret information.
- *
- * We accept Q->Z being unset (saving memory in tables) as
- * meaning 1.
- *
- * Cost in field operations if done by [5] 3.22:
- * 1A := 8M + 3S
- *
- * \param grp Pointer to the group representing the curve.
- *
- * \param R Pointer to a point structure to hold the result.
- *
- * \param P Pointer to the first summand, given with Jacobian
- * coordinates
- *
- * \param Q Pointer to the second summand, given with affine
- * coordinates.
- *
- * \return 0 if successful.
- */
-int mbedtls_internal_ecp_add_mixed( const mbedtls_ecp_group *grp,
- mbedtls_ecp_point *R, const mbedtls_ecp_point *P,
- const mbedtls_ecp_point *Q );
-#endif
-
-/**
- * \brief Point doubling R = 2 P, Jacobian coordinates.
- *
- * Cost: 1D := 3M + 4S (A == 0)
- * 4M + 4S (A == -3)
- * 3M + 6S + 1a otherwise
- * when the implementation is based on the "dbl-1998-cmo-2"
- * doubling formulas in [8] and standard optimizations are
- * applied when curve parameter A is one of { 0, -3 }.
- *
- * \param grp Pointer to the group representing the curve.
- *
- * \param R Pointer to a point structure to hold the result.
- *
- * \param P Pointer to the point that has to be doubled, given with
- * Jacobian coordinates.
- *
- * \return 0 if successful.
- */
-#if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
-int mbedtls_internal_ecp_double_jac( const mbedtls_ecp_group *grp,
- mbedtls_ecp_point *R, const mbedtls_ecp_point *P );
-#endif
-
-/**
- * \brief Normalize jacobian coordinates of an array of (pointers to)
- * points.
- *
- * Using Montgomery's trick to perform only one inversion mod P
- * the cost is:
- * 1N(t) := 1I + (6t - 3)M + 1S
- * (See for example Algorithm 10.3.4. in [9])
- *
- * This function is used only as a subrutine of
- * ecp_mul_comb().
- *
- * Warning: fails (returning an error) if one of the points is
- * zero!
- * This should never happen, see choice of w in ecp_mul_comb().
- *
- * \param grp Pointer to the group representing the curve.
- *
- * \param T Array of pointers to the points to normalise.
- *
- * \param t_len Number of elements in the array.
- *
- * \return 0 if successful,
- * an error if one of the points is zero.
- */
-#if defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
-int mbedtls_internal_ecp_normalize_jac_many( const mbedtls_ecp_group *grp,
- mbedtls_ecp_point *T[], size_t t_len );
-#endif
-
-/**
- * \brief Normalize jacobian coordinates so that Z == 0 || Z == 1.
- *
- * Cost in field operations if done by [5] 3.2.1:
- * 1N := 1I + 3M + 1S
- *
- * \param grp Pointer to the group representing the curve.
- *
- * \param pt pointer to the point to be normalised. This is an
- * input/output parameter.
- *
- * \return 0 if successful.
- */
-#if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
-int mbedtls_internal_ecp_normalize_jac( const mbedtls_ecp_group *grp,
- mbedtls_ecp_point *pt );
-#endif
-
-#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
-
-#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
-
-#if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
-int mbedtls_internal_ecp_double_add_mxz( const mbedtls_ecp_group *grp,
- mbedtls_ecp_point *R, mbedtls_ecp_point *S, const mbedtls_ecp_point *P,
- const mbedtls_ecp_point *Q, const mbedtls_mpi *d );
-#endif
-
-/**
- * \brief Randomize projective x/z coordinates:
- * (X, Z) -> (l X, l Z) for random l
- *
- * \param grp pointer to the group representing the curve
- *
- * \param P the point on the curve to be randomised given with
- * projective coordinates. This is an input/output parameter.
- *
- * \param f_rng a function pointer to the random number generator
- *
- * \param p_rng a pointer to the random number generator state
- *
- * \return 0 if successful
- */
-#if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
-int mbedtls_internal_ecp_randomize_mxz( const mbedtls_ecp_group *grp,
- mbedtls_ecp_point *P, int (*f_rng)(void *, unsigned char *, size_t),
- void *p_rng );
-#endif
-
-/**
- * \brief Normalize Montgomery x/z coordinates: X = X/Z, Z = 1.
- *
- * \param grp pointer to the group representing the curve
- *
- * \param P pointer to the point to be normalised. This is an
- * input/output parameter.
- *
- * \return 0 if successful
- */
-#if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
-int mbedtls_internal_ecp_normalize_mxz( const mbedtls_ecp_group *grp,
- mbedtls_ecp_point *P );
-#endif
-
-#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
-
-#endif /* MBEDTLS_ECP_INTERNAL_ALT */
-
-#endif /* ecp_internal.h */
-