aboutsummaryrefslogtreecommitdiff
path: root/SOURCES/tkg-prjc_v6.7-r2.patch
diff options
context:
space:
mode:
Diffstat (limited to 'SOURCES/tkg-prjc_v6.7-r2.patch')
-rw-r--r--SOURCES/tkg-prjc_v6.7-r2.patch11478
1 files changed, 0 insertions, 11478 deletions
diff --git a/SOURCES/tkg-prjc_v6.7-r2.patch b/SOURCES/tkg-prjc_v6.7-r2.patch
deleted file mode 100644
index 9d5b0ee..0000000
--- a/SOURCES/tkg-prjc_v6.7-r2.patch
+++ /dev/null
@@ -1,11478 +0,0 @@
-diff --git a/Documentation/admin-guide/sysctl/kernel.rst b/Documentation/admin-guide/sysctl/kernel.rst
-index 6584a1f9bfe3..226c79dd34cc 100644
---- a/Documentation/admin-guide/sysctl/kernel.rst
-+++ b/Documentation/admin-guide/sysctl/kernel.rst
-@@ -1646,3 +1646,13 @@ is 10 seconds.
-
- The softlockup threshold is (``2 * watchdog_thresh``). Setting this
- tunable to zero will disable lockup detection altogether.
-+
-+yield_type:
-+===========
-+
-+BMQ/PDS CPU scheduler only. This determines what type of yield calls
-+to sched_yield() will be performed.
-+
-+ 0 - No yield.
-+ 1 - Requeue task. (default)
-+ 2 - Set run queue skip task. Same as CFS.
-diff --git a/Documentation/scheduler/sched-BMQ.txt b/Documentation/scheduler/sched-BMQ.txt
-new file mode 100644
-index 000000000000..05c84eec0f31
---- /dev/null
-+++ b/Documentation/scheduler/sched-BMQ.txt
-@@ -0,0 +1,110 @@
-+ BitMap queue CPU Scheduler
-+ --------------------------
-+
-+CONTENT
-+========
-+
-+ Background
-+ Design
-+ Overview
-+ Task policy
-+ Priority management
-+ BitMap Queue
-+ CPU Assignment and Migration
-+
-+
-+Background
-+==========
-+
-+BitMap Queue CPU scheduler, referred to as BMQ from here on, is an evolution
-+of previous Priority and Deadline based Skiplist multiple queue scheduler(PDS),
-+and inspired by Zircon scheduler. The goal of it is to keep the scheduler code
-+simple, while efficiency and scalable for interactive tasks, such as desktop,
-+movie playback and gaming etc.
-+
-+Design
-+======
-+
-+Overview
-+--------
-+
-+BMQ use per CPU run queue design, each CPU(logical) has it's own run queue,
-+each CPU is responsible for scheduling the tasks that are putting into it's
-+run queue.
-+
-+The run queue is a set of priority queues. Note that these queues are fifo
-+queue for non-rt tasks or priority queue for rt tasks in data structure. See
-+BitMap Queue below for details. BMQ is optimized for non-rt tasks in the fact
-+that most applications are non-rt tasks. No matter the queue is fifo or
-+priority, In each queue is an ordered list of runnable tasks awaiting execution
-+and the data structures are the same. When it is time for a new task to run,
-+the scheduler simply looks the lowest numbered queueue that contains a task,
-+and runs the first task from the head of that queue. And per CPU idle task is
-+also in the run queue, so the scheduler can always find a task to run on from
-+its run queue.
-+
-+Each task will assigned the same timeslice(default 4ms) when it is picked to
-+start running. Task will be reinserted at the end of the appropriate priority
-+queue when it uses its whole timeslice. When the scheduler selects a new task
-+from the priority queue it sets the CPU's preemption timer for the remainder of
-+the previous timeslice. When that timer fires the scheduler will stop execution
-+on that task, select another task and start over again.
-+
-+If a task blocks waiting for a shared resource then it's taken out of its
-+priority queue and is placed in a wait queue for the shared resource. When it
-+is unblocked it will be reinserted in the appropriate priority queue of an
-+eligible CPU.
-+
-+Task policy
-+-----------
-+
-+BMQ supports DEADLINE, FIFO, RR, NORMAL, BATCH and IDLE task policy like the
-+mainline CFS scheduler. But BMQ is heavy optimized for non-rt task, that's
-+NORMAL/BATCH/IDLE policy tasks. Below is the implementation detail of each
-+policy.
-+
-+DEADLINE
-+ It is squashed as priority 0 FIFO task.
-+
-+FIFO/RR
-+ All RT tasks share one single priority queue in BMQ run queue designed. The
-+complexity of insert operation is O(n). BMQ is not designed for system runs
-+with major rt policy tasks.
-+
-+NORMAL/BATCH/IDLE
-+ BATCH and IDLE tasks are treated as the same policy. They compete CPU with
-+NORMAL policy tasks, but they just don't boost. To control the priority of
-+NORMAL/BATCH/IDLE tasks, simply use nice level.
-+
-+ISO
-+ ISO policy is not supported in BMQ. Please use nice level -20 NORMAL policy
-+task instead.
-+
-+Priority management
-+-------------------
-+
-+RT tasks have priority from 0-99. For non-rt tasks, there are three different
-+factors used to determine the effective priority of a task. The effective
-+priority being what is used to determine which queue it will be in.
-+
-+The first factor is simply the task’s static priority. Which is assigned from
-+task's nice level, within [-20, 19] in userland's point of view and [0, 39]
-+internally.
-+
-+The second factor is the priority boost. This is a value bounded between
-+[-MAX_PRIORITY_ADJ, MAX_PRIORITY_ADJ] used to offset the base priority, it is
-+modified by the following cases:
-+
-+*When a thread has used up its entire timeslice, always deboost its boost by
-+increasing by one.
-+*When a thread gives up cpu control(voluntary or non-voluntary) to reschedule,
-+and its switch-in time(time after last switch and run) below the thredhold
-+based on its priority boost, will boost its boost by decreasing by one buti is
-+capped at 0 (won’t go negative).
-+
-+The intent in this system is to ensure that interactive threads are serviced
-+quickly. These are usually the threads that interact directly with the user
-+and cause user-perceivable latency. These threads usually do little work and
-+spend most of their time blocked awaiting another user event. So they get the
-+priority boost from unblocking while background threads that do most of the
-+processing receive the priority penalty for using their entire timeslice.
-diff --git a/fs/proc/base.c b/fs/proc/base.c
-index dd31e3b6bf77..12d1248cb4df 100644
---- a/fs/proc/base.c
-+++ b/fs/proc/base.c
-@@ -480,7 +480,7 @@ static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
- seq_puts(m, "0 0 0\n");
- else
- seq_printf(m, "%llu %llu %lu\n",
-- (unsigned long long)task->se.sum_exec_runtime,
-+ (unsigned long long)tsk_seruntime(task),
- (unsigned long long)task->sched_info.run_delay,
- task->sched_info.pcount);
-
-diff --git a/include/asm-generic/resource.h b/include/asm-generic/resource.h
-index 8874f681b056..59eb72bf7d5f 100644
---- a/include/asm-generic/resource.h
-+++ b/include/asm-generic/resource.h
-@@ -23,7 +23,7 @@
- [RLIMIT_LOCKS] = { RLIM_INFINITY, RLIM_INFINITY }, \
- [RLIMIT_SIGPENDING] = { 0, 0 }, \
- [RLIMIT_MSGQUEUE] = { MQ_BYTES_MAX, MQ_BYTES_MAX }, \
-- [RLIMIT_NICE] = { 0, 0 }, \
-+ [RLIMIT_NICE] = { 30, 30 }, \
- [RLIMIT_RTPRIO] = { 0, 0 }, \
- [RLIMIT_RTTIME] = { RLIM_INFINITY, RLIM_INFINITY }, \
- }
-diff --git a/include/linux/sched.h b/include/linux/sched.h
-index 292c31697248..f5b026795dc6 100644
---- a/include/linux/sched.h
-+++ b/include/linux/sched.h
-@@ -769,8 +769,14 @@ struct task_struct {
- unsigned int ptrace;
-
- #ifdef CONFIG_SMP
-- int on_cpu;
- struct __call_single_node wake_entry;
-+#endif
-+#if defined(CONFIG_SMP) || defined(CONFIG_SCHED_ALT)
-+ int on_cpu;
-+#endif
-+
-+#ifdef CONFIG_SMP
-+#ifndef CONFIG_SCHED_ALT
- unsigned int wakee_flips;
- unsigned long wakee_flip_decay_ts;
- struct task_struct *last_wakee;
-@@ -784,6 +790,7 @@ struct task_struct {
- */
- int recent_used_cpu;
- int wake_cpu;
-+#endif /* !CONFIG_SCHED_ALT */
- #endif
- int on_rq;
-
-@@ -792,6 +799,20 @@ struct task_struct {
- int normal_prio;
- unsigned int rt_priority;
-
-+#ifdef CONFIG_SCHED_ALT
-+ u64 last_ran;
-+ s64 time_slice;
-+ int sq_idx;
-+ struct list_head sq_node;
-+#ifdef CONFIG_SCHED_BMQ
-+ int boost_prio;
-+#endif /* CONFIG_SCHED_BMQ */
-+#ifdef CONFIG_SCHED_PDS
-+ u64 deadline;
-+#endif /* CONFIG_SCHED_PDS */
-+ /* sched_clock time spent running */
-+ u64 sched_time;
-+#else /* !CONFIG_SCHED_ALT */
- struct sched_entity se;
- struct sched_rt_entity rt;
- struct sched_dl_entity dl;
-@@ -802,6 +823,7 @@ struct task_struct {
- unsigned long core_cookie;
- unsigned int core_occupation;
- #endif
-+#endif /* !CONFIG_SCHED_ALT */
-
- #ifdef CONFIG_CGROUP_SCHED
- struct task_group *sched_task_group;
-@@ -1561,6 +1583,15 @@ struct task_struct {
- */
- };
-
-+#ifdef CONFIG_SCHED_ALT
-+#define tsk_seruntime(t) ((t)->sched_time)
-+/* replace the uncertian rt_timeout with 0UL */
-+#define tsk_rttimeout(t) (0UL)
-+#else /* CFS */
-+#define tsk_seruntime(t) ((t)->se.sum_exec_runtime)
-+#define tsk_rttimeout(t) ((t)->rt.timeout)
-+#endif /* !CONFIG_SCHED_ALT */
-+
- static inline struct pid *task_pid(struct task_struct *task)
- {
- return task->thread_pid;
-diff --git a/include/linux/sched/deadline.h b/include/linux/sched/deadline.h
-index df3aca89d4f5..1df1f7635188 100644
---- a/include/linux/sched/deadline.h
-+++ b/include/linux/sched/deadline.h
-@@ -2,6 +2,25 @@
- #ifndef _LINUX_SCHED_DEADLINE_H
- #define _LINUX_SCHED_DEADLINE_H
-
-+#ifdef CONFIG_SCHED_ALT
-+
-+static inline int dl_task(struct task_struct *p)
-+{
-+ return 0;
-+}
-+
-+#ifdef CONFIG_SCHED_BMQ
-+#define __tsk_deadline(p) (0UL)
-+#endif
-+
-+#ifdef CONFIG_SCHED_PDS
-+#define __tsk_deadline(p) ((((u64) ((p)->prio))<<56) | (p)->deadline)
-+#endif
-+
-+#else
-+
-+#define __tsk_deadline(p) ((p)->dl.deadline)
-+
- /*
- * SCHED_DEADLINE tasks has negative priorities, reflecting
- * the fact that any of them has higher prio than RT and
-@@ -23,6 +42,7 @@ static inline int dl_task(struct task_struct *p)
- {
- return dl_prio(p->prio);
- }
-+#endif /* CONFIG_SCHED_ALT */
-
- static inline bool dl_time_before(u64 a, u64 b)
- {
-diff --git a/include/linux/sched/prio.h b/include/linux/sched/prio.h
-index ab83d85e1183..a9a1dfa99140 100644
---- a/include/linux/sched/prio.h
-+++ b/include/linux/sched/prio.h
-@@ -18,6 +18,32 @@
- #define MAX_PRIO (MAX_RT_PRIO + NICE_WIDTH)
- #define DEFAULT_PRIO (MAX_RT_PRIO + NICE_WIDTH / 2)
-
-+#ifdef CONFIG_SCHED_ALT
-+
-+/* Undefine MAX_PRIO and DEFAULT_PRIO */
-+#undef MAX_PRIO
-+#undef DEFAULT_PRIO
-+
-+/* +/- priority levels from the base priority */
-+#ifdef CONFIG_SCHED_BMQ
-+#define MAX_PRIORITY_ADJ (12)
-+
-+#define MIN_NORMAL_PRIO (MAX_RT_PRIO)
-+#define MAX_PRIO (MIN_NORMAL_PRIO + NICE_WIDTH)
-+#define DEFAULT_PRIO (MIN_NORMAL_PRIO + NICE_WIDTH / 2)
-+#endif
-+
-+#ifdef CONFIG_SCHED_PDS
-+#define MAX_PRIORITY_ADJ (0)
-+
-+#define MIN_NORMAL_PRIO (128)
-+#define NORMAL_PRIO_NUM (64)
-+#define MAX_PRIO (MIN_NORMAL_PRIO + NORMAL_PRIO_NUM)
-+#define DEFAULT_PRIO (MAX_PRIO - NICE_WIDTH / 2)
-+#endif
-+
-+#endif /* CONFIG_SCHED_ALT */
-+
- /*
- * Convert user-nice values [ -20 ... 0 ... 19 ]
- * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
-diff --git a/include/linux/sched/rt.h b/include/linux/sched/rt.h
-index b2b9e6eb9683..09bd4d8758b2 100644
---- a/include/linux/sched/rt.h
-+++ b/include/linux/sched/rt.h
-@@ -24,8 +24,10 @@ static inline bool task_is_realtime(struct task_struct *tsk)
-
- if (policy == SCHED_FIFO || policy == SCHED_RR)
- return true;
-+#ifndef CONFIG_SCHED_ALT
- if (policy == SCHED_DEADLINE)
- return true;
-+#endif
- return false;
- }
-
-diff --git a/include/linux/sched/topology.h b/include/linux/sched/topology.h
-index de545ba85218..941bb18ff72c 100644
---- a/include/linux/sched/topology.h
-+++ b/include/linux/sched/topology.h
-@@ -238,7 +238,8 @@ static inline bool cpus_share_resources(int this_cpu, int that_cpu)
-
- #endif /* !CONFIG_SMP */
-
--#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
-+#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) && \
-+ !defined(CONFIG_SCHED_ALT)
- extern void rebuild_sched_domains_energy(void);
- #else
- static inline void rebuild_sched_domains_energy(void)
-diff --git a/init/Kconfig b/init/Kconfig
-index 9ffb103fc927..8f0b7eeff77e 100644
---- a/init/Kconfig
-+++ b/init/Kconfig
-@@ -629,6 +629,7 @@ config TASK_IO_ACCOUNTING
-
- config PSI
- bool "Pressure stall information tracking"
-+ depends on !SCHED_ALT
- select KERNFS
- help
- Collect metrics that indicate how overcommitted the CPU, memory,
-@@ -794,6 +795,7 @@ menu "Scheduler features"
- config UCLAMP_TASK
- bool "Enable utilization clamping for RT/FAIR tasks"
- depends on CPU_FREQ_GOV_SCHEDUTIL
-+ depends on !SCHED_ALT
- help
- This feature enables the scheduler to track the clamped utilization
- of each CPU based on RUNNABLE tasks scheduled on that CPU.
-@@ -840,6 +842,35 @@ config UCLAMP_BUCKETS_COUNT
-
- If in doubt, use the default value.
-
-+menuconfig SCHED_ALT
-+ bool "Alternative CPU Schedulers"
-+ default y
-+ help
-+ This feature enable alternative CPU scheduler"
-+
-+if SCHED_ALT
-+
-+choice
-+ prompt "Alternative CPU Scheduler"
-+ default SCHED_BMQ
-+
-+config SCHED_BMQ
-+ bool "BMQ CPU scheduler"
-+ help
-+ The BitMap Queue CPU scheduler for excellent interactivity and
-+ responsiveness on the desktop and solid scalability on normal
-+ hardware and commodity servers.
-+
-+config SCHED_PDS
-+ bool "PDS CPU scheduler"
-+ help
-+ The Priority and Deadline based Skip list multiple queue CPU
-+ Scheduler.
-+
-+endchoice
-+
-+endif
-+
- endmenu
-
- #
-@@ -893,6 +924,7 @@ config NUMA_BALANCING
- depends on ARCH_SUPPORTS_NUMA_BALANCING
- depends on !ARCH_WANT_NUMA_VARIABLE_LOCALITY
- depends on SMP && NUMA && MIGRATION && !PREEMPT_RT
-+ depends on !SCHED_ALT
- help
- This option adds support for automatic NUMA aware memory/task placement.
- The mechanism is quite primitive and is based on migrating memory when
-@@ -990,6 +1022,7 @@ config FAIR_GROUP_SCHED
- depends on CGROUP_SCHED
- default CGROUP_SCHED
-
-+if !SCHED_ALT
- config CFS_BANDWIDTH
- bool "CPU bandwidth provisioning for FAIR_GROUP_SCHED"
- depends on FAIR_GROUP_SCHED
-@@ -1012,6 +1045,7 @@ config RT_GROUP_SCHED
- realtime bandwidth for them.
- See Documentation/scheduler/sched-rt-group.rst for more information.
-
-+endif #!SCHED_ALT
- endif #CGROUP_SCHED
-
- config SCHED_MM_CID
-@@ -1260,6 +1294,7 @@ config CHECKPOINT_RESTORE
-
- config SCHED_AUTOGROUP
- bool "Automatic process group scheduling"
-+ depends on !SCHED_ALT
- select CGROUPS
- select CGROUP_SCHED
- select FAIR_GROUP_SCHED
-diff --git a/init/init_task.c b/init/init_task.c
-index 5727d42149c3..e2e2622d50d5 100644
---- a/init/init_task.c
-+++ b/init/init_task.c
-@@ -75,9 +75,15 @@ struct task_struct init_task
- .stack = init_stack,
- .usage = REFCOUNT_INIT(2),
- .flags = PF_KTHREAD,
-+#ifdef CONFIG_SCHED_ALT
-+ .prio = DEFAULT_PRIO + MAX_PRIORITY_ADJ,
-+ .static_prio = DEFAULT_PRIO,
-+ .normal_prio = DEFAULT_PRIO + MAX_PRIORITY_ADJ,
-+#else
- .prio = MAX_PRIO - 20,
- .static_prio = MAX_PRIO - 20,
- .normal_prio = MAX_PRIO - 20,
-+#endif
- .policy = SCHED_NORMAL,
- .cpus_ptr = &init_task.cpus_mask,
- .user_cpus_ptr = NULL,
-@@ -89,6 +95,17 @@ struct task_struct init_task
- .restart_block = {
- .fn = do_no_restart_syscall,
- },
-+#ifdef CONFIG_SCHED_ALT
-+ .sq_node = LIST_HEAD_INIT(init_task.sq_node),
-+#ifdef CONFIG_SCHED_BMQ
-+ .boost_prio = 0,
-+ .sq_idx = 15,
-+#endif
-+#ifdef CONFIG_SCHED_PDS
-+ .deadline = 0,
-+#endif
-+ .time_slice = HZ,
-+#else
- .se = {
- .group_node = LIST_HEAD_INIT(init_task.se.group_node),
- },
-@@ -96,6 +113,7 @@ struct task_struct init_task
- .run_list = LIST_HEAD_INIT(init_task.rt.run_list),
- .time_slice = RR_TIMESLICE,
- },
-+#endif
- .tasks = LIST_HEAD_INIT(init_task.tasks),
- #ifdef CONFIG_SMP
- .pushable_tasks = PLIST_NODE_INIT(init_task.pushable_tasks, MAX_PRIO),
-diff --git a/kernel/Kconfig.preempt b/kernel/Kconfig.preempt
-index c2f1fd95a821..41654679b1b2 100644
---- a/kernel/Kconfig.preempt
-+++ b/kernel/Kconfig.preempt
-@@ -117,7 +117,7 @@ config PREEMPT_DYNAMIC
-
- config SCHED_CORE
- bool "Core Scheduling for SMT"
-- depends on SCHED_SMT
-+ depends on SCHED_SMT && !SCHED_ALT
- help
- This option permits Core Scheduling, a means of coordinated task
- selection across SMT siblings. When enabled -- see
-diff --git a/kernel/cgroup/cpuset.c b/kernel/cgroup/cpuset.c
-index 615daaf87f1f..16fb54ec732c 100644
---- a/kernel/cgroup/cpuset.c
-+++ b/kernel/cgroup/cpuset.c
-@@ -848,7 +848,7 @@ static int validate_change(struct cpuset *cur, struct cpuset *trial)
- return ret;
- }
-
--#ifdef CONFIG_SMP
-+#if defined(CONFIG_SMP) && !defined(CONFIG_SCHED_ALT)
- /*
- * Helper routine for generate_sched_domains().
- * Do cpusets a, b have overlapping effective cpus_allowed masks?
-@@ -1247,7 +1247,7 @@ static void rebuild_sched_domains_locked(void)
- /* Have scheduler rebuild the domains */
- partition_and_rebuild_sched_domains(ndoms, doms, attr);
- }
--#else /* !CONFIG_SMP */
-+#else /* !CONFIG_SMP || CONFIG_SCHED_ALT */
- static void rebuild_sched_domains_locked(void)
- {
- }
-@@ -3206,12 +3206,15 @@ static int cpuset_can_attach(struct cgroup_taskset *tset)
- goto out_unlock;
- }
-
-+#ifndef CONFIG_SCHED_ALT
- if (dl_task(task)) {
- cs->nr_migrate_dl_tasks++;
- cs->sum_migrate_dl_bw += task->dl.dl_bw;
- }
-+#endif
- }
-
-+#ifndef CONFIG_SCHED_ALT
- if (!cs->nr_migrate_dl_tasks)
- goto out_success;
-
-@@ -3232,6 +3235,7 @@ static int cpuset_can_attach(struct cgroup_taskset *tset)
- }
-
- out_success:
-+#endif
- /*
- * Mark attach is in progress. This makes validate_change() fail
- * changes which zero cpus/mems_allowed.
-@@ -3255,12 +3259,14 @@ static void cpuset_cancel_attach(struct cgroup_taskset *tset)
- if (!cs->attach_in_progress)
- wake_up(&cpuset_attach_wq);
-
-+#ifndef CONFIG_SCHED_ALT
- if (cs->nr_migrate_dl_tasks) {
- int cpu = cpumask_any(cs->effective_cpus);
-
- dl_bw_free(cpu, cs->sum_migrate_dl_bw);
- reset_migrate_dl_data(cs);
- }
-+#endif
-
- mutex_unlock(&cpuset_mutex);
- }
-diff --git a/kernel/delayacct.c b/kernel/delayacct.c
-index 6f0c358e73d8..8111481ce8b1 100644
---- a/kernel/delayacct.c
-+++ b/kernel/delayacct.c
-@@ -150,7 +150,7 @@ int delayacct_add_tsk(struct taskstats *d, struct task_struct *tsk)
- */
- t1 = tsk->sched_info.pcount;
- t2 = tsk->sched_info.run_delay;
-- t3 = tsk->se.sum_exec_runtime;
-+ t3 = tsk_seruntime(tsk);
-
- d->cpu_count += t1;
-
-diff --git a/kernel/exit.c b/kernel/exit.c
-index aedc0832c9f4..ff8bf6cddc34 100644
---- a/kernel/exit.c
-+++ b/kernel/exit.c
-@@ -174,7 +174,7 @@ static void __exit_signal(struct task_struct *tsk)
- sig->curr_target = next_thread(tsk);
- }
-
-- add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
-+ add_device_randomness((const void*) &tsk_seruntime(tsk),
- sizeof(unsigned long long));
-
- /*
-@@ -195,7 +195,7 @@ static void __exit_signal(struct task_struct *tsk)
- sig->inblock += task_io_get_inblock(tsk);
- sig->oublock += task_io_get_oublock(tsk);
- task_io_accounting_add(&sig->ioac, &tsk->ioac);
-- sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
-+ sig->sum_sched_runtime += tsk_seruntime(tsk);
- sig->nr_threads--;
- __unhash_process(tsk, group_dead);
- write_sequnlock(&sig->stats_lock);
-diff --git a/kernel/locking/rtmutex.c b/kernel/locking/rtmutex.c
-index 4a10e8c16fd2..cfbbdd64b851 100644
---- a/kernel/locking/rtmutex.c
-+++ b/kernel/locking/rtmutex.c
-@@ -362,7 +362,7 @@ waiter_update_prio(struct rt_mutex_waiter *waiter, struct task_struct *task)
- lockdep_assert(RB_EMPTY_NODE(&waiter->tree.entry));
-
- waiter->tree.prio = __waiter_prio(task);
-- waiter->tree.deadline = task->dl.deadline;
-+ waiter->tree.deadline = __tsk_deadline(task);
- }
-
- /*
-@@ -383,16 +383,20 @@ waiter_clone_prio(struct rt_mutex_waiter *waiter, struct task_struct *task)
- * Only use with rt_waiter_node_{less,equal}()
- */
- #define task_to_waiter_node(p) \
-- &(struct rt_waiter_node){ .prio = __waiter_prio(p), .deadline = (p)->dl.deadline }
-+ &(struct rt_waiter_node){ .prio = __waiter_prio(p), .deadline = __tsk_deadline(p) }
- #define task_to_waiter(p) \
- &(struct rt_mutex_waiter){ .tree = *task_to_waiter_node(p) }
-
- static __always_inline int rt_waiter_node_less(struct rt_waiter_node *left,
- struct rt_waiter_node *right)
- {
-+#ifdef CONFIG_SCHED_PDS
-+ return (left->deadline < right->deadline);
-+#else
- if (left->prio < right->prio)
- return 1;
-
-+#ifndef CONFIG_SCHED_BMQ
- /*
- * If both waiters have dl_prio(), we check the deadlines of the
- * associated tasks.
-@@ -401,16 +405,22 @@ static __always_inline int rt_waiter_node_less(struct rt_waiter_node *left,
- */
- if (dl_prio(left->prio))
- return dl_time_before(left->deadline, right->deadline);
-+#endif
-
- return 0;
-+#endif
- }
-
- static __always_inline int rt_waiter_node_equal(struct rt_waiter_node *left,
- struct rt_waiter_node *right)
- {
-+#ifdef CONFIG_SCHED_PDS
-+ return (left->deadline == right->deadline);
-+#else
- if (left->prio != right->prio)
- return 0;
-
-+#ifndef CONFIG_SCHED_BMQ
- /*
- * If both waiters have dl_prio(), we check the deadlines of the
- * associated tasks.
-@@ -419,8 +429,10 @@ static __always_inline int rt_waiter_node_equal(struct rt_waiter_node *left,
- */
- if (dl_prio(left->prio))
- return left->deadline == right->deadline;
-+#endif
-
- return 1;
-+#endif
- }
-
- static inline bool rt_mutex_steal(struct rt_mutex_waiter *waiter,
-diff --git a/kernel/sched/Makefile b/kernel/sched/Makefile
-index 976092b7bd45..31d587c16ec1 100644
---- a/kernel/sched/Makefile
-+++ b/kernel/sched/Makefile
-@@ -28,7 +28,12 @@ endif
- # These compilation units have roughly the same size and complexity - so their
- # build parallelizes well and finishes roughly at once:
- #
-+ifdef CONFIG_SCHED_ALT
-+obj-y += alt_core.o
-+obj-$(CONFIG_SCHED_DEBUG) += alt_debug.o
-+else
- obj-y += core.o
- obj-y += fair.o
-+endif
- obj-y += build_policy.o
- obj-y += build_utility.o
-diff --git a/kernel/sched/alt_core.c b/kernel/sched/alt_core.c
-new file mode 100644
-index 000000000000..5b6bdff6e630
---- /dev/null
-+++ b/kernel/sched/alt_core.c
-@@ -0,0 +1,8944 @@
-+/*
-+ * kernel/sched/alt_core.c
-+ *
-+ * Core alternative kernel scheduler code and related syscalls
-+ *
-+ * Copyright (C) 1991-2002 Linus Torvalds
-+ *
-+ * 2009-08-13 Brainfuck deadline scheduling policy by Con Kolivas deletes
-+ * a whole lot of those previous things.
-+ * 2017-09-06 Priority and Deadline based Skip list multiple queue kernel
-+ * scheduler by Alfred Chen.
-+ * 2019-02-20 BMQ(BitMap Queue) kernel scheduler by Alfred Chen.
-+ */
-+#include <linux/sched/clock.h>
-+#include <linux/sched/cputime.h>
-+#include <linux/sched/debug.h>
-+#include <linux/sched/isolation.h>
-+#include <linux/sched/loadavg.h>
-+#include <linux/sched/mm.h>
-+#include <linux/sched/nohz.h>
-+#include <linux/sched/stat.h>
-+#include <linux/sched/wake_q.h>
-+
-+#include <linux/blkdev.h>
-+#include <linux/context_tracking.h>
-+#include <linux/cpuset.h>
-+#include <linux/delayacct.h>
-+#include <linux/init_task.h>
-+#include <linux/kcov.h>
-+#include <linux/kprobes.h>
-+#include <linux/nmi.h>
-+#include <linux/scs.h>
-+
-+#include <uapi/linux/sched/types.h>
-+
-+#include <asm/irq_regs.h>
-+#include <asm/switch_to.h>
-+
-+#define CREATE_TRACE_POINTS
-+#include <trace/events/sched.h>
-+#include <trace/events/ipi.h>
-+#undef CREATE_TRACE_POINTS
-+
-+#include "sched.h"
-+
-+#include "pelt.h"
-+
-+#include "../../io_uring/io-wq.h"
-+#include "../smpboot.h"
-+
-+EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu);
-+EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask);
-+
-+/*
-+ * Export tracepoints that act as a bare tracehook (ie: have no trace event
-+ * associated with them) to allow external modules to probe them.
-+ */
-+EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
-+
-+#ifdef CONFIG_SCHED_DEBUG
-+#define sched_feat(x) (1)
-+/*
-+ * Print a warning if need_resched is set for the given duration (if
-+ * LATENCY_WARN is enabled).
-+ *
-+ * If sysctl_resched_latency_warn_once is set, only one warning will be shown
-+ * per boot.
-+ */
-+__read_mostly int sysctl_resched_latency_warn_ms = 100;
-+__read_mostly int sysctl_resched_latency_warn_once = 1;
-+#else
-+#define sched_feat(x) (0)
-+#endif /* CONFIG_SCHED_DEBUG */
-+
-+#define ALT_SCHED_VERSION "v6.7-r2"
-+
-+/*
-+ * Compile time debug macro
-+ * #define ALT_SCHED_DEBUG
-+ */
-+
-+/* rt_prio(prio) defined in include/linux/sched/rt.h */
-+#define rt_task(p) rt_prio((p)->prio)
-+#define rt_policy(policy) ((policy) == SCHED_FIFO || (policy) == SCHED_RR)
-+#define task_has_rt_policy(p) (rt_policy((p)->policy))
-+
-+#define STOP_PRIO (MAX_RT_PRIO - 1)
-+
-+/*
-+ * Time slice
-+ * (default: 4 msec, units: nanoseconds)
-+ */
-+unsigned int sysctl_sched_base_slice __read_mostly = (4 << 20);
-+
-+static inline void requeue_task(struct task_struct *p, struct rq *rq, int idx);
-+
-+#ifdef CONFIG_SCHED_BMQ
-+#include "bmq.h"
-+#endif
-+#ifdef CONFIG_SCHED_PDS
-+#include "pds.h"
-+#endif
-+
-+struct affinity_context {
-+ const struct cpumask *new_mask;
-+ struct cpumask *user_mask;
-+ unsigned int flags;
-+};
-+
-+/* Reschedule if less than this many μs left */
-+#define RESCHED_NS (100 << 10)
-+
-+/**
-+ * sched_yield_type - Type of sched_yield() will be performed.
-+ * 0: No yield.
-+ * 1: Requeue task. (default)
-+ * 2: Set rq skip task. (Same as mainline)
-+ */
-+int sched_yield_type __read_mostly = 1;
-+
-+#ifdef CONFIG_SMP
-+static cpumask_t sched_rq_pending_mask ____cacheline_aligned_in_smp;
-+
-+DEFINE_PER_CPU_ALIGNED(cpumask_t [NR_CPU_AFFINITY_LEVELS], sched_cpu_topo_masks);
-+DEFINE_PER_CPU_ALIGNED(cpumask_t *, sched_cpu_llc_mask);
-+DEFINE_PER_CPU_ALIGNED(cpumask_t *, sched_cpu_topo_end_mask);
-+
-+#ifdef CONFIG_SCHED_SMT
-+DEFINE_STATIC_KEY_FALSE(sched_smt_present);
-+EXPORT_SYMBOL_GPL(sched_smt_present);
-+#endif
-+
-+/*
-+ * Keep a unique ID per domain (we use the first CPUs number in the cpumask of
-+ * the domain), this allows us to quickly tell if two cpus are in the same cache
-+ * domain, see cpus_share_cache().
-+ */
-+DEFINE_PER_CPU(int, sd_llc_id);
-+#endif /* CONFIG_SMP */
-+
-+static DEFINE_MUTEX(sched_hotcpu_mutex);
-+
-+DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
-+
-+#ifndef prepare_arch_switch
-+# define prepare_arch_switch(next) do { } while (0)
-+#endif
-+#ifndef finish_arch_post_lock_switch
-+# define finish_arch_post_lock_switch() do { } while (0)
-+#endif
-+
-+#ifdef CONFIG_SCHED_SMT
-+static cpumask_t sched_sg_idle_mask ____cacheline_aligned_in_smp;
-+#endif
-+static cpumask_t sched_preempt_mask[SCHED_QUEUE_BITS] ____cacheline_aligned_in_smp;
-+static cpumask_t *const sched_idle_mask = &sched_preempt_mask[0];
-+
-+/* task function */
-+static inline const struct cpumask *task_user_cpus(struct task_struct *p)
-+{
-+ if (!p->user_cpus_ptr)
-+ return cpu_possible_mask; /* &init_task.cpus_mask */
-+ return p->user_cpus_ptr;
-+}
-+
-+/* sched_queue related functions */
-+static inline void sched_queue_init(struct sched_queue *q)
-+{
-+ int i;
-+
-+ bitmap_zero(q->bitmap, SCHED_QUEUE_BITS);
-+ for(i = 0; i < SCHED_LEVELS; i++)
-+ INIT_LIST_HEAD(&q->heads[i]);
-+}
-+
-+/*
-+ * Init idle task and put into queue structure of rq
-+ * IMPORTANT: may be called multiple times for a single cpu
-+ */
-+static inline void sched_queue_init_idle(struct sched_queue *q,
-+ struct task_struct *idle)
-+{
-+ idle->sq_idx = IDLE_TASK_SCHED_PRIO;
-+ INIT_LIST_HEAD(&q->heads[idle->sq_idx]);
-+ list_add(&idle->sq_node, &q->heads[idle->sq_idx]);
-+}
-+
-+static inline void
-+clear_recorded_preempt_mask(int pr, int low, int high, int cpu)
-+{
-+ if (low < pr && pr <= high)
-+ cpumask_clear_cpu(cpu, sched_preempt_mask + SCHED_QUEUE_BITS - pr);
-+}
-+
-+static inline void
-+set_recorded_preempt_mask(int pr, int low, int high, int cpu)
-+{
-+ if (low < pr && pr <= high)
-+ cpumask_set_cpu(cpu, sched_preempt_mask + SCHED_QUEUE_BITS - pr);
-+}
-+
-+static atomic_t sched_prio_record = ATOMIC_INIT(0);
-+
-+/* water mark related functions */
-+static inline void update_sched_preempt_mask(struct rq *rq)
-+{
-+ unsigned long prio = find_first_bit(rq->queue.bitmap, SCHED_QUEUE_BITS);
-+ unsigned long last_prio = rq->prio;
-+ int cpu, pr;
-+
-+ if (prio == last_prio)
-+ return;
-+
-+ rq->prio = prio;
-+ cpu = cpu_of(rq);
-+ pr = atomic_read(&sched_prio_record);
-+
-+ if (prio < last_prio) {
-+ if (IDLE_TASK_SCHED_PRIO == last_prio) {
-+#ifdef CONFIG_SCHED_SMT
-+ if (static_branch_likely(&sched_smt_present))
-+ cpumask_andnot(&sched_sg_idle_mask,
-+ &sched_sg_idle_mask, cpu_smt_mask(cpu));
-+#endif
-+ cpumask_clear_cpu(cpu, sched_idle_mask);
-+ last_prio -= 2;
-+ }
-+ clear_recorded_preempt_mask(pr, prio, last_prio, cpu);
-+
-+ return;
-+ }
-+ /* last_prio < prio */
-+ if (IDLE_TASK_SCHED_PRIO == prio) {
-+#ifdef CONFIG_SCHED_SMT
-+ if (static_branch_likely(&sched_smt_present) &&
-+ cpumask_intersects(cpu_smt_mask(cpu), sched_idle_mask))
-+ cpumask_or(&sched_sg_idle_mask,
-+ &sched_sg_idle_mask, cpu_smt_mask(cpu));
-+#endif
-+ cpumask_set_cpu(cpu, sched_idle_mask);
-+ prio -= 2;
-+ }
-+ set_recorded_preempt_mask(pr, last_prio, prio, cpu);
-+}
-+
-+/*
-+ * This routine assume that the idle task always in queue
-+ */
-+static inline struct task_struct *sched_rq_first_task(struct rq *rq)
-+{
-+ const struct list_head *head = &rq->queue.heads[sched_prio2idx(rq->prio, rq)];
-+
-+ return list_first_entry(head, struct task_struct, sq_node);
-+}
-+
-+static inline struct task_struct *
-+sched_rq_next_task(struct task_struct *p, struct rq *rq)
-+{
-+ unsigned long idx = p->sq_idx;
-+ struct list_head *head = &rq->queue.heads[idx];
-+
-+ if (list_is_last(&p->sq_node, head)) {
-+ idx = find_next_bit(rq->queue.bitmap, SCHED_QUEUE_BITS,
-+ sched_idx2prio(idx, rq) + 1);
-+ head = &rq->queue.heads[sched_prio2idx(idx, rq)];
-+
-+ return list_first_entry(head, struct task_struct, sq_node);
-+ }
-+
-+ return list_next_entry(p, sq_node);
-+}
-+
-+static inline struct task_struct *rq_runnable_task(struct rq *rq)
-+{
-+ struct task_struct *next = sched_rq_first_task(rq);
-+
-+ if (unlikely(next == rq->skip))
-+ next = sched_rq_next_task(next, rq);
-+
-+ return next;
-+}
-+
-+/*
-+ * Serialization rules:
-+ *
-+ * Lock order:
-+ *
-+ * p->pi_lock
-+ * rq->lock
-+ * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
-+ *
-+ * rq1->lock
-+ * rq2->lock where: rq1 < rq2
-+ *
-+ * Regular state:
-+ *
-+ * Normal scheduling state is serialized by rq->lock. __schedule() takes the
-+ * local CPU's rq->lock, it optionally removes the task from the runqueue and
-+ * always looks at the local rq data structures to find the most eligible task
-+ * to run next.
-+ *
-+ * Task enqueue is also under rq->lock, possibly taken from another CPU.
-+ * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
-+ * the local CPU to avoid bouncing the runqueue state around [ see
-+ * ttwu_queue_wakelist() ]
-+ *
-+ * Task wakeup, specifically wakeups that involve migration, are horribly
-+ * complicated to avoid having to take two rq->locks.
-+ *
-+ * Special state:
-+ *
-+ * System-calls and anything external will use task_rq_lock() which acquires
-+ * both p->pi_lock and rq->lock. As a consequence the state they change is
-+ * stable while holding either lock:
-+ *
-+ * - sched_setaffinity()/
-+ * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed
-+ * - set_user_nice(): p->se.load, p->*prio
-+ * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio,
-+ * p->se.load, p->rt_priority,
-+ * p->dl.dl_{runtime, deadline, period, flags, bw, density}
-+ * - sched_setnuma(): p->numa_preferred_nid
-+ * - sched_move_task(): p->sched_task_group
-+ * - uclamp_update_active() p->uclamp*
-+ *
-+ * p->state <- TASK_*:
-+ *
-+ * is changed locklessly using set_current_state(), __set_current_state() or
-+ * set_special_state(), see their respective comments, or by
-+ * try_to_wake_up(). This latter uses p->pi_lock to serialize against
-+ * concurrent self.
-+ *
-+ * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
-+ *
-+ * is set by activate_task() and cleared by deactivate_task(), under
-+ * rq->lock. Non-zero indicates the task is runnable, the special
-+ * ON_RQ_MIGRATING state is used for migration without holding both
-+ * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
-+ *
-+ * p->on_cpu <- { 0, 1 }:
-+ *
-+ * is set by prepare_task() and cleared by finish_task() such that it will be
-+ * set before p is scheduled-in and cleared after p is scheduled-out, both
-+ * under rq->lock. Non-zero indicates the task is running on its CPU.
-+ *
-+ * [ The astute reader will observe that it is possible for two tasks on one
-+ * CPU to have ->on_cpu = 1 at the same time. ]
-+ *
-+ * task_cpu(p): is changed by set_task_cpu(), the rules are:
-+ *
-+ * - Don't call set_task_cpu() on a blocked task:
-+ *
-+ * We don't care what CPU we're not running on, this simplifies hotplug,
-+ * the CPU assignment of blocked tasks isn't required to be valid.
-+ *
-+ * - for try_to_wake_up(), called under p->pi_lock:
-+ *
-+ * This allows try_to_wake_up() to only take one rq->lock, see its comment.
-+ *
-+ * - for migration called under rq->lock:
-+ * [ see task_on_rq_migrating() in task_rq_lock() ]
-+ *
-+ * o move_queued_task()
-+ * o detach_task()
-+ *
-+ * - for migration called under double_rq_lock():
-+ *
-+ * o __migrate_swap_task()
-+ * o push_rt_task() / pull_rt_task()
-+ * o push_dl_task() / pull_dl_task()
-+ * o dl_task_offline_migration()
-+ *
-+ */
-+
-+/*
-+ * Context: p->pi_lock
-+ */
-+static inline struct rq
-+*__task_access_lock(struct task_struct *p, raw_spinlock_t **plock)
-+{
-+ struct rq *rq;
-+ for (;;) {
-+ rq = task_rq(p);
-+ if (p->on_cpu || task_on_rq_queued(p)) {
-+ raw_spin_lock(&rq->lock);
-+ if (likely((p->on_cpu || task_on_rq_queued(p))
-+ && rq == task_rq(p))) {
-+ *plock = &rq->lock;
-+ return rq;
-+ }
-+ raw_spin_unlock(&rq->lock);
-+ } else if (task_on_rq_migrating(p)) {
-+ do {
-+ cpu_relax();
-+ } while (unlikely(task_on_rq_migrating(p)));
-+ } else {
-+ *plock = NULL;
-+ return rq;
-+ }
-+ }
-+}
-+
-+static inline void
-+__task_access_unlock(struct task_struct *p, raw_spinlock_t *lock)
-+{
-+ if (NULL != lock)
-+ raw_spin_unlock(lock);
-+}
-+
-+static inline struct rq
-+*task_access_lock_irqsave(struct task_struct *p, raw_spinlock_t **plock,
-+ unsigned long *flags)
-+{
-+ struct rq *rq;
-+ for (;;) {
-+ rq = task_rq(p);
-+ if (p->on_cpu || task_on_rq_queued(p)) {
-+ raw_spin_lock_irqsave(&rq->lock, *flags);
-+ if (likely((p->on_cpu || task_on_rq_queued(p))
-+ && rq == task_rq(p))) {
-+ *plock = &rq->lock;
-+ return rq;
-+ }
-+ raw_spin_unlock_irqrestore(&rq->lock, *flags);
-+ } else if (task_on_rq_migrating(p)) {
-+ do {
-+ cpu_relax();
-+ } while (unlikely(task_on_rq_migrating(p)));
-+ } else {
-+ raw_spin_lock_irqsave(&p->pi_lock, *flags);
-+ if (likely(!p->on_cpu && !p->on_rq &&
-+ rq == task_rq(p))) {
-+ *plock = &p->pi_lock;
-+ return rq;
-+ }
-+ raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
-+ }
-+ }
-+}
-+
-+static inline void
-+task_access_unlock_irqrestore(struct task_struct *p, raw_spinlock_t *lock,
-+ unsigned long *flags)
-+{
-+ raw_spin_unlock_irqrestore(lock, *flags);
-+}
-+
-+/*
-+ * __task_rq_lock - lock the rq @p resides on.
-+ */
-+struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
-+ __acquires(rq->lock)
-+{
-+ struct rq *rq;
-+
-+ lockdep_assert_held(&p->pi_lock);
-+
-+ for (;;) {
-+ rq = task_rq(p);
-+ raw_spin_lock(&rq->lock);
-+ if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
-+ return rq;
-+ raw_spin_unlock(&rq->lock);
-+
-+ while (unlikely(task_on_rq_migrating(p)))
-+ cpu_relax();
-+ }
-+}
-+
-+/*
-+ * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
-+ */
-+struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
-+ __acquires(p->pi_lock)
-+ __acquires(rq->lock)
-+{
-+ struct rq *rq;
-+
-+ for (;;) {
-+ raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
-+ rq = task_rq(p);
-+ raw_spin_lock(&rq->lock);
-+ /*
-+ * move_queued_task() task_rq_lock()
-+ *
-+ * ACQUIRE (rq->lock)
-+ * [S] ->on_rq = MIGRATING [L] rq = task_rq()
-+ * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
-+ * [S] ->cpu = new_cpu [L] task_rq()
-+ * [L] ->on_rq
-+ * RELEASE (rq->lock)
-+ *
-+ * If we observe the old CPU in task_rq_lock(), the acquire of
-+ * the old rq->lock will fully serialize against the stores.
-+ *
-+ * If we observe the new CPU in task_rq_lock(), the address
-+ * dependency headed by '[L] rq = task_rq()' and the acquire
-+ * will pair with the WMB to ensure we then also see migrating.
-+ */
-+ if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
-+ return rq;
-+ }
-+ raw_spin_unlock(&rq->lock);
-+ raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
-+
-+ while (unlikely(task_on_rq_migrating(p)))
-+ cpu_relax();
-+ }
-+}
-+
-+static inline void
-+rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
-+ __acquires(rq->lock)
-+{
-+ raw_spin_lock_irqsave(&rq->lock, rf->flags);
-+}
-+
-+static inline void
-+rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
-+ __releases(rq->lock)
-+{
-+ raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
-+}
-+
-+DEFINE_LOCK_GUARD_1(rq_lock_irqsave, struct rq,
-+ rq_lock_irqsave(_T->lock, &_T->rf),
-+ rq_unlock_irqrestore(_T->lock, &_T->rf),
-+ struct rq_flags rf)
-+
-+void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
-+{
-+ raw_spinlock_t *lock;
-+
-+ /* Matches synchronize_rcu() in __sched_core_enable() */
-+ preempt_disable();
-+
-+ for (;;) {
-+ lock = __rq_lockp(rq);
-+ raw_spin_lock_nested(lock, subclass);
-+ if (likely(lock == __rq_lockp(rq))) {
-+ /* preempt_count *MUST* be > 1 */
-+ preempt_enable_no_resched();
-+ return;
-+ }
-+ raw_spin_unlock(lock);
-+ }
-+}
-+
-+void raw_spin_rq_unlock(struct rq *rq)
-+{
-+ raw_spin_unlock(rq_lockp(rq));
-+}
-+
-+/*
-+ * RQ-clock updating methods:
-+ */
-+
-+static void update_rq_clock_task(struct rq *rq, s64 delta)
-+{
-+/*
-+ * In theory, the compile should just see 0 here, and optimize out the call
-+ * to sched_rt_avg_update. But I don't trust it...
-+ */
-+ s64 __maybe_unused steal = 0, irq_delta = 0;
-+
-+#ifdef CONFIG_IRQ_TIME_ACCOUNTING
-+ irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
-+
-+ /*
-+ * Since irq_time is only updated on {soft,}irq_exit, we might run into
-+ * this case when a previous update_rq_clock() happened inside a
-+ * {soft,}irq region.
-+ *
-+ * When this happens, we stop ->clock_task and only update the
-+ * prev_irq_time stamp to account for the part that fit, so that a next
-+ * update will consume the rest. This ensures ->clock_task is
-+ * monotonic.
-+ *
-+ * It does however cause some slight miss-attribution of {soft,}irq
-+ * time, a more accurate solution would be to update the irq_time using
-+ * the current rq->clock timestamp, except that would require using
-+ * atomic ops.
-+ */
-+ if (irq_delta > delta)
-+ irq_delta = delta;
-+
-+ rq->prev_irq_time += irq_delta;
-+ delta -= irq_delta;
-+ delayacct_irq(rq->curr, irq_delta);
-+#endif
-+#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
-+ if (static_key_false((&paravirt_steal_rq_enabled))) {
-+ steal = paravirt_steal_clock(cpu_of(rq));
-+ steal -= rq->prev_steal_time_rq;
-+
-+ if (unlikely(steal > delta))
-+ steal = delta;
-+
-+ rq->prev_steal_time_rq += steal;
-+ delta -= steal;
-+ }
-+#endif
-+
-+ rq->clock_task += delta;
-+
-+#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
-+ if ((irq_delta + steal))
-+ update_irq_load_avg(rq, irq_delta + steal);
-+#endif
-+}
-+
-+static inline void update_rq_clock(struct rq *rq)
-+{
-+ s64 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
-+
-+ if (unlikely(delta <= 0))
-+ return;
-+ rq->clock += delta;
-+ sched_update_rq_clock(rq);
-+ update_rq_clock_task(rq, delta);
-+}
-+
-+/*
-+ * RQ Load update routine
-+ */
-+#define RQ_LOAD_HISTORY_BITS (sizeof(s32) * 8ULL)
-+#define RQ_UTIL_SHIFT (8)
-+#define RQ_LOAD_HISTORY_TO_UTIL(l) (((l) >> (RQ_LOAD_HISTORY_BITS - 1 - RQ_UTIL_SHIFT)) & 0xff)
-+
-+#define LOAD_BLOCK(t) ((t) >> 17)
-+#define LOAD_HALF_BLOCK(t) ((t) >> 16)
-+#define BLOCK_MASK(t) ((t) & ((0x01 << 18) - 1))
-+#define LOAD_BLOCK_BIT(b) (1UL << (RQ_LOAD_HISTORY_BITS - 1 - (b)))
-+#define CURRENT_LOAD_BIT LOAD_BLOCK_BIT(0)
-+
-+static inline void rq_load_update(struct rq *rq)
-+{
-+ u64 time = rq->clock;
-+ u64 delta = min(LOAD_BLOCK(time) - LOAD_BLOCK(rq->load_stamp),
-+ RQ_LOAD_HISTORY_BITS - 1);
-+ u64 prev = !!(rq->load_history & CURRENT_LOAD_BIT);
-+ u64 curr = !!rq->nr_running;
-+
-+ if (delta) {
-+ rq->load_history = rq->load_history >> delta;
-+
-+ if (delta < RQ_UTIL_SHIFT) {
-+ rq->load_block += (~BLOCK_MASK(rq->load_stamp)) * prev;
-+ if (!!LOAD_HALF_BLOCK(rq->load_block) ^ curr)
-+ rq->load_history ^= LOAD_BLOCK_BIT(delta);
-+ }
-+
-+ rq->load_block = BLOCK_MASK(time) * prev;
-+ } else {
-+ rq->load_block += (time - rq->load_stamp) * prev;
-+ }
-+ if (prev ^ curr)
-+ rq->load_history ^= CURRENT_LOAD_BIT;
-+ rq->load_stamp = time;
-+}
-+
-+unsigned long rq_load_util(struct rq *rq, unsigned long max)
-+{
-+ return RQ_LOAD_HISTORY_TO_UTIL(rq->load_history) * (max >> RQ_UTIL_SHIFT);
-+}
-+
-+#ifdef CONFIG_SMP
-+unsigned long sched_cpu_util(int cpu)
-+{
-+ return rq_load_util(cpu_rq(cpu), arch_scale_cpu_capacity(cpu));
-+}
-+#endif /* CONFIG_SMP */
-+
-+#ifdef CONFIG_CPU_FREQ
-+/**
-+ * cpufreq_update_util - Take a note about CPU utilization changes.
-+ * @rq: Runqueue to carry out the update for.
-+ * @flags: Update reason flags.
-+ *
-+ * This function is called by the scheduler on the CPU whose utilization is
-+ * being updated.
-+ *
-+ * It can only be called from RCU-sched read-side critical sections.
-+ *
-+ * The way cpufreq is currently arranged requires it to evaluate the CPU
-+ * performance state (frequency/voltage) on a regular basis to prevent it from
-+ * being stuck in a completely inadequate performance level for too long.
-+ * That is not guaranteed to happen if the updates are only triggered from CFS
-+ * and DL, though, because they may not be coming in if only RT tasks are
-+ * active all the time (or there are RT tasks only).
-+ *
-+ * As a workaround for that issue, this function is called periodically by the
-+ * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
-+ * but that really is a band-aid. Going forward it should be replaced with
-+ * solutions targeted more specifically at RT tasks.
-+ */
-+static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
-+{
-+ struct update_util_data *data;
-+
-+#ifdef CONFIG_SMP
-+ rq_load_update(rq);
-+#endif
-+ data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
-+ cpu_of(rq)));
-+ if (data)
-+ data->func(data, rq_clock(rq), flags);
-+}
-+#else
-+static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
-+{
-+#ifdef CONFIG_SMP
-+ rq_load_update(rq);
-+#endif
-+}
-+#endif /* CONFIG_CPU_FREQ */
-+
-+#ifdef CONFIG_NO_HZ_FULL
-+/*
-+ * Tick may be needed by tasks in the runqueue depending on their policy and
-+ * requirements. If tick is needed, lets send the target an IPI to kick it out
-+ * of nohz mode if necessary.
-+ */
-+static inline void sched_update_tick_dependency(struct rq *rq)
-+{
-+ int cpu = cpu_of(rq);
-+
-+ if (!tick_nohz_full_cpu(cpu))
-+ return;
-+
-+ if (rq->nr_running < 2)
-+ tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
-+ else
-+ tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
-+}
-+#else /* !CONFIG_NO_HZ_FULL */
-+static inline void sched_update_tick_dependency(struct rq *rq) { }
-+#endif
-+
-+bool sched_task_on_rq(struct task_struct *p)
-+{
-+ return task_on_rq_queued(p);
-+}
-+
-+unsigned long get_wchan(struct task_struct *p)
-+{
-+ unsigned long ip = 0;
-+ unsigned int state;
-+
-+ if (!p || p == current)
-+ return 0;
-+
-+ /* Only get wchan if task is blocked and we can keep it that way. */
-+ raw_spin_lock_irq(&p->pi_lock);
-+ state = READ_ONCE(p->__state);
-+ smp_rmb(); /* see try_to_wake_up() */
-+ if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
-+ ip = __get_wchan(p);
-+ raw_spin_unlock_irq(&p->pi_lock);
-+
-+ return ip;
-+}
-+
-+/*
-+ * Add/Remove/Requeue task to/from the runqueue routines
-+ * Context: rq->lock
-+ */
-+#define __SCHED_DEQUEUE_TASK(p, rq, flags, func) \
-+ sched_info_dequeue(rq, p); \
-+ \
-+ list_del(&p->sq_node); \
-+ if (list_empty(&rq->queue.heads[p->sq_idx])) { \
-+ clear_bit(sched_idx2prio(p->sq_idx, rq), rq->queue.bitmap); \
-+ func; \
-+ }
-+
-+#define __SCHED_ENQUEUE_TASK(p, rq, flags) \
-+ sched_info_enqueue(rq, p); \
-+ \
-+ p->sq_idx = task_sched_prio_idx(p, rq); \
-+ list_add_tail(&p->sq_node, &rq->queue.heads[p->sq_idx]); \
-+ set_bit(sched_idx2prio(p->sq_idx, rq), rq->queue.bitmap);
-+
-+static inline void dequeue_task(struct task_struct *p, struct rq *rq, int flags)
-+{
-+#ifdef ALT_SCHED_DEBUG
-+ lockdep_assert_held(&rq->lock);
-+
-+ /*printk(KERN_INFO "sched: dequeue(%d) %px %016llx\n", cpu_of(rq), p, p->deadline);*/
-+ WARN_ONCE(task_rq(p) != rq, "sched: dequeue task reside on cpu%d from cpu%d\n",
-+ task_cpu(p), cpu_of(rq));
-+#endif
-+
-+ __SCHED_DEQUEUE_TASK(p, rq, flags, update_sched_preempt_mask(rq));
-+ --rq->nr_running;
-+#ifdef CONFIG_SMP
-+ if (1 == rq->nr_running)
-+ cpumask_clear_cpu(cpu_of(rq), &sched_rq_pending_mask);
-+#endif
-+
-+ sched_update_tick_dependency(rq);
-+}
-+
-+static inline void enqueue_task(struct task_struct *p, struct rq *rq, int flags)
-+{
-+#ifdef ALT_SCHED_DEBUG
-+ lockdep_assert_held(&rq->lock);
-+
-+ /*printk(KERN_INFO "sched: enqueue(%d) %px %d\n", cpu_of(rq), p, p->prio);*/
-+ WARN_ONCE(task_rq(p) != rq, "sched: enqueue task reside on cpu%d to cpu%d\n",
-+ task_cpu(p), cpu_of(rq));
-+#endif
-+
-+ __SCHED_ENQUEUE_TASK(p, rq, flags);
-+ update_sched_preempt_mask(rq);
-+ ++rq->nr_running;
-+#ifdef CONFIG_SMP
-+ if (2 == rq->nr_running)
-+ cpumask_set_cpu(cpu_of(rq), &sched_rq_pending_mask);
-+#endif
-+
-+ sched_update_tick_dependency(rq);
-+}
-+
-+static inline void requeue_task(struct task_struct *p, struct rq *rq, int idx)
-+{
-+#ifdef ALT_SCHED_DEBUG
-+ lockdep_assert_held(&rq->lock);
-+ /*printk(KERN_INFO "sched: requeue(%d) %px %016llx\n", cpu_of(rq), p, p->deadline);*/
-+ WARN_ONCE(task_rq(p) != rq, "sched: cpu[%d] requeue task reside on cpu%d\n",
-+ cpu_of(rq), task_cpu(p));
-+#endif
-+
-+ list_del(&p->sq_node);
-+ list_add_tail(&p->sq_node, &rq->queue.heads[idx]);
-+ if (idx != p->sq_idx) {
-+ if (list_empty(&rq->queue.heads[p->sq_idx]))
-+ clear_bit(sched_idx2prio(p->sq_idx, rq), rq->queue.bitmap);
-+ p->sq_idx = idx;
-+ set_bit(sched_idx2prio(p->sq_idx, rq), rq->queue.bitmap);
-+ update_sched_preempt_mask(rq);
-+ }
-+}
-+
-+/*
-+ * cmpxchg based fetch_or, macro so it works for different integer types
-+ */
-+#define fetch_or(ptr, mask) \
-+ ({ \
-+ typeof(ptr) _ptr = (ptr); \
-+ typeof(mask) _mask = (mask); \
-+ typeof(*_ptr) _val = *_ptr; \
-+ \
-+ do { \
-+ } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \
-+ _val; \
-+})
-+
-+#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
-+/*
-+ * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
-+ * this avoids any races wrt polling state changes and thereby avoids
-+ * spurious IPIs.
-+ */
-+static inline bool set_nr_and_not_polling(struct task_struct *p)
-+{
-+ struct thread_info *ti = task_thread_info(p);
-+ return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
-+}
-+
-+/*
-+ * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
-+ *
-+ * If this returns true, then the idle task promises to call
-+ * sched_ttwu_pending() and reschedule soon.
-+ */
-+static bool set_nr_if_polling(struct task_struct *p)
-+{
-+ struct thread_info *ti = task_thread_info(p);
-+ typeof(ti->flags) val = READ_ONCE(ti->flags);
-+
-+ do {
-+ if (!(val & _TIF_POLLING_NRFLAG))
-+ return false;
-+ if (val & _TIF_NEED_RESCHED)
-+ return true;
-+ } while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED));
-+
-+ return true;
-+}
-+
-+#else
-+static inline bool set_nr_and_not_polling(struct task_struct *p)
-+{
-+ set_tsk_need_resched(p);
-+ return true;
-+}
-+
-+#ifdef CONFIG_SMP
-+static inline bool set_nr_if_polling(struct task_struct *p)
-+{
-+ return false;
-+}
-+#endif
-+#endif
-+
-+static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
-+{
-+ struct wake_q_node *node = &task->wake_q;
-+
-+ /*
-+ * Atomically grab the task, if ->wake_q is !nil already it means
-+ * it's already queued (either by us or someone else) and will get the
-+ * wakeup due to that.
-+ *
-+ * In order to ensure that a pending wakeup will observe our pending
-+ * state, even in the failed case, an explicit smp_mb() must be used.
-+ */
-+ smp_mb__before_atomic();
-+ if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
-+ return false;
-+
-+ /*
-+ * The head is context local, there can be no concurrency.
-+ */
-+ *head->lastp = node;
-+ head->lastp = &node->next;
-+ return true;
-+}
-+
-+/**
-+ * wake_q_add() - queue a wakeup for 'later' waking.
-+ * @head: the wake_q_head to add @task to
-+ * @task: the task to queue for 'later' wakeup
-+ *
-+ * Queue a task for later wakeup, most likely by the wake_up_q() call in the
-+ * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
-+ * instantly.
-+ *
-+ * This function must be used as-if it were wake_up_process(); IOW the task
-+ * must be ready to be woken at this location.
-+ */
-+void wake_q_add(struct wake_q_head *head, struct task_struct *task)
-+{
-+ if (__wake_q_add(head, task))
-+ get_task_struct(task);
-+}
-+
-+/**
-+ * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
-+ * @head: the wake_q_head to add @task to
-+ * @task: the task to queue for 'later' wakeup
-+ *
-+ * Queue a task for later wakeup, most likely by the wake_up_q() call in the
-+ * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
-+ * instantly.
-+ *
-+ * This function must be used as-if it were wake_up_process(); IOW the task
-+ * must be ready to be woken at this location.
-+ *
-+ * This function is essentially a task-safe equivalent to wake_q_add(). Callers
-+ * that already hold reference to @task can call the 'safe' version and trust
-+ * wake_q to do the right thing depending whether or not the @task is already
-+ * queued for wakeup.
-+ */
-+void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
-+{
-+ if (!__wake_q_add(head, task))
-+ put_task_struct(task);
-+}
-+
-+void wake_up_q(struct wake_q_head *head)
-+{
-+ struct wake_q_node *node = head->first;
-+
-+ while (node != WAKE_Q_TAIL) {
-+ struct task_struct *task;
-+
-+ task = container_of(node, struct task_struct, wake_q);
-+ /* task can safely be re-inserted now: */
-+ node = node->next;
-+ task->wake_q.next = NULL;
-+
-+ /*
-+ * wake_up_process() executes a full barrier, which pairs with
-+ * the queueing in wake_q_add() so as not to miss wakeups.
-+ */
-+ wake_up_process(task);
-+ put_task_struct(task);
-+ }
-+}
-+
-+/*
-+ * resched_curr - mark rq's current task 'to be rescheduled now'.
-+ *
-+ * On UP this means the setting of the need_resched flag, on SMP it
-+ * might also involve a cross-CPU call to trigger the scheduler on
-+ * the target CPU.
-+ */
-+void resched_curr(struct rq *rq)
-+{
-+ struct task_struct *curr = rq->curr;
-+ int cpu;
-+
-+ lockdep_assert_held(&rq->lock);
-+
-+ if (test_tsk_need_resched(curr))
-+ return;
-+
-+ cpu = cpu_of(rq);
-+ if (cpu == smp_processor_id()) {
-+ set_tsk_need_resched(curr);
-+ set_preempt_need_resched();
-+ return;
-+ }
-+
-+ if (set_nr_and_not_polling(curr))
-+ smp_send_reschedule(cpu);
-+ else
-+ trace_sched_wake_idle_without_ipi(cpu);
-+}
-+
-+void resched_cpu(int cpu)
-+{
-+ struct rq *rq = cpu_rq(cpu);
-+ unsigned long flags;
-+
-+ raw_spin_lock_irqsave(&rq->lock, flags);
-+ if (cpu_online(cpu) || cpu == smp_processor_id())
-+ resched_curr(cpu_rq(cpu));
-+ raw_spin_unlock_irqrestore(&rq->lock, flags);
-+}
-+
-+#ifdef CONFIG_SMP
-+#ifdef CONFIG_NO_HZ_COMMON
-+void nohz_balance_enter_idle(int cpu) {}
-+
-+void select_nohz_load_balancer(int stop_tick) {}
-+
-+void set_cpu_sd_state_idle(void) {}
-+
-+/*
-+ * In the semi idle case, use the nearest busy CPU for migrating timers
-+ * from an idle CPU. This is good for power-savings.
-+ *
-+ * We don't do similar optimization for completely idle system, as
-+ * selecting an idle CPU will add more delays to the timers than intended
-+ * (as that CPU's timer base may not be uptodate wrt jiffies etc).
-+ */
-+int get_nohz_timer_target(void)
-+{
-+ int i, cpu = smp_processor_id(), default_cpu = -1;
-+ struct cpumask *mask;
-+ const struct cpumask *hk_mask;
-+
-+ if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
-+ if (!idle_cpu(cpu))
-+ return cpu;
-+ default_cpu = cpu;
-+ }
-+
-+ hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
-+
-+ for (mask = per_cpu(sched_cpu_topo_masks, cpu) + 1;
-+ mask < per_cpu(sched_cpu_topo_end_mask, cpu); mask++)
-+ for_each_cpu_and(i, mask, hk_mask)
-+ if (!idle_cpu(i))
-+ return i;
-+
-+ if (default_cpu == -1)
-+ default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
-+ cpu = default_cpu;
-+
-+ return cpu;
-+}
-+
-+/*
-+ * When add_timer_on() enqueues a timer into the timer wheel of an
-+ * idle CPU then this timer might expire before the next timer event
-+ * which is scheduled to wake up that CPU. In case of a completely
-+ * idle system the next event might even be infinite time into the
-+ * future. wake_up_idle_cpu() ensures that the CPU is woken up and
-+ * leaves the inner idle loop so the newly added timer is taken into
-+ * account when the CPU goes back to idle and evaluates the timer
-+ * wheel for the next timer event.
-+ */
-+static inline void wake_up_idle_cpu(int cpu)
-+{
-+ struct rq *rq = cpu_rq(cpu);
-+
-+ if (cpu == smp_processor_id())
-+ return;
-+
-+ if (set_nr_and_not_polling(rq->idle))
-+ smp_send_reschedule(cpu);
-+ else
-+ trace_sched_wake_idle_without_ipi(cpu);
-+}
-+
-+static inline bool wake_up_full_nohz_cpu(int cpu)
-+{
-+ /*
-+ * We just need the target to call irq_exit() and re-evaluate
-+ * the next tick. The nohz full kick at least implies that.
-+ * If needed we can still optimize that later with an
-+ * empty IRQ.
-+ */
-+ if (cpu_is_offline(cpu))
-+ return true; /* Don't try to wake offline CPUs. */
-+ if (tick_nohz_full_cpu(cpu)) {
-+ if (cpu != smp_processor_id() ||
-+ tick_nohz_tick_stopped())
-+ tick_nohz_full_kick_cpu(cpu);
-+ return true;
-+ }
-+
-+ return false;
-+}
-+
-+void wake_up_nohz_cpu(int cpu)
-+{
-+ if (!wake_up_full_nohz_cpu(cpu))
-+ wake_up_idle_cpu(cpu);
-+}
-+
-+static void nohz_csd_func(void *info)
-+{
-+ struct rq *rq = info;
-+ int cpu = cpu_of(rq);
-+ unsigned int flags;
-+
-+ /*
-+ * Release the rq::nohz_csd.
-+ */
-+ flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
-+ WARN_ON(!(flags & NOHZ_KICK_MASK));
-+
-+ rq->idle_balance = idle_cpu(cpu);
-+ if (rq->idle_balance && !need_resched()) {
-+ rq->nohz_idle_balance = flags;
-+ raise_softirq_irqoff(SCHED_SOFTIRQ);
-+ }
-+}
-+
-+#endif /* CONFIG_NO_HZ_COMMON */
-+#endif /* CONFIG_SMP */
-+
-+static inline void wakeup_preempt(struct rq *rq)
-+{
-+ if (sched_rq_first_task(rq) != rq->curr)
-+ resched_curr(rq);
-+}
-+
-+static __always_inline
-+int __task_state_match(struct task_struct *p, unsigned int state)
-+{
-+ if (READ_ONCE(p->__state) & state)
-+ return 1;
-+
-+ if (READ_ONCE(p->saved_state) & state)
-+ return -1;
-+
-+ return 0;
-+}
-+
-+static __always_inline
-+int task_state_match(struct task_struct *p, unsigned int state)
-+{
-+ /*
-+ * Serialize against current_save_and_set_rtlock_wait_state(),
-+ * current_restore_rtlock_saved_state(), and __refrigerator().
-+ */
-+ guard(raw_spinlock_irq)(&p->pi_lock);
-+
-+ return __task_state_match(p, state);
-+}
-+
-+/*
-+ * wait_task_inactive - wait for a thread to unschedule.
-+ *
-+ * Wait for the thread to block in any of the states set in @match_state.
-+ * If it changes, i.e. @p might have woken up, then return zero. When we
-+ * succeed in waiting for @p to be off its CPU, we return a positive number
-+ * (its total switch count). If a second call a short while later returns the
-+ * same number, the caller can be sure that @p has remained unscheduled the
-+ * whole time.
-+ *
-+ * The caller must ensure that the task *will* unschedule sometime soon,
-+ * else this function might spin for a *long* time. This function can't
-+ * be called with interrupts off, or it may introduce deadlock with
-+ * smp_call_function() if an IPI is sent by the same process we are
-+ * waiting to become inactive.
-+ */
-+unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
-+{
-+ unsigned long flags;
-+ int running, queued, match;
-+ unsigned long ncsw;
-+ struct rq *rq;
-+ raw_spinlock_t *lock;
-+
-+ for (;;) {
-+ rq = task_rq(p);
-+
-+ /*
-+ * If the task is actively running on another CPU
-+ * still, just relax and busy-wait without holding
-+ * any locks.
-+ *
-+ * NOTE! Since we don't hold any locks, it's not
-+ * even sure that "rq" stays as the right runqueue!
-+ * But we don't care, since this will return false
-+ * if the runqueue has changed and p is actually now
-+ * running somewhere else!
-+ */
-+ while (task_on_cpu(p)) {
-+ if (!task_state_match(p, match_state))
-+ return 0;
-+ cpu_relax();
-+ }
-+
-+ /*
-+ * Ok, time to look more closely! We need the rq
-+ * lock now, to be *sure*. If we're wrong, we'll
-+ * just go back and repeat.
-+ */
-+ task_access_lock_irqsave(p, &lock, &flags);
-+ trace_sched_wait_task(p);
-+ running = task_on_cpu(p);
-+ queued = p->on_rq;
-+ ncsw = 0;
-+ if ((match = __task_state_match(p, match_state))) {
-+ /*
-+ * When matching on p->saved_state, consider this task
-+ * still queued so it will wait.
-+ */
-+ if (match < 0)
-+ queued = 1;
-+ ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
-+ }
-+ task_access_unlock_irqrestore(p, lock, &flags);
-+
-+ /*
-+ * If it changed from the expected state, bail out now.
-+ */
-+ if (unlikely(!ncsw))
-+ break;
-+
-+ /*
-+ * Was it really running after all now that we
-+ * checked with the proper locks actually held?
-+ *
-+ * Oops. Go back and try again..
-+ */
-+ if (unlikely(running)) {
-+ cpu_relax();
-+ continue;
-+ }
-+
-+ /*
-+ * It's not enough that it's not actively running,
-+ * it must be off the runqueue _entirely_, and not
-+ * preempted!
-+ *
-+ * So if it was still runnable (but just not actively
-+ * running right now), it's preempted, and we should
-+ * yield - it could be a while.
-+ */
-+ if (unlikely(queued)) {
-+ ktime_t to = NSEC_PER_SEC / HZ;
-+
-+ set_current_state(TASK_UNINTERRUPTIBLE);
-+ schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
-+ continue;
-+ }
-+
-+ /*
-+ * Ahh, all good. It wasn't running, and it wasn't
-+ * runnable, which means that it will never become
-+ * running in the future either. We're all done!
-+ */
-+ break;
-+ }
-+
-+ return ncsw;
-+}
-+
-+#ifdef CONFIG_SCHED_HRTICK
-+/*
-+ * Use HR-timers to deliver accurate preemption points.
-+ */
-+
-+static void hrtick_clear(struct rq *rq)
-+{
-+ if (hrtimer_active(&rq->hrtick_timer))
-+ hrtimer_cancel(&rq->hrtick_timer);
-+}
-+
-+/*
-+ * High-resolution timer tick.
-+ * Runs from hardirq context with interrupts disabled.
-+ */
-+static enum hrtimer_restart hrtick(struct hrtimer *timer)
-+{
-+ struct rq *rq = container_of(timer, struct rq, hrtick_timer);
-+
-+ WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
-+
-+ raw_spin_lock(&rq->lock);
-+ resched_curr(rq);
-+ raw_spin_unlock(&rq->lock);
-+
-+ return HRTIMER_NORESTART;
-+}
-+
-+/*
-+ * Use hrtick when:
-+ * - enabled by features
-+ * - hrtimer is actually high res
-+ */
-+static inline int hrtick_enabled(struct rq *rq)
-+{
-+ /**
-+ * Alt schedule FW doesn't support sched_feat yet
-+ if (!sched_feat(HRTICK))
-+ return 0;
-+ */
-+ if (!cpu_active(cpu_of(rq)))
-+ return 0;
-+ return hrtimer_is_hres_active(&rq->hrtick_timer);
-+}
-+
-+#ifdef CONFIG_SMP
-+
-+static void __hrtick_restart(struct rq *rq)
-+{
-+ struct hrtimer *timer = &rq->hrtick_timer;
-+ ktime_t time = rq->hrtick_time;
-+
-+ hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
-+}
-+
-+/*
-+ * called from hardirq (IPI) context
-+ */
-+static void __hrtick_start(void *arg)
-+{
-+ struct rq *rq = arg;
-+
-+ raw_spin_lock(&rq->lock);
-+ __hrtick_restart(rq);
-+ raw_spin_unlock(&rq->lock);
-+}
-+
-+/*
-+ * Called to set the hrtick timer state.
-+ *
-+ * called with rq->lock held and irqs disabled
-+ */
-+void hrtick_start(struct rq *rq, u64 delay)
-+{
-+ struct hrtimer *timer = &rq->hrtick_timer;
-+ s64 delta;
-+
-+ /*
-+ * Don't schedule slices shorter than 10000ns, that just
-+ * doesn't make sense and can cause timer DoS.
-+ */
-+ delta = max_t(s64, delay, 10000LL);
-+
-+ rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
-+
-+ if (rq == this_rq())
-+ __hrtick_restart(rq);
-+ else
-+ smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
-+}
-+
-+#else
-+/*
-+ * Called to set the hrtick timer state.
-+ *
-+ * called with rq->lock held and irqs disabled
-+ */
-+void hrtick_start(struct rq *rq, u64 delay)
-+{
-+ /*
-+ * Don't schedule slices shorter than 10000ns, that just
-+ * doesn't make sense. Rely on vruntime for fairness.
-+ */
-+ delay = max_t(u64, delay, 10000LL);
-+ hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
-+ HRTIMER_MODE_REL_PINNED_HARD);
-+}
-+#endif /* CONFIG_SMP */
-+
-+static void hrtick_rq_init(struct rq *rq)
-+{
-+#ifdef CONFIG_SMP
-+ INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
-+#endif
-+
-+ hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
-+ rq->hrtick_timer.function = hrtick;
-+}
-+#else /* CONFIG_SCHED_HRTICK */
-+static inline int hrtick_enabled(struct rq *rq)
-+{
-+ return 0;
-+}
-+
-+static inline void hrtick_clear(struct rq *rq)
-+{
-+}
-+
-+static inline void hrtick_rq_init(struct rq *rq)
-+{
-+}
-+#endif /* CONFIG_SCHED_HRTICK */
-+
-+static inline int __normal_prio(int policy, int rt_prio, int static_prio)
-+{
-+ return rt_policy(policy) ? (MAX_RT_PRIO - 1 - rt_prio) :
-+ static_prio + MAX_PRIORITY_ADJ;
-+}
-+
-+/*
-+ * Calculate the expected normal priority: i.e. priority
-+ * without taking RT-inheritance into account. Might be
-+ * boosted by interactivity modifiers. Changes upon fork,
-+ * setprio syscalls, and whenever the interactivity
-+ * estimator recalculates.
-+ */
-+static inline int normal_prio(struct task_struct *p)
-+{
-+ return __normal_prio(p->policy, p->rt_priority, p->static_prio);
-+}
-+
-+/*
-+ * Calculate the current priority, i.e. the priority
-+ * taken into account by the scheduler. This value might
-+ * be boosted by RT tasks as it will be RT if the task got
-+ * RT-boosted. If not then it returns p->normal_prio.
-+ */
-+static int effective_prio(struct task_struct *p)
-+{
-+ p->normal_prio = normal_prio(p);
-+ /*
-+ * If we are RT tasks or we were boosted to RT priority,
-+ * keep the priority unchanged. Otherwise, update priority
-+ * to the normal priority:
-+ */
-+ if (!rt_prio(p->prio))
-+ return p->normal_prio;
-+ return p->prio;
-+}
-+
-+/*
-+ * activate_task - move a task to the runqueue.
-+ *
-+ * Context: rq->lock
-+ */
-+static void activate_task(struct task_struct *p, struct rq *rq)
-+{
-+ enqueue_task(p, rq, ENQUEUE_WAKEUP);
-+ p->on_rq = TASK_ON_RQ_QUEUED;
-+
-+ /*
-+ * If in_iowait is set, the code below may not trigger any cpufreq
-+ * utilization updates, so do it here explicitly with the IOWAIT flag
-+ * passed.
-+ */
-+ cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT * p->in_iowait);
-+}
-+
-+/*
-+ * deactivate_task - remove a task from the runqueue.
-+ *
-+ * Context: rq->lock
-+ */
-+static inline void deactivate_task(struct task_struct *p, struct rq *rq)
-+{
-+ dequeue_task(p, rq, DEQUEUE_SLEEP);
-+ p->on_rq = 0;
-+ cpufreq_update_util(rq, 0);
-+}
-+
-+static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
-+{
-+#ifdef CONFIG_SMP
-+ /*
-+ * After ->cpu is set up to a new value, task_access_lock(p, ...) can be
-+ * successfully executed on another CPU. We must ensure that updates of
-+ * per-task data have been completed by this moment.
-+ */
-+ smp_wmb();
-+
-+ WRITE_ONCE(task_thread_info(p)->cpu, cpu);
-+#endif
-+}
-+
-+static inline bool is_migration_disabled(struct task_struct *p)
-+{
-+#ifdef CONFIG_SMP
-+ return p->migration_disabled;
-+#else
-+ return false;
-+#endif
-+}
-+
-+#define SCA_CHECK 0x01
-+#define SCA_USER 0x08
-+
-+#ifdef CONFIG_SMP
-+
-+void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
-+{
-+#ifdef CONFIG_SCHED_DEBUG
-+ unsigned int state = READ_ONCE(p->__state);
-+
-+ /*
-+ * We should never call set_task_cpu() on a blocked task,
-+ * ttwu() will sort out the placement.
-+ */
-+ WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
-+
-+#ifdef CONFIG_LOCKDEP
-+ /*
-+ * The caller should hold either p->pi_lock or rq->lock, when changing
-+ * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
-+ *
-+ * sched_move_task() holds both and thus holding either pins the cgroup,
-+ * see task_group().
-+ */
-+ WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
-+ lockdep_is_held(&task_rq(p)->lock)));
-+#endif
-+ /*
-+ * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
-+ */
-+ WARN_ON_ONCE(!cpu_online(new_cpu));
-+
-+ WARN_ON_ONCE(is_migration_disabled(p));
-+#endif
-+ trace_sched_migrate_task(p, new_cpu);
-+
-+ if (task_cpu(p) != new_cpu)
-+ {
-+ rseq_migrate(p);
-+ perf_event_task_migrate(p);
-+ }
-+
-+ __set_task_cpu(p, new_cpu);
-+}
-+
-+#define MDF_FORCE_ENABLED 0x80
-+
-+static void
-+__do_set_cpus_ptr(struct task_struct *p, const struct cpumask *new_mask)
-+{
-+ /*
-+ * This here violates the locking rules for affinity, since we're only
-+ * supposed to change these variables while holding both rq->lock and
-+ * p->pi_lock.
-+ *
-+ * HOWEVER, it magically works, because ttwu() is the only code that
-+ * accesses these variables under p->pi_lock and only does so after
-+ * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
-+ * before finish_task().
-+ *
-+ * XXX do further audits, this smells like something putrid.
-+ */
-+ SCHED_WARN_ON(!p->on_cpu);
-+ p->cpus_ptr = new_mask;
-+}
-+
-+void migrate_disable(void)
-+{
-+ struct task_struct *p = current;
-+ int cpu;
-+
-+ if (p->migration_disabled) {
-+ p->migration_disabled++;
-+ return;
-+ }
-+
-+ guard(preempt)();
-+ cpu = smp_processor_id();
-+ if (cpumask_test_cpu(cpu, &p->cpus_mask)) {
-+ cpu_rq(cpu)->nr_pinned++;
-+ p->migration_disabled = 1;
-+ p->migration_flags &= ~MDF_FORCE_ENABLED;
-+
-+ /*
-+ * Violates locking rules! see comment in __do_set_cpus_ptr().
-+ */
-+ if (p->cpus_ptr == &p->cpus_mask)
-+ __do_set_cpus_ptr(p, cpumask_of(cpu));
-+ }
-+}
-+EXPORT_SYMBOL_GPL(migrate_disable);
-+
-+void migrate_enable(void)
-+{
-+ struct task_struct *p = current;
-+
-+ if (0 == p->migration_disabled)
-+ return;
-+
-+ if (p->migration_disabled > 1) {
-+ p->migration_disabled--;
-+ return;
-+ }
-+
-+ if (WARN_ON_ONCE(!p->migration_disabled))
-+ return;
-+
-+ /*
-+ * Ensure stop_task runs either before or after this, and that
-+ * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
-+ */
-+ guard(preempt)();
-+ /*
-+ * Assumption: current should be running on allowed cpu
-+ */
-+ WARN_ON_ONCE(!cpumask_test_cpu(smp_processor_id(), &p->cpus_mask));
-+ if (p->cpus_ptr != &p->cpus_mask)
-+ __do_set_cpus_ptr(p, &p->cpus_mask);
-+ /*
-+ * Mustn't clear migration_disabled() until cpus_ptr points back at the
-+ * regular cpus_mask, otherwise things that race (eg.
-+ * select_fallback_rq) get confused.
-+ */
-+ barrier();
-+ p->migration_disabled = 0;
-+ this_rq()->nr_pinned--;
-+}
-+EXPORT_SYMBOL_GPL(migrate_enable);
-+
-+static inline bool rq_has_pinned_tasks(struct rq *rq)
-+{
-+ return rq->nr_pinned;
-+}
-+
-+/*
-+ * Per-CPU kthreads are allowed to run on !active && online CPUs, see
-+ * __set_cpus_allowed_ptr() and select_fallback_rq().
-+ */
-+static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
-+{
-+ /* When not in the task's cpumask, no point in looking further. */
-+ if (!cpumask_test_cpu(cpu, p->cpus_ptr))
-+ return false;
-+
-+ /* migrate_disabled() must be allowed to finish. */
-+ if (is_migration_disabled(p))
-+ return cpu_online(cpu);
-+
-+ /* Non kernel threads are not allowed during either online or offline. */
-+ if (!(p->flags & PF_KTHREAD))
-+ return cpu_active(cpu) && task_cpu_possible(cpu, p);
-+
-+ /* KTHREAD_IS_PER_CPU is always allowed. */
-+ if (kthread_is_per_cpu(p))
-+ return cpu_online(cpu);
-+
-+ /* Regular kernel threads don't get to stay during offline. */
-+ if (cpu_dying(cpu))
-+ return false;
-+
-+ /* But are allowed during online. */
-+ return cpu_online(cpu);
-+}
-+
-+/*
-+ * This is how migration works:
-+ *
-+ * 1) we invoke migration_cpu_stop() on the target CPU using
-+ * stop_one_cpu().
-+ * 2) stopper starts to run (implicitly forcing the migrated thread
-+ * off the CPU)
-+ * 3) it checks whether the migrated task is still in the wrong runqueue.
-+ * 4) if it's in the wrong runqueue then the migration thread removes
-+ * it and puts it into the right queue.
-+ * 5) stopper completes and stop_one_cpu() returns and the migration
-+ * is done.
-+ */
-+
-+/*
-+ * move_queued_task - move a queued task to new rq.
-+ *
-+ * Returns (locked) new rq. Old rq's lock is released.
-+ */
-+static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int
-+ new_cpu)
-+{
-+ int src_cpu;
-+
-+ lockdep_assert_held(&rq->lock);
-+
-+ src_cpu = cpu_of(rq);
-+ WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
-+ dequeue_task(p, rq, 0);
-+ set_task_cpu(p, new_cpu);
-+ raw_spin_unlock(&rq->lock);
-+
-+ rq = cpu_rq(new_cpu);
-+
-+ raw_spin_lock(&rq->lock);
-+ WARN_ON_ONCE(task_cpu(p) != new_cpu);
-+
-+ sched_mm_cid_migrate_to(rq, p, src_cpu);
-+
-+ sched_task_sanity_check(p, rq);
-+ enqueue_task(p, rq, 0);
-+ p->on_rq = TASK_ON_RQ_QUEUED;
-+ wakeup_preempt(rq);
-+
-+ return rq;
-+}
-+
-+struct migration_arg {
-+ struct task_struct *task;
-+ int dest_cpu;
-+};
-+
-+/*
-+ * Move (not current) task off this CPU, onto the destination CPU. We're doing
-+ * this because either it can't run here any more (set_cpus_allowed()
-+ * away from this CPU, or CPU going down), or because we're
-+ * attempting to rebalance this task on exec (sched_exec).
-+ *
-+ * So we race with normal scheduler movements, but that's OK, as long
-+ * as the task is no longer on this CPU.
-+ */
-+static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int
-+ dest_cpu)
-+{
-+ /* Affinity changed (again). */
-+ if (!is_cpu_allowed(p, dest_cpu))
-+ return rq;
-+
-+ return move_queued_task(rq, p, dest_cpu);
-+}
-+
-+/*
-+ * migration_cpu_stop - this will be executed by a highprio stopper thread
-+ * and performs thread migration by bumping thread off CPU then
-+ * 'pushing' onto another runqueue.
-+ */
-+static int migration_cpu_stop(void *data)
-+{
-+ struct migration_arg *arg = data;
-+ struct task_struct *p = arg->task;
-+ struct rq *rq = this_rq();
-+ unsigned long flags;
-+
-+ /*
-+ * The original target CPU might have gone down and we might
-+ * be on another CPU but it doesn't matter.
-+ */
-+ local_irq_save(flags);
-+ /*
-+ * We need to explicitly wake pending tasks before running
-+ * __migrate_task() such that we will not miss enforcing cpus_ptr
-+ * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
-+ */
-+ flush_smp_call_function_queue();
-+
-+ raw_spin_lock(&p->pi_lock);
-+ raw_spin_lock(&rq->lock);
-+ /*
-+ * If task_rq(p) != rq, it cannot be migrated here, because we're
-+ * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
-+ * we're holding p->pi_lock.
-+ */
-+ if (task_rq(p) == rq && task_on_rq_queued(p)) {
-+ update_rq_clock(rq);
-+ rq = __migrate_task(rq, p, arg->dest_cpu);
-+ }
-+ raw_spin_unlock(&rq->lock);
-+ raw_spin_unlock_irqrestore(&p->pi_lock, flags);
-+
-+ return 0;
-+}
-+
-+static inline void
-+set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
-+{
-+ cpumask_copy(&p->cpus_mask, ctx->new_mask);
-+ p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
-+
-+ /*
-+ * Swap in a new user_cpus_ptr if SCA_USER flag set
-+ */
-+ if (ctx->flags & SCA_USER)
-+ swap(p->user_cpus_ptr, ctx->user_mask);
-+}
-+
-+static void
-+__do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
-+{
-+ lockdep_assert_held(&p->pi_lock);
-+ set_cpus_allowed_common(p, ctx);
-+}
-+
-+/*
-+ * Used for kthread_bind() and select_fallback_rq(), in both cases the user
-+ * affinity (if any) should be destroyed too.
-+ */
-+void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
-+{
-+ struct affinity_context ac = {
-+ .new_mask = new_mask,
-+ .user_mask = NULL,
-+ .flags = SCA_USER, /* clear the user requested mask */
-+ };
-+ union cpumask_rcuhead {
-+ cpumask_t cpumask;
-+ struct rcu_head rcu;
-+ };
-+
-+ __do_set_cpus_allowed(p, &ac);
-+
-+ /*
-+ * Because this is called with p->pi_lock held, it is not possible
-+ * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
-+ * kfree_rcu().
-+ */
-+ kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
-+}
-+
-+static cpumask_t *alloc_user_cpus_ptr(int node)
-+{
-+ /*
-+ * See do_set_cpus_allowed() above for the rcu_head usage.
-+ */
-+ int size = max_t(int, cpumask_size(), sizeof(struct rcu_head));
-+
-+ return kmalloc_node(size, GFP_KERNEL, node);
-+}
-+
-+int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
-+ int node)
-+{
-+ cpumask_t *user_mask;
-+ unsigned long flags;
-+
-+ /*
-+ * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
-+ * may differ by now due to racing.
-+ */
-+ dst->user_cpus_ptr = NULL;
-+
-+ /*
-+ * This check is racy and losing the race is a valid situation.
-+ * It is not worth the extra overhead of taking the pi_lock on
-+ * every fork/clone.
-+ */
-+ if (data_race(!src->user_cpus_ptr))
-+ return 0;
-+
-+ user_mask = alloc_user_cpus_ptr(node);
-+ if (!user_mask)
-+ return -ENOMEM;
-+
-+ /*
-+ * Use pi_lock to protect content of user_cpus_ptr
-+ *
-+ * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
-+ * do_set_cpus_allowed().
-+ */
-+ raw_spin_lock_irqsave(&src->pi_lock, flags);
-+ if (src->user_cpus_ptr) {
-+ swap(dst->user_cpus_ptr, user_mask);
-+ cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
-+ }
-+ raw_spin_unlock_irqrestore(&src->pi_lock, flags);
-+
-+ if (unlikely(user_mask))
-+ kfree(user_mask);
-+
-+ return 0;
-+}
-+
-+static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
-+{
-+ struct cpumask *user_mask = NULL;
-+
-+ swap(p->user_cpus_ptr, user_mask);
-+
-+ return user_mask;
-+}
-+
-+void release_user_cpus_ptr(struct task_struct *p)
-+{
-+ kfree(clear_user_cpus_ptr(p));
-+}
-+
-+#endif
-+
-+/**
-+ * task_curr - is this task currently executing on a CPU?
-+ * @p: the task in question.
-+ *
-+ * Return: 1 if the task is currently executing. 0 otherwise.
-+ */
-+inline int task_curr(const struct task_struct *p)
-+{
-+ return cpu_curr(task_cpu(p)) == p;
-+}
-+
-+#ifdef CONFIG_SMP
-+/***
-+ * kick_process - kick a running thread to enter/exit the kernel
-+ * @p: the to-be-kicked thread
-+ *
-+ * Cause a process which is running on another CPU to enter
-+ * kernel-mode, without any delay. (to get signals handled.)
-+ *
-+ * NOTE: this function doesn't have to take the runqueue lock,
-+ * because all it wants to ensure is that the remote task enters
-+ * the kernel. If the IPI races and the task has been migrated
-+ * to another CPU then no harm is done and the purpose has been
-+ * achieved as well.
-+ */
-+void kick_process(struct task_struct *p)
-+{
-+ guard(preempt)();
-+ int cpu = task_cpu(p);
-+
-+ if ((cpu != smp_processor_id()) && task_curr(p))
-+ smp_send_reschedule(cpu);
-+}
-+EXPORT_SYMBOL_GPL(kick_process);
-+
-+/*
-+ * ->cpus_ptr is protected by both rq->lock and p->pi_lock
-+ *
-+ * A few notes on cpu_active vs cpu_online:
-+ *
-+ * - cpu_active must be a subset of cpu_online
-+ *
-+ * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
-+ * see __set_cpus_allowed_ptr(). At this point the newly online
-+ * CPU isn't yet part of the sched domains, and balancing will not
-+ * see it.
-+ *
-+ * - on cpu-down we clear cpu_active() to mask the sched domains and
-+ * avoid the load balancer to place new tasks on the to be removed
-+ * CPU. Existing tasks will remain running there and will be taken
-+ * off.
-+ *
-+ * This means that fallback selection must not select !active CPUs.
-+ * And can assume that any active CPU must be online. Conversely
-+ * select_task_rq() below may allow selection of !active CPUs in order
-+ * to satisfy the above rules.
-+ */
-+static int select_fallback_rq(int cpu, struct task_struct *p)
-+{
-+ int nid = cpu_to_node(cpu);
-+ const struct cpumask *nodemask = NULL;
-+ enum { cpuset, possible, fail } state = cpuset;
-+ int dest_cpu;
-+
-+ /*
-+ * If the node that the CPU is on has been offlined, cpu_to_node()
-+ * will return -1. There is no CPU on the node, and we should
-+ * select the CPU on the other node.
-+ */
-+ if (nid != -1) {
-+ nodemask = cpumask_of_node(nid);
-+
-+ /* Look for allowed, online CPU in same node. */
-+ for_each_cpu(dest_cpu, nodemask) {
-+ if (is_cpu_allowed(p, dest_cpu))
-+ return dest_cpu;
-+ }
-+ }
-+
-+ for (;;) {
-+ /* Any allowed, online CPU? */
-+ for_each_cpu(dest_cpu, p->cpus_ptr) {
-+ if (!is_cpu_allowed(p, dest_cpu))
-+ continue;
-+ goto out;
-+ }
-+
-+ /* No more Mr. Nice Guy. */
-+ switch (state) {
-+ case cpuset:
-+ if (cpuset_cpus_allowed_fallback(p)) {
-+ state = possible;
-+ break;
-+ }
-+ fallthrough;
-+ case possible:
-+ /*
-+ * XXX When called from select_task_rq() we only
-+ * hold p->pi_lock and again violate locking order.
-+ *
-+ * More yuck to audit.
-+ */
-+ do_set_cpus_allowed(p, task_cpu_possible_mask(p));
-+ state = fail;
-+ break;
-+
-+ case fail:
-+ BUG();
-+ break;
-+ }
-+ }
-+
-+out:
-+ if (state != cpuset) {
-+ /*
-+ * Don't tell them about moving exiting tasks or
-+ * kernel threads (both mm NULL), since they never
-+ * leave kernel.
-+ */
-+ if (p->mm && printk_ratelimit()) {
-+ printk_deferred("process %d (%s) no longer affine to cpu%d\n",
-+ task_pid_nr(p), p->comm, cpu);
-+ }
-+ }
-+
-+ return dest_cpu;
-+}
-+
-+static inline void
-+sched_preempt_mask_flush(cpumask_t *mask, int prio)
-+{
-+ int cpu;
-+
-+ cpumask_copy(mask, sched_idle_mask);
-+
-+ for_each_clear_bit(cpu, cpumask_bits(mask), nr_cpumask_bits) {
-+ if (prio < cpu_rq(cpu)->prio)
-+ cpumask_set_cpu(cpu, mask);
-+ }
-+}
-+
-+static inline int
-+preempt_mask_check(struct task_struct *p, cpumask_t *allow_mask, cpumask_t *preempt_mask)
-+{
-+ int task_prio = task_sched_prio(p);
-+ cpumask_t *mask = sched_preempt_mask + SCHED_QUEUE_BITS - 1 - task_prio;
-+ int pr = atomic_read(&sched_prio_record);
-+
-+ if (pr != task_prio) {
-+ sched_preempt_mask_flush(mask, task_prio);
-+ atomic_set(&sched_prio_record, task_prio);
-+ }
-+
-+ return cpumask_and(preempt_mask, allow_mask, mask);
-+}
-+
-+static inline int select_task_rq(struct task_struct *p)
-+{
-+ cpumask_t allow_mask, mask;
-+
-+ if (unlikely(!cpumask_and(&allow_mask, p->cpus_ptr, cpu_active_mask)))
-+ return select_fallback_rq(task_cpu(p), p);
-+
-+ if (
-+#ifdef CONFIG_SCHED_SMT
-+ cpumask_and(&mask, &allow_mask, &sched_sg_idle_mask) ||
-+#endif
-+ cpumask_and(&mask, &allow_mask, sched_idle_mask) ||
-+ preempt_mask_check(p, &allow_mask, &mask))
-+ return best_mask_cpu(task_cpu(p), &mask);
-+
-+ return best_mask_cpu(task_cpu(p), &allow_mask);
-+}
-+
-+void sched_set_stop_task(int cpu, struct task_struct *stop)
-+{
-+ static struct lock_class_key stop_pi_lock;
-+ struct sched_param stop_param = { .sched_priority = STOP_PRIO };
-+ struct sched_param start_param = { .sched_priority = 0 };
-+ struct task_struct *old_stop = cpu_rq(cpu)->stop;
-+
-+ if (stop) {
-+ /*
-+ * Make it appear like a SCHED_FIFO task, its something
-+ * userspace knows about and won't get confused about.
-+ *
-+ * Also, it will make PI more or less work without too
-+ * much confusion -- but then, stop work should not
-+ * rely on PI working anyway.
-+ */
-+ sched_setscheduler_nocheck(stop, SCHED_FIFO, &stop_param);
-+
-+ /*
-+ * The PI code calls rt_mutex_setprio() with ->pi_lock held to
-+ * adjust the effective priority of a task. As a result,
-+ * rt_mutex_setprio() can trigger (RT) balancing operations,
-+ * which can then trigger wakeups of the stop thread to push
-+ * around the current task.
-+ *
-+ * The stop task itself will never be part of the PI-chain, it
-+ * never blocks, therefore that ->pi_lock recursion is safe.
-+ * Tell lockdep about this by placing the stop->pi_lock in its
-+ * own class.
-+ */
-+ lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
-+ }
-+
-+ cpu_rq(cpu)->stop = stop;
-+
-+ if (old_stop) {
-+ /*
-+ * Reset it back to a normal scheduling policy so that
-+ * it can die in pieces.
-+ */
-+ sched_setscheduler_nocheck(old_stop, SCHED_NORMAL, &start_param);
-+ }
-+}
-+
-+static int affine_move_task(struct rq *rq, struct task_struct *p, int dest_cpu,
-+ raw_spinlock_t *lock, unsigned long irq_flags)
-+ __releases(rq->lock)
-+ __releases(p->pi_lock)
-+{
-+ /* Can the task run on the task's current CPU? If so, we're done */
-+ if (!cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
-+ if (p->migration_disabled) {
-+ if (likely(p->cpus_ptr != &p->cpus_mask))
-+ __do_set_cpus_ptr(p, &p->cpus_mask);
-+ p->migration_disabled = 0;
-+ p->migration_flags |= MDF_FORCE_ENABLED;
-+ /* When p is migrate_disabled, rq->lock should be held */
-+ rq->nr_pinned--;
-+ }
-+
-+ if (task_on_cpu(p) || READ_ONCE(p->__state) == TASK_WAKING) {
-+ struct migration_arg arg = { p, dest_cpu };
-+
-+ /* Need help from migration thread: drop lock and wait. */
-+ __task_access_unlock(p, lock);
-+ raw_spin_unlock_irqrestore(&p->pi_lock, irq_flags);
-+ stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
-+ return 0;
-+ }
-+ if (task_on_rq_queued(p)) {
-+ /*
-+ * OK, since we're going to drop the lock immediately
-+ * afterwards anyway.
-+ */
-+ update_rq_clock(rq);
-+ rq = move_queued_task(rq, p, dest_cpu);
-+ lock = &rq->lock;
-+ }
-+ }
-+ __task_access_unlock(p, lock);
-+ raw_spin_unlock_irqrestore(&p->pi_lock, irq_flags);
-+ return 0;
-+}
-+
-+static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
-+ struct affinity_context *ctx,
-+ struct rq *rq,
-+ raw_spinlock_t *lock,
-+ unsigned long irq_flags)
-+{
-+ const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
-+ const struct cpumask *cpu_valid_mask = cpu_active_mask;
-+ bool kthread = p->flags & PF_KTHREAD;
-+ int dest_cpu;
-+ int ret = 0;
-+
-+ if (kthread || is_migration_disabled(p)) {
-+ /*
-+ * Kernel threads are allowed on online && !active CPUs,
-+ * however, during cpu-hot-unplug, even these might get pushed
-+ * away if not KTHREAD_IS_PER_CPU.
-+ *
-+ * Specifically, migration_disabled() tasks must not fail the
-+ * cpumask_any_and_distribute() pick below, esp. so on
-+ * SCA_MIGRATE_ENABLE, otherwise we'll not call
-+ * set_cpus_allowed_common() and actually reset p->cpus_ptr.
-+ */
-+ cpu_valid_mask = cpu_online_mask;
-+ }
-+
-+ if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
-+ ret = -EINVAL;
-+ goto out;
-+ }
-+
-+ /*
-+ * Must re-check here, to close a race against __kthread_bind(),
-+ * sched_setaffinity() is not guaranteed to observe the flag.
-+ */
-+ if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
-+ ret = -EINVAL;
-+ goto out;
-+ }
-+
-+ if (cpumask_equal(&p->cpus_mask, ctx->new_mask))
-+ goto out;
-+
-+ dest_cpu = cpumask_any_and(cpu_valid_mask, ctx->new_mask);
-+ if (dest_cpu >= nr_cpu_ids) {
-+ ret = -EINVAL;
-+ goto out;
-+ }
-+
-+ __do_set_cpus_allowed(p, ctx);
-+
-+ return affine_move_task(rq, p, dest_cpu, lock, irq_flags);
-+
-+out:
-+ __task_access_unlock(p, lock);
-+ raw_spin_unlock_irqrestore(&p->pi_lock, irq_flags);
-+
-+ return ret;
-+}
-+
-+/*
-+ * Change a given task's CPU affinity. Migrate the thread to a
-+ * is removed from the allowed bitmask.
-+ *
-+ * NOTE: the caller must have a valid reference to the task, the
-+ * task must not exit() & deallocate itself prematurely. The
-+ * call is not atomic; no spinlocks may be held.
-+ */
-+static int __set_cpus_allowed_ptr(struct task_struct *p,
-+ struct affinity_context *ctx)
-+{
-+ unsigned long irq_flags;
-+ struct rq *rq;
-+ raw_spinlock_t *lock;
-+
-+ raw_spin_lock_irqsave(&p->pi_lock, irq_flags);
-+ rq = __task_access_lock(p, &lock);
-+ /*
-+ * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
-+ * flags are set.
-+ */
-+ if (p->user_cpus_ptr &&
-+ !(ctx->flags & SCA_USER) &&
-+ cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
-+ ctx->new_mask = rq->scratch_mask;
-+
-+
-+ return __set_cpus_allowed_ptr_locked(p, ctx, rq, lock, irq_flags);
-+}
-+
-+int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
-+{
-+ struct affinity_context ac = {
-+ .new_mask = new_mask,
-+ .flags = 0,
-+ };
-+
-+ return __set_cpus_allowed_ptr(p, &ac);
-+}
-+EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
-+
-+/*
-+ * Change a given task's CPU affinity to the intersection of its current
-+ * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
-+ * If user_cpus_ptr is defined, use it as the basis for restricting CPU
-+ * affinity or use cpu_online_mask instead.
-+ *
-+ * If the resulting mask is empty, leave the affinity unchanged and return
-+ * -EINVAL.
-+ */
-+static int restrict_cpus_allowed_ptr(struct task_struct *p,
-+ struct cpumask *new_mask,
-+ const struct cpumask *subset_mask)
-+{
-+ struct affinity_context ac = {
-+ .new_mask = new_mask,
-+ .flags = 0,
-+ };
-+ unsigned long irq_flags;
-+ raw_spinlock_t *lock;
-+ struct rq *rq;
-+ int err;
-+
-+ raw_spin_lock_irqsave(&p->pi_lock, irq_flags);
-+ rq = __task_access_lock(p, &lock);
-+
-+ if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
-+ err = -EINVAL;
-+ goto err_unlock;
-+ }
-+
-+ return __set_cpus_allowed_ptr_locked(p, &ac, rq, lock, irq_flags);
-+
-+err_unlock:
-+ __task_access_unlock(p, lock);
-+ raw_spin_unlock_irqrestore(&p->pi_lock, irq_flags);
-+ return err;
-+}
-+
-+/*
-+ * Restrict the CPU affinity of task @p so that it is a subset of
-+ * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
-+ * old affinity mask. If the resulting mask is empty, we warn and walk
-+ * up the cpuset hierarchy until we find a suitable mask.
-+ */
-+void force_compatible_cpus_allowed_ptr(struct task_struct *p)
-+{
-+ cpumask_var_t new_mask;
-+ const struct cpumask *override_mask = task_cpu_possible_mask(p);
-+
-+ alloc_cpumask_var(&new_mask, GFP_KERNEL);
-+
-+ /*
-+ * __migrate_task() can fail silently in the face of concurrent
-+ * offlining of the chosen destination CPU, so take the hotplug
-+ * lock to ensure that the migration succeeds.
-+ */
-+ cpus_read_lock();
-+ if (!cpumask_available(new_mask))
-+ goto out_set_mask;
-+
-+ if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
-+ goto out_free_mask;
-+
-+ /*
-+ * We failed to find a valid subset of the affinity mask for the
-+ * task, so override it based on its cpuset hierarchy.
-+ */
-+ cpuset_cpus_allowed(p, new_mask);
-+ override_mask = new_mask;
-+
-+out_set_mask:
-+ if (printk_ratelimit()) {
-+ printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
-+ task_pid_nr(p), p->comm,
-+ cpumask_pr_args(override_mask));
-+ }
-+
-+ WARN_ON(set_cpus_allowed_ptr(p, override_mask));
-+out_free_mask:
-+ cpus_read_unlock();
-+ free_cpumask_var(new_mask);
-+}
-+
-+static int
-+__sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
-+
-+/*
-+ * Restore the affinity of a task @p which was previously restricted by a
-+ * call to force_compatible_cpus_allowed_ptr().
-+ *
-+ * It is the caller's responsibility to serialise this with any calls to
-+ * force_compatible_cpus_allowed_ptr(@p).
-+ */
-+void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
-+{
-+ struct affinity_context ac = {
-+ .new_mask = task_user_cpus(p),
-+ .flags = 0,
-+ };
-+ int ret;
-+
-+ /*
-+ * Try to restore the old affinity mask with __sched_setaffinity().
-+ * Cpuset masking will be done there too.
-+ */
-+ ret = __sched_setaffinity(p, &ac);
-+ WARN_ON_ONCE(ret);
-+}
-+
-+#else /* CONFIG_SMP */
-+
-+static inline int select_task_rq(struct task_struct *p)
-+{
-+ return 0;
-+}
-+
-+static inline int
-+__set_cpus_allowed_ptr(struct task_struct *p,
-+ struct affinity_context *ctx)
-+{
-+ return set_cpus_allowed_ptr(p, ctx->new_mask);
-+}
-+
-+static inline bool rq_has_pinned_tasks(struct rq *rq)
-+{
-+ return false;
-+}
-+
-+static inline cpumask_t *alloc_user_cpus_ptr(int node)
-+{
-+ return NULL;
-+}
-+
-+#endif /* !CONFIG_SMP */
-+
-+static void
-+ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
-+{
-+ struct rq *rq;
-+
-+ if (!schedstat_enabled())
-+ return;
-+
-+ rq = this_rq();
-+
-+#ifdef CONFIG_SMP
-+ if (cpu == rq->cpu) {
-+ __schedstat_inc(rq->ttwu_local);
-+ __schedstat_inc(p->stats.nr_wakeups_local);
-+ } else {
-+ /** Alt schedule FW ToDo:
-+ * How to do ttwu_wake_remote
-+ */
-+ }
-+#endif /* CONFIG_SMP */
-+
-+ __schedstat_inc(rq->ttwu_count);
-+ __schedstat_inc(p->stats.nr_wakeups);
-+}
-+
-+/*
-+ * Mark the task runnable.
-+ */
-+static inline void ttwu_do_wakeup(struct task_struct *p)
-+{
-+ WRITE_ONCE(p->__state, TASK_RUNNING);
-+ trace_sched_wakeup(p);
-+}
-+
-+static inline void
-+ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
-+{
-+ if (p->sched_contributes_to_load)
-+ rq->nr_uninterruptible--;
-+
-+ if (
-+#ifdef CONFIG_SMP
-+ !(wake_flags & WF_MIGRATED) &&
-+#endif
-+ p->in_iowait) {
-+ delayacct_blkio_end(p);
-+ atomic_dec(&task_rq(p)->nr_iowait);
-+ }
-+
-+ activate_task(p, rq);
-+ wakeup_preempt(rq);
-+
-+ ttwu_do_wakeup(p);
-+}
-+
-+/*
-+ * Consider @p being inside a wait loop:
-+ *
-+ * for (;;) {
-+ * set_current_state(TASK_UNINTERRUPTIBLE);
-+ *
-+ * if (CONDITION)
-+ * break;
-+ *
-+ * schedule();
-+ * }
-+ * __set_current_state(TASK_RUNNING);
-+ *
-+ * between set_current_state() and schedule(). In this case @p is still
-+ * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
-+ * an atomic manner.
-+ *
-+ * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
-+ * then schedule() must still happen and p->state can be changed to
-+ * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
-+ * need to do a full wakeup with enqueue.
-+ *
-+ * Returns: %true when the wakeup is done,
-+ * %false otherwise.
-+ */
-+static int ttwu_runnable(struct task_struct *p, int wake_flags)
-+{
-+ struct rq *rq;
-+ raw_spinlock_t *lock;
-+ int ret = 0;
-+
-+ rq = __task_access_lock(p, &lock);
-+ if (task_on_rq_queued(p)) {
-+ if (!task_on_cpu(p)) {
-+ /*
-+ * When on_rq && !on_cpu the task is preempted, see if
-+ * it should preempt the task that is current now.
-+ */
-+ update_rq_clock(rq);
-+ wakeup_preempt(rq);
-+ }
-+ ttwu_do_wakeup(p);
-+ ret = 1;
-+ }
-+ __task_access_unlock(p, lock);
-+
-+ return ret;
-+}
-+
-+#ifdef CONFIG_SMP
-+void sched_ttwu_pending(void *arg)
-+{
-+ struct llist_node *llist = arg;
-+ struct rq *rq = this_rq();
-+ struct task_struct *p, *t;
-+ struct rq_flags rf;
-+
-+ if (!llist)
-+ return;
-+
-+ rq_lock_irqsave(rq, &rf);
-+ update_rq_clock(rq);
-+
-+ llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
-+ if (WARN_ON_ONCE(p->on_cpu))
-+ smp_cond_load_acquire(&p->on_cpu, !VAL);
-+
-+ if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
-+ set_task_cpu(p, cpu_of(rq));
-+
-+ ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0);
-+ }
-+
-+ /*
-+ * Must be after enqueueing at least once task such that
-+ * idle_cpu() does not observe a false-negative -- if it does,
-+ * it is possible for select_idle_siblings() to stack a number
-+ * of tasks on this CPU during that window.
-+ *
-+ * It is ok to clear ttwu_pending when another task pending.
-+ * We will receive IPI after local irq enabled and then enqueue it.
-+ * Since now nr_running > 0, idle_cpu() will always get correct result.
-+ */
-+ WRITE_ONCE(rq->ttwu_pending, 0);
-+ rq_unlock_irqrestore(rq, &rf);
-+}
-+
-+/*
-+ * Prepare the scene for sending an IPI for a remote smp_call
-+ *
-+ * Returns true if the caller can proceed with sending the IPI.
-+ * Returns false otherwise.
-+ */
-+bool call_function_single_prep_ipi(int cpu)
-+{
-+ if (set_nr_if_polling(cpu_rq(cpu)->idle)) {
-+ trace_sched_wake_idle_without_ipi(cpu);
-+ return false;
-+ }
-+
-+ return true;
-+}
-+
-+/*
-+ * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
-+ * necessary. The wakee CPU on receipt of the IPI will queue the task
-+ * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
-+ * of the wakeup instead of the waker.
-+ */
-+static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
-+{
-+ struct rq *rq = cpu_rq(cpu);
-+
-+ p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
-+
-+ WRITE_ONCE(rq->ttwu_pending, 1);
-+ __smp_call_single_queue(cpu, &p->wake_entry.llist);
-+}
-+
-+static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
-+{
-+ /*
-+ * Do not complicate things with the async wake_list while the CPU is
-+ * in hotplug state.
-+ */
-+ if (!cpu_active(cpu))
-+ return false;
-+
-+ /* Ensure the task will still be allowed to run on the CPU. */
-+ if (!cpumask_test_cpu(cpu, p->cpus_ptr))
-+ return false;
-+
-+ /*
-+ * If the CPU does not share cache, then queue the task on the
-+ * remote rqs wakelist to avoid accessing remote data.
-+ */
-+ if (!cpus_share_cache(smp_processor_id(), cpu))
-+ return true;
-+
-+ if (cpu == smp_processor_id())
-+ return false;
-+
-+ /*
-+ * If the wakee cpu is idle, or the task is descheduling and the
-+ * only running task on the CPU, then use the wakelist to offload
-+ * the task activation to the idle (or soon-to-be-idle) CPU as
-+ * the current CPU is likely busy. nr_running is checked to
-+ * avoid unnecessary task stacking.
-+ *
-+ * Note that we can only get here with (wakee) p->on_rq=0,
-+ * p->on_cpu can be whatever, we've done the dequeue, so
-+ * the wakee has been accounted out of ->nr_running.
-+ */
-+ if (!cpu_rq(cpu)->nr_running)
-+ return true;
-+
-+ return false;
-+}
-+
-+static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
-+{
-+ if (__is_defined(ALT_SCHED_TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
-+ sched_clock_cpu(cpu); /* Sync clocks across CPUs */
-+ __ttwu_queue_wakelist(p, cpu, wake_flags);
-+ return true;
-+ }
-+
-+ return false;
-+}
-+
-+void wake_up_if_idle(int cpu)
-+{
-+ struct rq *rq = cpu_rq(cpu);
-+
-+ guard(rcu)();
-+ if (is_idle_task(rcu_dereference(rq->curr))) {
-+ guard(raw_spinlock_irqsave)(&rq->lock);
-+ if (is_idle_task(rq->curr))
-+ resched_curr(rq);
-+ }
-+}
-+
-+bool cpus_share_cache(int this_cpu, int that_cpu)
-+{
-+ if (this_cpu == that_cpu)
-+ return true;
-+
-+ return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
-+}
-+#else /* !CONFIG_SMP */
-+
-+static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
-+{
-+ return false;
-+}
-+
-+#endif /* CONFIG_SMP */
-+
-+static inline void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
-+{
-+ struct rq *rq = cpu_rq(cpu);
-+
-+ if (ttwu_queue_wakelist(p, cpu, wake_flags))
-+ return;
-+
-+ raw_spin_lock(&rq->lock);
-+ update_rq_clock(rq);
-+ ttwu_do_activate(rq, p, wake_flags);
-+ raw_spin_unlock(&rq->lock);
-+}
-+
-+/*
-+ * Invoked from try_to_wake_up() to check whether the task can be woken up.
-+ *
-+ * The caller holds p::pi_lock if p != current or has preemption
-+ * disabled when p == current.
-+ *
-+ * The rules of saved_state:
-+ *
-+ * The related locking code always holds p::pi_lock when updating
-+ * p::saved_state, which means the code is fully serialized in both cases.
-+ *
-+ * For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT.
-+ * No other bits set. This allows to distinguish all wakeup scenarios.
-+ *
-+ * For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This
-+ * allows us to prevent early wakeup of tasks before they can be run on
-+ * asymmetric ISA architectures (eg ARMv9).
-+ */
-+static __always_inline
-+bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
-+{
-+ int match;
-+
-+ if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
-+ WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
-+ state != TASK_RTLOCK_WAIT);
-+ }
-+
-+ *success = !!(match = __task_state_match(p, state));
-+
-+ /*
-+ * Saved state preserves the task state across blocking on
-+ * an RT lock or TASK_FREEZABLE tasks. If the state matches,
-+ * set p::saved_state to TASK_RUNNING, but do not wake the task
-+ * because it waits for a lock wakeup or __thaw_task(). Also
-+ * indicate success because from the regular waker's point of
-+ * view this has succeeded.
-+ *
-+ * After acquiring the lock the task will restore p::__state
-+ * from p::saved_state which ensures that the regular
-+ * wakeup is not lost. The restore will also set
-+ * p::saved_state to TASK_RUNNING so any further tests will
-+ * not result in false positives vs. @success
-+ */
-+ if (match < 0)
-+ p->saved_state = TASK_RUNNING;
-+
-+ return match > 0;
-+}
-+
-+/*
-+ * Notes on Program-Order guarantees on SMP systems.
-+ *
-+ * MIGRATION
-+ *
-+ * The basic program-order guarantee on SMP systems is that when a task [t]
-+ * migrates, all its activity on its old CPU [c0] happens-before any subsequent
-+ * execution on its new CPU [c1].
-+ *
-+ * For migration (of runnable tasks) this is provided by the following means:
-+ *
-+ * A) UNLOCK of the rq(c0)->lock scheduling out task t
-+ * B) migration for t is required to synchronize *both* rq(c0)->lock and
-+ * rq(c1)->lock (if not at the same time, then in that order).
-+ * C) LOCK of the rq(c1)->lock scheduling in task
-+ *
-+ * Transitivity guarantees that B happens after A and C after B.
-+ * Note: we only require RCpc transitivity.
-+ * Note: the CPU doing B need not be c0 or c1
-+ *
-+ * Example:
-+ *
-+ * CPU0 CPU1 CPU2
-+ *
-+ * LOCK rq(0)->lock
-+ * sched-out X
-+ * sched-in Y
-+ * UNLOCK rq(0)->lock
-+ *
-+ * LOCK rq(0)->lock // orders against CPU0
-+ * dequeue X
-+ * UNLOCK rq(0)->lock
-+ *
-+ * LOCK rq(1)->lock
-+ * enqueue X
-+ * UNLOCK rq(1)->lock
-+ *
-+ * LOCK rq(1)->lock // orders against CPU2
-+ * sched-out Z
-+ * sched-in X
-+ * UNLOCK rq(1)->lock
-+ *
-+ *
-+ * BLOCKING -- aka. SLEEP + WAKEUP
-+ *
-+ * For blocking we (obviously) need to provide the same guarantee as for
-+ * migration. However the means are completely different as there is no lock
-+ * chain to provide order. Instead we do:
-+ *
-+ * 1) smp_store_release(X->on_cpu, 0) -- finish_task()
-+ * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
-+ *
-+ * Example:
-+ *
-+ * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
-+ *
-+ * LOCK rq(0)->lock LOCK X->pi_lock
-+ * dequeue X
-+ * sched-out X
-+ * smp_store_release(X->on_cpu, 0);
-+ *
-+ * smp_cond_load_acquire(&X->on_cpu, !VAL);
-+ * X->state = WAKING
-+ * set_task_cpu(X,2)
-+ *
-+ * LOCK rq(2)->lock
-+ * enqueue X
-+ * X->state = RUNNING
-+ * UNLOCK rq(2)->lock
-+ *
-+ * LOCK rq(2)->lock // orders against CPU1
-+ * sched-out Z
-+ * sched-in X
-+ * UNLOCK rq(2)->lock
-+ *
-+ * UNLOCK X->pi_lock
-+ * UNLOCK rq(0)->lock
-+ *
-+ *
-+ * However; for wakeups there is a second guarantee we must provide, namely we
-+ * must observe the state that lead to our wakeup. That is, not only must our
-+ * task observe its own prior state, it must also observe the stores prior to
-+ * its wakeup.
-+ *
-+ * This means that any means of doing remote wakeups must order the CPU doing
-+ * the wakeup against the CPU the task is going to end up running on. This,
-+ * however, is already required for the regular Program-Order guarantee above,
-+ * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
-+ *
-+ */
-+
-+/**
-+ * try_to_wake_up - wake up a thread
-+ * @p: the thread to be awakened
-+ * @state: the mask of task states that can be woken
-+ * @wake_flags: wake modifier flags (WF_*)
-+ *
-+ * Conceptually does:
-+ *
-+ * If (@state & @p->state) @p->state = TASK_RUNNING.
-+ *
-+ * If the task was not queued/runnable, also place it back on a runqueue.
-+ *
-+ * This function is atomic against schedule() which would dequeue the task.
-+ *
-+ * It issues a full memory barrier before accessing @p->state, see the comment
-+ * with set_current_state().
-+ *
-+ * Uses p->pi_lock to serialize against concurrent wake-ups.
-+ *
-+ * Relies on p->pi_lock stabilizing:
-+ * - p->sched_class
-+ * - p->cpus_ptr
-+ * - p->sched_task_group
-+ * in order to do migration, see its use of select_task_rq()/set_task_cpu().
-+ *
-+ * Tries really hard to only take one task_rq(p)->lock for performance.
-+ * Takes rq->lock in:
-+ * - ttwu_runnable() -- old rq, unavoidable, see comment there;
-+ * - ttwu_queue() -- new rq, for enqueue of the task;
-+ * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
-+ *
-+ * As a consequence we race really badly with just about everything. See the
-+ * many memory barriers and their comments for details.
-+ *
-+ * Return: %true if @p->state changes (an actual wakeup was done),
-+ * %false otherwise.
-+ */
-+int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
-+{
-+ guard(preempt)();
-+ int cpu, success = 0;
-+
-+ if (p == current) {
-+ /*
-+ * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
-+ * == smp_processor_id()'. Together this means we can special
-+ * case the whole 'p->on_rq && ttwu_runnable()' case below
-+ * without taking any locks.
-+ *
-+ * In particular:
-+ * - we rely on Program-Order guarantees for all the ordering,
-+ * - we're serialized against set_special_state() by virtue of
-+ * it disabling IRQs (this allows not taking ->pi_lock).
-+ */
-+ if (!ttwu_state_match(p, state, &success))
-+ goto out;
-+
-+ trace_sched_waking(p);
-+ ttwu_do_wakeup(p);
-+ goto out;
-+ }
-+
-+ /*
-+ * If we are going to wake up a thread waiting for CONDITION we
-+ * need to ensure that CONDITION=1 done by the caller can not be
-+ * reordered with p->state check below. This pairs with smp_store_mb()
-+ * in set_current_state() that the waiting thread does.
-+ */
-+ scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
-+ smp_mb__after_spinlock();
-+ if (!ttwu_state_match(p, state, &success))
-+ break;
-+
-+ trace_sched_waking(p);
-+
-+ /*
-+ * Ensure we load p->on_rq _after_ p->state, otherwise it would
-+ * be possible to, falsely, observe p->on_rq == 0 and get stuck
-+ * in smp_cond_load_acquire() below.
-+ *
-+ * sched_ttwu_pending() try_to_wake_up()
-+ * STORE p->on_rq = 1 LOAD p->state
-+ * UNLOCK rq->lock
-+ *
-+ * __schedule() (switch to task 'p')
-+ * LOCK rq->lock smp_rmb();
-+ * smp_mb__after_spinlock();
-+ * UNLOCK rq->lock
-+ *
-+ * [task p]
-+ * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
-+ *
-+ * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
-+ * __schedule(). See the comment for smp_mb__after_spinlock().
-+ *
-+ * A similar smp_rmb() lives in __task_needs_rq_lock().
-+ */
-+ smp_rmb();
-+ if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
-+ break;
-+
-+#ifdef CONFIG_SMP
-+ /*
-+ * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
-+ * possible to, falsely, observe p->on_cpu == 0.
-+ *
-+ * One must be running (->on_cpu == 1) in order to remove oneself
-+ * from the runqueue.
-+ *
-+ * __schedule() (switch to task 'p') try_to_wake_up()
-+ * STORE p->on_cpu = 1 LOAD p->on_rq
-+ * UNLOCK rq->lock
-+ *
-+ * __schedule() (put 'p' to sleep)
-+ * LOCK rq->lock smp_rmb();
-+ * smp_mb__after_spinlock();
-+ * STORE p->on_rq = 0 LOAD p->on_cpu
-+ *
-+ * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
-+ * __schedule(). See the comment for smp_mb__after_spinlock().
-+ *
-+ * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
-+ * schedule()'s deactivate_task() has 'happened' and p will no longer
-+ * care about it's own p->state. See the comment in __schedule().
-+ */
-+ smp_acquire__after_ctrl_dep();
-+
-+ /*
-+ * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
-+ * == 0), which means we need to do an enqueue, change p->state to
-+ * TASK_WAKING such that we can unlock p->pi_lock before doing the
-+ * enqueue, such as ttwu_queue_wakelist().
-+ */
-+ WRITE_ONCE(p->__state, TASK_WAKING);
-+
-+ /*
-+ * If the owning (remote) CPU is still in the middle of schedule() with
-+ * this task as prev, considering queueing p on the remote CPUs wake_list
-+ * which potentially sends an IPI instead of spinning on p->on_cpu to
-+ * let the waker make forward progress. This is safe because IRQs are
-+ * disabled and the IPI will deliver after on_cpu is cleared.
-+ *
-+ * Ensure we load task_cpu(p) after p->on_cpu:
-+ *
-+ * set_task_cpu(p, cpu);
-+ * STORE p->cpu = @cpu
-+ * __schedule() (switch to task 'p')
-+ * LOCK rq->lock
-+ * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu)
-+ * STORE p->on_cpu = 1 LOAD p->cpu
-+ *
-+ * to ensure we observe the correct CPU on which the task is currently
-+ * scheduling.
-+ */
-+ if (smp_load_acquire(&p->on_cpu) &&
-+ ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
-+ break;
-+
-+ /*
-+ * If the owning (remote) CPU is still in the middle of schedule() with
-+ * this task as prev, wait until it's done referencing the task.
-+ *
-+ * Pairs with the smp_store_release() in finish_task().
-+ *
-+ * This ensures that tasks getting woken will be fully ordered against
-+ * their previous state and preserve Program Order.
-+ */
-+ smp_cond_load_acquire(&p->on_cpu, !VAL);
-+
-+ sched_task_ttwu(p);
-+
-+ if ((wake_flags & WF_CURRENT_CPU) &&
-+ cpumask_test_cpu(smp_processor_id(), p->cpus_ptr))
-+ cpu = smp_processor_id();
-+ else
-+ cpu = select_task_rq(p);
-+
-+ if (cpu != task_cpu(p)) {
-+ if (p->in_iowait) {
-+ delayacct_blkio_end(p);
-+ atomic_dec(&task_rq(p)->nr_iowait);
-+ }
-+
-+ wake_flags |= WF_MIGRATED;
-+ set_task_cpu(p, cpu);
-+ }
-+#else
-+ sched_task_ttwu(p);
-+
-+ cpu = task_cpu(p);
-+#endif /* CONFIG_SMP */
-+
-+ ttwu_queue(p, cpu, wake_flags);
-+ }
-+out:
-+ if (success)
-+ ttwu_stat(p, task_cpu(p), wake_flags);
-+
-+ return success;
-+}
-+
-+static bool __task_needs_rq_lock(struct task_struct *p)
-+{
-+ unsigned int state = READ_ONCE(p->__state);
-+
-+ /*
-+ * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
-+ * the task is blocked. Make sure to check @state since ttwu() can drop
-+ * locks at the end, see ttwu_queue_wakelist().
-+ */
-+ if (state == TASK_RUNNING || state == TASK_WAKING)
-+ return true;
-+
-+ /*
-+ * Ensure we load p->on_rq after p->__state, otherwise it would be
-+ * possible to, falsely, observe p->on_rq == 0.
-+ *
-+ * See try_to_wake_up() for a longer comment.
-+ */
-+ smp_rmb();
-+ if (p->on_rq)
-+ return true;
-+
-+#ifdef CONFIG_SMP
-+ /*
-+ * Ensure the task has finished __schedule() and will not be referenced
-+ * anymore. Again, see try_to_wake_up() for a longer comment.
-+ */
-+ smp_rmb();
-+ smp_cond_load_acquire(&p->on_cpu, !VAL);
-+#endif
-+
-+ return false;
-+}
-+
-+/**
-+ * task_call_func - Invoke a function on task in fixed state
-+ * @p: Process for which the function is to be invoked, can be @current.
-+ * @func: Function to invoke.
-+ * @arg: Argument to function.
-+ *
-+ * Fix the task in it's current state by avoiding wakeups and or rq operations
-+ * and call @func(@arg) on it. This function can use ->on_rq and task_curr()
-+ * to work out what the state is, if required. Given that @func can be invoked
-+ * with a runqueue lock held, it had better be quite lightweight.
-+ *
-+ * Returns:
-+ * Whatever @func returns
-+ */
-+int task_call_func(struct task_struct *p, task_call_f func, void *arg)
-+{
-+ struct rq *rq = NULL;
-+ struct rq_flags rf;
-+ int ret;
-+
-+ raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
-+
-+ if (__task_needs_rq_lock(p))
-+ rq = __task_rq_lock(p, &rf);
-+
-+ /*
-+ * At this point the task is pinned; either:
-+ * - blocked and we're holding off wakeups (pi->lock)
-+ * - woken, and we're holding off enqueue (rq->lock)
-+ * - queued, and we're holding off schedule (rq->lock)
-+ * - running, and we're holding off de-schedule (rq->lock)
-+ *
-+ * The called function (@func) can use: task_curr(), p->on_rq and
-+ * p->__state to differentiate between these states.
-+ */
-+ ret = func(p, arg);
-+
-+ if (rq)
-+ __task_rq_unlock(rq, &rf);
-+
-+ raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
-+ return ret;
-+}
-+
-+/**
-+ * cpu_curr_snapshot - Return a snapshot of the currently running task
-+ * @cpu: The CPU on which to snapshot the task.
-+ *
-+ * Returns the task_struct pointer of the task "currently" running on
-+ * the specified CPU. If the same task is running on that CPU throughout,
-+ * the return value will be a pointer to that task's task_struct structure.
-+ * If the CPU did any context switches even vaguely concurrently with the
-+ * execution of this function, the return value will be a pointer to the
-+ * task_struct structure of a randomly chosen task that was running on
-+ * that CPU somewhere around the time that this function was executing.
-+ *
-+ * If the specified CPU was offline, the return value is whatever it
-+ * is, perhaps a pointer to the task_struct structure of that CPU's idle
-+ * task, but there is no guarantee. Callers wishing a useful return
-+ * value must take some action to ensure that the specified CPU remains
-+ * online throughout.
-+ *
-+ * This function executes full memory barriers before and after fetching
-+ * the pointer, which permits the caller to confine this function's fetch
-+ * with respect to the caller's accesses to other shared variables.
-+ */
-+struct task_struct *cpu_curr_snapshot(int cpu)
-+{
-+ struct task_struct *t;
-+
-+ smp_mb(); /* Pairing determined by caller's synchronization design. */
-+ t = rcu_dereference(cpu_curr(cpu));
-+ smp_mb(); /* Pairing determined by caller's synchronization design. */
-+ return t;
-+}
-+
-+/**
-+ * wake_up_process - Wake up a specific process
-+ * @p: The process to be woken up.
-+ *
-+ * Attempt to wake up the nominated process and move it to the set of runnable
-+ * processes.
-+ *
-+ * Return: 1 if the process was woken up, 0 if it was already running.
-+ *
-+ * This function executes a full memory barrier before accessing the task state.
-+ */
-+int wake_up_process(struct task_struct *p)
-+{
-+ return try_to_wake_up(p, TASK_NORMAL, 0);
-+}
-+EXPORT_SYMBOL(wake_up_process);
-+
-+int wake_up_state(struct task_struct *p, unsigned int state)
-+{
-+ return try_to_wake_up(p, state, 0);
-+}
-+
-+/*
-+ * Perform scheduler related setup for a newly forked process p.
-+ * p is forked by current.
-+ *
-+ * __sched_fork() is basic setup used by init_idle() too:
-+ */
-+static inline void __sched_fork(unsigned long clone_flags, struct task_struct *p)
-+{
-+ p->on_rq = 0;
-+ p->on_cpu = 0;
-+ p->utime = 0;
-+ p->stime = 0;
-+ p->sched_time = 0;
-+
-+#ifdef CONFIG_SCHEDSTATS
-+ /* Even if schedstat is disabled, there should not be garbage */
-+ memset(&p->stats, 0, sizeof(p->stats));
-+#endif
-+
-+#ifdef CONFIG_PREEMPT_NOTIFIERS
-+ INIT_HLIST_HEAD(&p->preempt_notifiers);
-+#endif
-+
-+#ifdef CONFIG_COMPACTION
-+ p->capture_control = NULL;
-+#endif
-+#ifdef CONFIG_SMP
-+ p->wake_entry.u_flags = CSD_TYPE_TTWU;
-+#endif
-+ init_sched_mm_cid(p);
-+}
-+
-+/*
-+ * fork()/clone()-time setup:
-+ */
-+int sched_fork(unsigned long clone_flags, struct task_struct *p)
-+{
-+ __sched_fork(clone_flags, p);
-+ /*
-+ * We mark the process as NEW here. This guarantees that
-+ * nobody will actually run it, and a signal or other external
-+ * event cannot wake it up and insert it on the runqueue either.
-+ */
-+ p->__state = TASK_NEW;
-+
-+ /*
-+ * Make sure we do not leak PI boosting priority to the child.
-+ */
-+ p->prio = current->normal_prio;
-+
-+ /*
-+ * Revert to default priority/policy on fork if requested.
-+ */
-+ if (unlikely(p->sched_reset_on_fork)) {
-+ if (task_has_rt_policy(p)) {
-+ p->policy = SCHED_NORMAL;
-+ p->static_prio = NICE_TO_PRIO(0);
-+ p->rt_priority = 0;
-+ } else if (PRIO_TO_NICE(p->static_prio) < 0)
-+ p->static_prio = NICE_TO_PRIO(0);
-+
-+ p->prio = p->normal_prio = p->static_prio;
-+
-+ /*
-+ * We don't need the reset flag anymore after the fork. It has
-+ * fulfilled its duty:
-+ */
-+ p->sched_reset_on_fork = 0;
-+ }
-+
-+#ifdef CONFIG_SCHED_INFO
-+ if (unlikely(sched_info_on()))
-+ memset(&p->sched_info, 0, sizeof(p->sched_info));
-+#endif
-+ init_task_preempt_count(p);
-+
-+ return 0;
-+}
-+
-+void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
-+{
-+ unsigned long flags;
-+ struct rq *rq;
-+
-+ /*
-+ * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
-+ * required yet, but lockdep gets upset if rules are violated.
-+ */
-+ raw_spin_lock_irqsave(&p->pi_lock, flags);
-+ /*
-+ * Share the timeslice between parent and child, thus the
-+ * total amount of pending timeslices in the system doesn't change,
-+ * resulting in more scheduling fairness.
-+ */
-+ rq = this_rq();
-+ raw_spin_lock(&rq->lock);
-+
-+ rq->curr->time_slice /= 2;
-+ p->time_slice = rq->curr->time_slice;
-+#ifdef CONFIG_SCHED_HRTICK
-+ hrtick_start(rq, rq->curr->time_slice);
-+#endif
-+
-+ if (p->time_slice < RESCHED_NS) {
-+ p->time_slice = sysctl_sched_base_slice;
-+ resched_curr(rq);
-+ }
-+ sched_task_fork(p, rq);
-+ raw_spin_unlock(&rq->lock);
-+
-+ rseq_migrate(p);
-+ /*
-+ * We're setting the CPU for the first time, we don't migrate,
-+ * so use __set_task_cpu().
-+ */
-+ __set_task_cpu(p, smp_processor_id());
-+ raw_spin_unlock_irqrestore(&p->pi_lock, flags);
-+}
-+
-+void sched_post_fork(struct task_struct *p)
-+{
-+}
-+
-+#ifdef CONFIG_SCHEDSTATS
-+
-+DEFINE_STATIC_KEY_FALSE(sched_schedstats);
-+
-+static void set_schedstats(bool enabled)
-+{
-+ if (enabled)
-+ static_branch_enable(&sched_schedstats);
-+ else
-+ static_branch_disable(&sched_schedstats);
-+}
-+
-+void force_schedstat_enabled(void)
-+{
-+ if (!schedstat_enabled()) {
-+ pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
-+ static_branch_enable(&sched_schedstats);
-+ }
-+}
-+
-+static int __init setup_schedstats(char *str)
-+{
-+ int ret = 0;
-+ if (!str)
-+ goto out;
-+
-+ if (!strcmp(str, "enable")) {
-+ set_schedstats(true);
-+ ret = 1;
-+ } else if (!strcmp(str, "disable")) {
-+ set_schedstats(false);
-+ ret = 1;
-+ }
-+out:
-+ if (!ret)
-+ pr_warn("Unable to parse schedstats=\n");
-+
-+ return ret;
-+}
-+__setup("schedstats=", setup_schedstats);
-+
-+#ifdef CONFIG_PROC_SYSCTL
-+static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
-+ size_t *lenp, loff_t *ppos)
-+{
-+ struct ctl_table t;
-+ int err;
-+ int state = static_branch_likely(&sched_schedstats);
-+
-+ if (write && !capable(CAP_SYS_ADMIN))
-+ return -EPERM;
-+
-+ t = *table;
-+ t.data = &state;
-+ err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
-+ if (err < 0)
-+ return err;
-+ if (write)
-+ set_schedstats(state);
-+ return err;
-+}
-+
-+static struct ctl_table sched_core_sysctls[] = {
-+ {
-+ .procname = "sched_schedstats",
-+ .data = NULL,
-+ .maxlen = sizeof(unsigned int),
-+ .mode = 0644,
-+ .proc_handler = sysctl_schedstats,
-+ .extra1 = SYSCTL_ZERO,
-+ .extra2 = SYSCTL_ONE,
-+ },
-+ {}
-+};
-+static int __init sched_core_sysctl_init(void)
-+{
-+ register_sysctl_init("kernel", sched_core_sysctls);
-+ return 0;
-+}
-+late_initcall(sched_core_sysctl_init);
-+#endif /* CONFIG_PROC_SYSCTL */
-+#endif /* CONFIG_SCHEDSTATS */
-+
-+/*
-+ * wake_up_new_task - wake up a newly created task for the first time.
-+ *
-+ * This function will do some initial scheduler statistics housekeeping
-+ * that must be done for every newly created context, then puts the task
-+ * on the runqueue and wakes it.
-+ */
-+void wake_up_new_task(struct task_struct *p)
-+{
-+ unsigned long flags;
-+ struct rq *rq;
-+
-+ raw_spin_lock_irqsave(&p->pi_lock, flags);
-+ WRITE_ONCE(p->__state, TASK_RUNNING);
-+ rq = cpu_rq(select_task_rq(p));
-+#ifdef CONFIG_SMP
-+ rseq_migrate(p);
-+ /*
-+ * Fork balancing, do it here and not earlier because:
-+ * - cpus_ptr can change in the fork path
-+ * - any previously selected CPU might disappear through hotplug
-+ *
-+ * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
-+ * as we're not fully set-up yet.
-+ */
-+ __set_task_cpu(p, cpu_of(rq));
-+#endif
-+
-+ raw_spin_lock(&rq->lock);
-+ update_rq_clock(rq);
-+
-+ activate_task(p, rq);
-+ trace_sched_wakeup_new(p);
-+ wakeup_preempt(rq);
-+
-+ raw_spin_unlock(&rq->lock);
-+ raw_spin_unlock_irqrestore(&p->pi_lock, flags);
-+}
-+
-+#ifdef CONFIG_PREEMPT_NOTIFIERS
-+
-+static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
-+
-+void preempt_notifier_inc(void)
-+{
-+ static_branch_inc(&preempt_notifier_key);
-+}
-+EXPORT_SYMBOL_GPL(preempt_notifier_inc);
-+
-+void preempt_notifier_dec(void)
-+{
-+ static_branch_dec(&preempt_notifier_key);
-+}
-+EXPORT_SYMBOL_GPL(preempt_notifier_dec);
-+
-+/**
-+ * preempt_notifier_register - tell me when current is being preempted & rescheduled
-+ * @notifier: notifier struct to register
-+ */
-+void preempt_notifier_register(struct preempt_notifier *notifier)
-+{
-+ if (!static_branch_unlikely(&preempt_notifier_key))
-+ WARN(1, "registering preempt_notifier while notifiers disabled\n");
-+
-+ hlist_add_head(&notifier->link, &current->preempt_notifiers);
-+}
-+EXPORT_SYMBOL_GPL(preempt_notifier_register);
-+
-+/**
-+ * preempt_notifier_unregister - no longer interested in preemption notifications
-+ * @notifier: notifier struct to unregister
-+ *
-+ * This is *not* safe to call from within a preemption notifier.
-+ */
-+void preempt_notifier_unregister(struct preempt_notifier *notifier)
-+{
-+ hlist_del(&notifier->link);
-+}
-+EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
-+
-+static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
-+{
-+ struct preempt_notifier *notifier;
-+
-+ hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
-+ notifier->ops->sched_in(notifier, raw_smp_processor_id());
-+}
-+
-+static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
-+{
-+ if (static_branch_unlikely(&preempt_notifier_key))
-+ __fire_sched_in_preempt_notifiers(curr);
-+}
-+
-+static void
-+__fire_sched_out_preempt_notifiers(struct task_struct *curr,
-+ struct task_struct *next)
-+{
-+ struct preempt_notifier *notifier;
-+
-+ hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
-+ notifier->ops->sched_out(notifier, next);
-+}
-+
-+static __always_inline void
-+fire_sched_out_preempt_notifiers(struct task_struct *curr,
-+ struct task_struct *next)
-+{
-+ if (static_branch_unlikely(&preempt_notifier_key))
-+ __fire_sched_out_preempt_notifiers(curr, next);
-+}
-+
-+#else /* !CONFIG_PREEMPT_NOTIFIERS */
-+
-+static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
-+{
-+}
-+
-+static inline void
-+fire_sched_out_preempt_notifiers(struct task_struct *curr,
-+ struct task_struct *next)
-+{
-+}
-+
-+#endif /* CONFIG_PREEMPT_NOTIFIERS */
-+
-+static inline void prepare_task(struct task_struct *next)
-+{
-+ /*
-+ * Claim the task as running, we do this before switching to it
-+ * such that any running task will have this set.
-+ *
-+ * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
-+ * its ordering comment.
-+ */
-+ WRITE_ONCE(next->on_cpu, 1);
-+}
-+
-+static inline void finish_task(struct task_struct *prev)
-+{
-+#ifdef CONFIG_SMP
-+ /*
-+ * This must be the very last reference to @prev from this CPU. After
-+ * p->on_cpu is cleared, the task can be moved to a different CPU. We
-+ * must ensure this doesn't happen until the switch is completely
-+ * finished.
-+ *
-+ * In particular, the load of prev->state in finish_task_switch() must
-+ * happen before this.
-+ *
-+ * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
-+ */
-+ smp_store_release(&prev->on_cpu, 0);
-+#else
-+ prev->on_cpu = 0;
-+#endif
-+}
-+
-+#ifdef CONFIG_SMP
-+
-+static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
-+{
-+ void (*func)(struct rq *rq);
-+ struct balance_callback *next;
-+
-+ lockdep_assert_held(&rq->lock);
-+
-+ while (head) {
-+ func = (void (*)(struct rq *))head->func;
-+ next = head->next;
-+ head->next = NULL;
-+ head = next;
-+
-+ func(rq);
-+ }
-+}
-+
-+static void balance_push(struct rq *rq);
-+
-+/*
-+ * balance_push_callback is a right abuse of the callback interface and plays
-+ * by significantly different rules.
-+ *
-+ * Where the normal balance_callback's purpose is to be ran in the same context
-+ * that queued it (only later, when it's safe to drop rq->lock again),
-+ * balance_push_callback is specifically targeted at __schedule().
-+ *
-+ * This abuse is tolerated because it places all the unlikely/odd cases behind
-+ * a single test, namely: rq->balance_callback == NULL.
-+ */
-+struct balance_callback balance_push_callback = {
-+ .next = NULL,
-+ .func = balance_push,
-+};
-+
-+static inline struct balance_callback *
-+__splice_balance_callbacks(struct rq *rq, bool split)
-+{
-+ struct balance_callback *head = rq->balance_callback;
-+
-+ if (likely(!head))
-+ return NULL;
-+
-+ lockdep_assert_rq_held(rq);
-+ /*
-+ * Must not take balance_push_callback off the list when
-+ * splice_balance_callbacks() and balance_callbacks() are not
-+ * in the same rq->lock section.
-+ *
-+ * In that case it would be possible for __schedule() to interleave
-+ * and observe the list empty.
-+ */
-+ if (split && head == &balance_push_callback)
-+ head = NULL;
-+ else
-+ rq->balance_callback = NULL;
-+
-+ return head;
-+}
-+
-+static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
-+{
-+ return __splice_balance_callbacks(rq, true);
-+}
-+
-+static void __balance_callbacks(struct rq *rq)
-+{
-+ do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
-+}
-+
-+static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
-+{
-+ unsigned long flags;
-+
-+ if (unlikely(head)) {
-+ raw_spin_lock_irqsave(&rq->lock, flags);
-+ do_balance_callbacks(rq, head);
-+ raw_spin_unlock_irqrestore(&rq->lock, flags);
-+ }
-+}
-+
-+#else
-+
-+static inline void __balance_callbacks(struct rq *rq)
-+{
-+}
-+
-+static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
-+{
-+ return NULL;
-+}
-+
-+static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
-+{
-+}
-+
-+#endif
-+
-+static inline void
-+prepare_lock_switch(struct rq *rq, struct task_struct *next)
-+{
-+ /*
-+ * Since the runqueue lock will be released by the next
-+ * task (which is an invalid locking op but in the case
-+ * of the scheduler it's an obvious special-case), so we
-+ * do an early lockdep release here:
-+ */
-+ spin_release(&rq->lock.dep_map, _THIS_IP_);
-+#ifdef CONFIG_DEBUG_SPINLOCK
-+ /* this is a valid case when another task releases the spinlock */
-+ rq->lock.owner = next;
-+#endif
-+}
-+
-+static inline void finish_lock_switch(struct rq *rq)
-+{
-+ /*
-+ * If we are tracking spinlock dependencies then we have to
-+ * fix up the runqueue lock - which gets 'carried over' from
-+ * prev into current:
-+ */
-+ spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
-+ __balance_callbacks(rq);
-+ raw_spin_unlock_irq(&rq->lock);
-+}
-+
-+/*
-+ * NOP if the arch has not defined these:
-+ */
-+
-+#ifndef prepare_arch_switch
-+# define prepare_arch_switch(next) do { } while (0)
-+#endif
-+
-+#ifndef finish_arch_post_lock_switch
-+# define finish_arch_post_lock_switch() do { } while (0)
-+#endif
-+
-+static inline void kmap_local_sched_out(void)
-+{
-+#ifdef CONFIG_KMAP_LOCAL
-+ if (unlikely(current->kmap_ctrl.idx))
-+ __kmap_local_sched_out();
-+#endif
-+}
-+
-+static inline void kmap_local_sched_in(void)
-+{
-+#ifdef CONFIG_KMAP_LOCAL
-+ if (unlikely(current->kmap_ctrl.idx))
-+ __kmap_local_sched_in();
-+#endif
-+}
-+
-+/**
-+ * prepare_task_switch - prepare to switch tasks
-+ * @rq: the runqueue preparing to switch
-+ * @next: the task we are going to switch to.
-+ *
-+ * This is called with the rq lock held and interrupts off. It must
-+ * be paired with a subsequent finish_task_switch after the context
-+ * switch.
-+ *
-+ * prepare_task_switch sets up locking and calls architecture specific
-+ * hooks.
-+ */
-+static inline void
-+prepare_task_switch(struct rq *rq, struct task_struct *prev,
-+ struct task_struct *next)
-+{
-+ kcov_prepare_switch(prev);
-+ sched_info_switch(rq, prev, next);
-+ perf_event_task_sched_out(prev, next);
-+ rseq_preempt(prev);
-+ fire_sched_out_preempt_notifiers(prev, next);
-+ kmap_local_sched_out();
-+ prepare_task(next);
-+ prepare_arch_switch(next);
-+}
-+
-+/**
-+ * finish_task_switch - clean up after a task-switch
-+ * @rq: runqueue associated with task-switch
-+ * @prev: the thread we just switched away from.
-+ *
-+ * finish_task_switch must be called after the context switch, paired
-+ * with a prepare_task_switch call before the context switch.
-+ * finish_task_switch will reconcile locking set up by prepare_task_switch,
-+ * and do any other architecture-specific cleanup actions.
-+ *
-+ * Note that we may have delayed dropping an mm in context_switch(). If
-+ * so, we finish that here outside of the runqueue lock. (Doing it
-+ * with the lock held can cause deadlocks; see schedule() for
-+ * details.)
-+ *
-+ * The context switch have flipped the stack from under us and restored the
-+ * local variables which were saved when this task called schedule() in the
-+ * past. prev == current is still correct but we need to recalculate this_rq
-+ * because prev may have moved to another CPU.
-+ */
-+static struct rq *finish_task_switch(struct task_struct *prev)
-+ __releases(rq->lock)
-+{
-+ struct rq *rq = this_rq();
-+ struct mm_struct *mm = rq->prev_mm;
-+ unsigned int prev_state;
-+
-+ /*
-+ * The previous task will have left us with a preempt_count of 2
-+ * because it left us after:
-+ *
-+ * schedule()
-+ * preempt_disable(); // 1
-+ * __schedule()
-+ * raw_spin_lock_irq(&rq->lock) // 2
-+ *
-+ * Also, see FORK_PREEMPT_COUNT.
-+ */
-+ if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
-+ "corrupted preempt_count: %s/%d/0x%x\n",
-+ current->comm, current->pid, preempt_count()))
-+ preempt_count_set(FORK_PREEMPT_COUNT);
-+
-+ rq->prev_mm = NULL;
-+
-+ /*
-+ * A task struct has one reference for the use as "current".
-+ * If a task dies, then it sets TASK_DEAD in tsk->state and calls
-+ * schedule one last time. The schedule call will never return, and
-+ * the scheduled task must drop that reference.
-+ *
-+ * We must observe prev->state before clearing prev->on_cpu (in
-+ * finish_task), otherwise a concurrent wakeup can get prev
-+ * running on another CPU and we could rave with its RUNNING -> DEAD
-+ * transition, resulting in a double drop.
-+ */
-+ prev_state = READ_ONCE(prev->__state);
-+ vtime_task_switch(prev);
-+ perf_event_task_sched_in(prev, current);
-+ finish_task(prev);
-+ tick_nohz_task_switch();
-+ finish_lock_switch(rq);
-+ finish_arch_post_lock_switch();
-+ kcov_finish_switch(current);
-+ /*
-+ * kmap_local_sched_out() is invoked with rq::lock held and
-+ * interrupts disabled. There is no requirement for that, but the
-+ * sched out code does not have an interrupt enabled section.
-+ * Restoring the maps on sched in does not require interrupts being
-+ * disabled either.
-+ */
-+ kmap_local_sched_in();
-+
-+ fire_sched_in_preempt_notifiers(current);
-+ /*
-+ * When switching through a kernel thread, the loop in
-+ * membarrier_{private,global}_expedited() may have observed that
-+ * kernel thread and not issued an IPI. It is therefore possible to
-+ * schedule between user->kernel->user threads without passing though
-+ * switch_mm(). Membarrier requires a barrier after storing to
-+ * rq->curr, before returning to userspace, so provide them here:
-+ *
-+ * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
-+ * provided by mmdrop(),
-+ * - a sync_core for SYNC_CORE.
-+ */
-+ if (mm) {
-+ membarrier_mm_sync_core_before_usermode(mm);
-+ mmdrop_sched(mm);
-+ }
-+ if (unlikely(prev_state == TASK_DEAD)) {
-+ /* Task is done with its stack. */
-+ put_task_stack(prev);
-+
-+ put_task_struct_rcu_user(prev);
-+ }
-+
-+ return rq;
-+}
-+
-+/**
-+ * schedule_tail - first thing a freshly forked thread must call.
-+ * @prev: the thread we just switched away from.
-+ */
-+asmlinkage __visible void schedule_tail(struct task_struct *prev)
-+ __releases(rq->lock)
-+{
-+ /*
-+ * New tasks start with FORK_PREEMPT_COUNT, see there and
-+ * finish_task_switch() for details.
-+ *
-+ * finish_task_switch() will drop rq->lock() and lower preempt_count
-+ * and the preempt_enable() will end up enabling preemption (on
-+ * PREEMPT_COUNT kernels).
-+ */
-+
-+ finish_task_switch(prev);
-+ preempt_enable();
-+
-+ if (current->set_child_tid)
-+ put_user(task_pid_vnr(current), current->set_child_tid);
-+
-+ calculate_sigpending();
-+}
-+
-+/*
-+ * context_switch - switch to the new MM and the new thread's register state.
-+ */
-+static __always_inline struct rq *
-+context_switch(struct rq *rq, struct task_struct *prev,
-+ struct task_struct *next)
-+{
-+ prepare_task_switch(rq, prev, next);
-+
-+ /*
-+ * For paravirt, this is coupled with an exit in switch_to to
-+ * combine the page table reload and the switch backend into
-+ * one hypercall.
-+ */
-+ arch_start_context_switch(prev);
-+
-+ /*
-+ * kernel -> kernel lazy + transfer active
-+ * user -> kernel lazy + mmgrab() active
-+ *
-+ * kernel -> user switch + mmdrop() active
-+ * user -> user switch
-+ *
-+ * switch_mm_cid() needs to be updated if the barriers provided
-+ * by context_switch() are modified.
-+ */
-+ if (!next->mm) { // to kernel
-+ enter_lazy_tlb(prev->active_mm, next);
-+
-+ next->active_mm = prev->active_mm;
-+ if (prev->mm) // from user
-+ mmgrab(prev->active_mm);
-+ else
-+ prev->active_mm = NULL;
-+ } else { // to user
-+ membarrier_switch_mm(rq, prev->active_mm, next->mm);
-+ /*
-+ * sys_membarrier() requires an smp_mb() between setting
-+ * rq->curr / membarrier_switch_mm() and returning to userspace.
-+ *
-+ * The below provides this either through switch_mm(), or in
-+ * case 'prev->active_mm == next->mm' through
-+ * finish_task_switch()'s mmdrop().
-+ */
-+ switch_mm_irqs_off(prev->active_mm, next->mm, next);
-+ lru_gen_use_mm(next->mm);
-+
-+ if (!prev->mm) { // from kernel
-+ /* will mmdrop() in finish_task_switch(). */
-+ rq->prev_mm = prev->active_mm;
-+ prev->active_mm = NULL;
-+ }
-+ }
-+
-+ /* switch_mm_cid() requires the memory barriers above. */
-+ switch_mm_cid(rq, prev, next);
-+
-+ prepare_lock_switch(rq, next);
-+
-+ /* Here we just switch the register state and the stack. */
-+ switch_to(prev, next, prev);
-+ barrier();
-+
-+ return finish_task_switch(prev);
-+}
-+
-+/*
-+ * nr_running, nr_uninterruptible and nr_context_switches:
-+ *
-+ * externally visible scheduler statistics: current number of runnable
-+ * threads, total number of context switches performed since bootup.
-+ */
-+unsigned int nr_running(void)
-+{
-+ unsigned int i, sum = 0;
-+
-+ for_each_online_cpu(i)
-+ sum += cpu_rq(i)->nr_running;
-+
-+ return sum;
-+}
-+
-+/*
-+ * Check if only the current task is running on the CPU.
-+ *
-+ * Caution: this function does not check that the caller has disabled
-+ * preemption, thus the result might have a time-of-check-to-time-of-use
-+ * race. The caller is responsible to use it correctly, for example:
-+ *
-+ * - from a non-preemptible section (of course)
-+ *
-+ * - from a thread that is bound to a single CPU
-+ *
-+ * - in a loop with very short iterations (e.g. a polling loop)
-+ */
-+bool single_task_running(void)
-+{
-+ return raw_rq()->nr_running == 1;
-+}
-+EXPORT_SYMBOL(single_task_running);
-+
-+unsigned long long nr_context_switches_cpu(int cpu)
-+{
-+ return cpu_rq(cpu)->nr_switches;
-+}
-+
-+unsigned long long nr_context_switches(void)
-+{
-+ int i;
-+ unsigned long long sum = 0;
-+
-+ for_each_possible_cpu(i)
-+ sum += cpu_rq(i)->nr_switches;
-+
-+ return sum;
-+}
-+
-+/*
-+ * Consumers of these two interfaces, like for example the cpuidle menu
-+ * governor, are using nonsensical data. Preferring shallow idle state selection
-+ * for a CPU that has IO-wait which might not even end up running the task when
-+ * it does become runnable.
-+ */
-+
-+unsigned int nr_iowait_cpu(int cpu)
-+{
-+ return atomic_read(&cpu_rq(cpu)->nr_iowait);
-+}
-+
-+/*
-+ * IO-wait accounting, and how it's mostly bollocks (on SMP).
-+ *
-+ * The idea behind IO-wait account is to account the idle time that we could
-+ * have spend running if it were not for IO. That is, if we were to improve the
-+ * storage performance, we'd have a proportional reduction in IO-wait time.
-+ *
-+ * This all works nicely on UP, where, when a task blocks on IO, we account
-+ * idle time as IO-wait, because if the storage were faster, it could've been
-+ * running and we'd not be idle.
-+ *
-+ * This has been extended to SMP, by doing the same for each CPU. This however
-+ * is broken.
-+ *
-+ * Imagine for instance the case where two tasks block on one CPU, only the one
-+ * CPU will have IO-wait accounted, while the other has regular idle. Even
-+ * though, if the storage were faster, both could've ran at the same time,
-+ * utilising both CPUs.
-+ *
-+ * This means, that when looking globally, the current IO-wait accounting on
-+ * SMP is a lower bound, by reason of under accounting.
-+ *
-+ * Worse, since the numbers are provided per CPU, they are sometimes
-+ * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
-+ * associated with any one particular CPU, it can wake to another CPU than it
-+ * blocked on. This means the per CPU IO-wait number is meaningless.
-+ *
-+ * Task CPU affinities can make all that even more 'interesting'.
-+ */
-+
-+unsigned int nr_iowait(void)
-+{
-+ unsigned int i, sum = 0;
-+
-+ for_each_possible_cpu(i)
-+ sum += nr_iowait_cpu(i);
-+
-+ return sum;
-+}
-+
-+#ifdef CONFIG_SMP
-+
-+/*
-+ * sched_exec - execve() is a valuable balancing opportunity, because at
-+ * this point the task has the smallest effective memory and cache
-+ * footprint.
-+ */
-+void sched_exec(void)
-+{
-+}
-+
-+#endif
-+
-+DEFINE_PER_CPU(struct kernel_stat, kstat);
-+DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
-+
-+EXPORT_PER_CPU_SYMBOL(kstat);
-+EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
-+
-+static inline void update_curr(struct rq *rq, struct task_struct *p)
-+{
-+ s64 ns = rq->clock_task - p->last_ran;
-+
-+ p->sched_time += ns;
-+ cgroup_account_cputime(p, ns);
-+ account_group_exec_runtime(p, ns);
-+
-+ p->time_slice -= ns;
-+ p->last_ran = rq->clock_task;
-+}
-+
-+/*
-+ * Return accounted runtime for the task.
-+ * Return separately the current's pending runtime that have not been
-+ * accounted yet.
-+ */
-+unsigned long long task_sched_runtime(struct task_struct *p)
-+{
-+ unsigned long flags;
-+ struct rq *rq;
-+ raw_spinlock_t *lock;
-+ u64 ns;
-+
-+#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
-+ /*
-+ * 64-bit doesn't need locks to atomically read a 64-bit value.
-+ * So we have a optimization chance when the task's delta_exec is 0.
-+ * Reading ->on_cpu is racy, but this is ok.
-+ *
-+ * If we race with it leaving CPU, we'll take a lock. So we're correct.
-+ * If we race with it entering CPU, unaccounted time is 0. This is
-+ * indistinguishable from the read occurring a few cycles earlier.
-+ * If we see ->on_cpu without ->on_rq, the task is leaving, and has
-+ * been accounted, so we're correct here as well.
-+ */
-+ if (!p->on_cpu || !task_on_rq_queued(p))
-+ return tsk_seruntime(p);
-+#endif
-+
-+ rq = task_access_lock_irqsave(p, &lock, &flags);
-+ /*
-+ * Must be ->curr _and_ ->on_rq. If dequeued, we would
-+ * project cycles that may never be accounted to this
-+ * thread, breaking clock_gettime().
-+ */
-+ if (p == rq->curr && task_on_rq_queued(p)) {
-+ update_rq_clock(rq);
-+ update_curr(rq, p);
-+ }
-+ ns = tsk_seruntime(p);
-+ task_access_unlock_irqrestore(p, lock, &flags);
-+
-+ return ns;
-+}
-+
-+/* This manages tasks that have run out of timeslice during a scheduler_tick */
-+static inline void scheduler_task_tick(struct rq *rq)
-+{
-+ struct task_struct *p = rq->curr;
-+
-+ if (is_idle_task(p))
-+ return;
-+
-+ update_curr(rq, p);
-+ cpufreq_update_util(rq, 0);
-+
-+ /*
-+ * Tasks have less than RESCHED_NS of time slice left they will be
-+ * rescheduled.
-+ */
-+ if (p->time_slice >= RESCHED_NS)
-+ return;
-+ set_tsk_need_resched(p);
-+ set_preempt_need_resched();
-+}
-+
-+#ifdef CONFIG_SCHED_DEBUG
-+static u64 cpu_resched_latency(struct rq *rq)
-+{
-+ int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
-+ u64 resched_latency, now = rq_clock(rq);
-+ static bool warned_once;
-+
-+ if (sysctl_resched_latency_warn_once && warned_once)
-+ return 0;
-+
-+ if (!need_resched() || !latency_warn_ms)
-+ return 0;
-+
-+ if (system_state == SYSTEM_BOOTING)
-+ return 0;
-+
-+ if (!rq->last_seen_need_resched_ns) {
-+ rq->last_seen_need_resched_ns = now;
-+ rq->ticks_without_resched = 0;
-+ return 0;
-+ }
-+
-+ rq->ticks_without_resched++;
-+ resched_latency = now - rq->last_seen_need_resched_ns;
-+ if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
-+ return 0;
-+
-+ warned_once = true;
-+
-+ return resched_latency;
-+}
-+
-+static int __init setup_resched_latency_warn_ms(char *str)
-+{
-+ long val;
-+
-+ if ((kstrtol(str, 0, &val))) {
-+ pr_warn("Unable to set resched_latency_warn_ms\n");
-+ return 1;
-+ }
-+
-+ sysctl_resched_latency_warn_ms = val;
-+ return 1;
-+}
-+__setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
-+#else
-+static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
-+#endif /* CONFIG_SCHED_DEBUG */
-+
-+/*
-+ * This function gets called by the timer code, with HZ frequency.
-+ * We call it with interrupts disabled.
-+ */
-+void scheduler_tick(void)
-+{
-+ int cpu __maybe_unused = smp_processor_id();
-+ struct rq *rq = cpu_rq(cpu);
-+ struct task_struct *curr = rq->curr;
-+ u64 resched_latency;
-+
-+ if (housekeeping_cpu(cpu, HK_TYPE_TICK))
-+ arch_scale_freq_tick();
-+
-+ sched_clock_tick();
-+
-+ raw_spin_lock(&rq->lock);
-+ update_rq_clock(rq);
-+
-+ scheduler_task_tick(rq);
-+ if (sched_feat(LATENCY_WARN))
-+ resched_latency = cpu_resched_latency(rq);
-+ calc_global_load_tick(rq);
-+
-+ task_tick_mm_cid(rq, rq->curr);
-+
-+ raw_spin_unlock(&rq->lock);
-+
-+ if (sched_feat(LATENCY_WARN) && resched_latency)
-+ resched_latency_warn(cpu, resched_latency);
-+
-+ perf_event_task_tick();
-+
-+ if (curr->flags & PF_WQ_WORKER)
-+ wq_worker_tick(curr);
-+}
-+
-+#ifdef CONFIG_SCHED_SMT
-+static inline int sg_balance_cpu_stop(void *data)
-+{
-+ struct rq *rq = this_rq();
-+ struct task_struct *p = data;
-+ cpumask_t tmp;
-+ unsigned long flags;
-+
-+ local_irq_save(flags);
-+
-+ raw_spin_lock(&p->pi_lock);
-+ raw_spin_lock(&rq->lock);
-+
-+ rq->active_balance = 0;
-+ /* _something_ may have changed the task, double check again */
-+ if (task_on_rq_queued(p) && task_rq(p) == rq &&
-+ cpumask_and(&tmp, p->cpus_ptr, &sched_sg_idle_mask) &&
-+ !is_migration_disabled(p)) {
-+ int cpu = cpu_of(rq);
-+ int dcpu = __best_mask_cpu(&tmp, per_cpu(sched_cpu_llc_mask, cpu));
-+ rq = move_queued_task(rq, p, dcpu);
-+ }
-+
-+ raw_spin_unlock(&rq->lock);
-+ raw_spin_unlock(&p->pi_lock);
-+
-+ local_irq_restore(flags);
-+
-+ return 0;
-+}
-+
-+/* sg_balance_trigger - trigger slibing group balance for @cpu */
-+static inline int sg_balance_trigger(const int cpu)
-+{
-+ struct rq *rq= cpu_rq(cpu);
-+ unsigned long flags;
-+ struct task_struct *curr;
-+ int res;
-+
-+ if (!raw_spin_trylock_irqsave(&rq->lock, flags))
-+ return 0;
-+ curr = rq->curr;
-+ res = (!is_idle_task(curr)) && (1 == rq->nr_running) &&\
-+ cpumask_intersects(curr->cpus_ptr, &sched_sg_idle_mask) &&\
-+ !is_migration_disabled(curr) && (!rq->active_balance);
-+
-+ if (res)
-+ rq->active_balance = 1;
-+
-+ raw_spin_unlock_irqrestore(&rq->lock, flags);
-+
-+ if (res)
-+ stop_one_cpu_nowait(cpu, sg_balance_cpu_stop, curr,
-+ &rq->active_balance_work);
-+ return res;
-+}
-+
-+/*
-+ * sg_balance - slibing group balance check for run queue @rq
-+ */
-+static inline void sg_balance(struct rq *rq, int cpu)
-+{
-+ cpumask_t chk;
-+
-+ /* exit when cpu is offline */
-+ if (unlikely(!rq->online))
-+ return;
-+
-+ /*
-+ * Only cpu in slibing idle group will do the checking and then
-+ * find potential cpus which can migrate the current running task
-+ */
-+ if (cpumask_test_cpu(cpu, &sched_sg_idle_mask) &&
-+ cpumask_andnot(&chk, cpu_online_mask, sched_idle_mask) &&
-+ cpumask_andnot(&chk, &chk, &sched_rq_pending_mask)) {
-+ int i;
-+
-+ for_each_cpu_wrap(i, &chk, cpu) {
-+ if (!cpumask_intersects(cpu_smt_mask(i), sched_idle_mask) &&\
-+ sg_balance_trigger(i))
-+ return;
-+ }
-+ }
-+}
-+#endif /* CONFIG_SCHED_SMT */
-+
-+#ifdef CONFIG_NO_HZ_FULL
-+
-+struct tick_work {
-+ int cpu;
-+ atomic_t state;
-+ struct delayed_work work;
-+};
-+/* Values for ->state, see diagram below. */
-+#define TICK_SCHED_REMOTE_OFFLINE 0
-+#define TICK_SCHED_REMOTE_OFFLINING 1
-+#define TICK_SCHED_REMOTE_RUNNING 2
-+
-+/*
-+ * State diagram for ->state:
-+ *
-+ *
-+ * TICK_SCHED_REMOTE_OFFLINE
-+ * | ^
-+ * | |
-+ * | | sched_tick_remote()
-+ * | |
-+ * | |
-+ * +--TICK_SCHED_REMOTE_OFFLINING
-+ * | ^
-+ * | |
-+ * sched_tick_start() | | sched_tick_stop()
-+ * | |
-+ * V |
-+ * TICK_SCHED_REMOTE_RUNNING
-+ *
-+ *
-+ * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
-+ * and sched_tick_start() are happy to leave the state in RUNNING.
-+ */
-+
-+static struct tick_work __percpu *tick_work_cpu;
-+
-+static void sched_tick_remote(struct work_struct *work)
-+{
-+ struct delayed_work *dwork = to_delayed_work(work);
-+ struct tick_work *twork = container_of(dwork, struct tick_work, work);
-+ int cpu = twork->cpu;
-+ struct rq *rq = cpu_rq(cpu);
-+ int os;
-+
-+ /*
-+ * Handle the tick only if it appears the remote CPU is running in full
-+ * dynticks mode. The check is racy by nature, but missing a tick or
-+ * having one too much is no big deal because the scheduler tick updates
-+ * statistics and checks timeslices in a time-independent way, regardless
-+ * of when exactly it is running.
-+ */
-+ if (tick_nohz_tick_stopped_cpu(cpu)) {
-+ guard(raw_spinlock_irqsave)(&rq->lock);
-+ struct task_struct *curr = rq->curr;
-+
-+ if (cpu_online(cpu)) {
-+ update_rq_clock(rq);
-+
-+ if (!is_idle_task(curr)) {
-+ /*
-+ * Make sure the next tick runs within a
-+ * reasonable amount of time.
-+ */
-+ u64 delta = rq_clock_task(rq) - curr->last_ran;
-+ WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
-+ }
-+ scheduler_task_tick(rq);
-+
-+ calc_load_nohz_remote(rq);
-+ }
-+ }
-+
-+ /*
-+ * Run the remote tick once per second (1Hz). This arbitrary
-+ * frequency is large enough to avoid overload but short enough
-+ * to keep scheduler internal stats reasonably up to date. But
-+ * first update state to reflect hotplug activity if required.
-+ */
-+ os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
-+ WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
-+ if (os == TICK_SCHED_REMOTE_RUNNING)
-+ queue_delayed_work(system_unbound_wq, dwork, HZ);
-+}
-+
-+static void sched_tick_start(int cpu)
-+{
-+ int os;
-+ struct tick_work *twork;
-+
-+ if (housekeeping_cpu(cpu, HK_TYPE_TICK))
-+ return;
-+
-+ WARN_ON_ONCE(!tick_work_cpu);
-+
-+ twork = per_cpu_ptr(tick_work_cpu, cpu);
-+ os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
-+ WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
-+ if (os == TICK_SCHED_REMOTE_OFFLINE) {
-+ twork->cpu = cpu;
-+ INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
-+ queue_delayed_work(system_unbound_wq, &twork->work, HZ);
-+ }
-+}
-+
-+#ifdef CONFIG_HOTPLUG_CPU
-+static void sched_tick_stop(int cpu)
-+{
-+ struct tick_work *twork;
-+ int os;
-+
-+ if (housekeeping_cpu(cpu, HK_TYPE_TICK))
-+ return;
-+
-+ WARN_ON_ONCE(!tick_work_cpu);
-+
-+ twork = per_cpu_ptr(tick_work_cpu, cpu);
-+ /* There cannot be competing actions, but don't rely on stop-machine. */
-+ os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
-+ WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
-+ /* Don't cancel, as this would mess up the state machine. */
-+}
-+#endif /* CONFIG_HOTPLUG_CPU */
-+
-+int __init sched_tick_offload_init(void)
-+{
-+ tick_work_cpu = alloc_percpu(struct tick_work);
-+ BUG_ON(!tick_work_cpu);
-+ return 0;
-+}
-+
-+#else /* !CONFIG_NO_HZ_FULL */
-+static inline void sched_tick_start(int cpu) { }
-+static inline void sched_tick_stop(int cpu) { }
-+#endif
-+
-+#if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
-+ defined(CONFIG_PREEMPT_TRACER))
-+/*
-+ * If the value passed in is equal to the current preempt count
-+ * then we just disabled preemption. Start timing the latency.
-+ */
-+static inline void preempt_latency_start(int val)
-+{
-+ if (preempt_count() == val) {
-+ unsigned long ip = get_lock_parent_ip();
-+#ifdef CONFIG_DEBUG_PREEMPT
-+ current->preempt_disable_ip = ip;
-+#endif
-+ trace_preempt_off(CALLER_ADDR0, ip);
-+ }
-+}
-+
-+void preempt_count_add(int val)
-+{
-+#ifdef CONFIG_DEBUG_PREEMPT
-+ /*
-+ * Underflow?
-+ */
-+ if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
-+ return;
-+#endif
-+ __preempt_count_add(val);
-+#ifdef CONFIG_DEBUG_PREEMPT
-+ /*
-+ * Spinlock count overflowing soon?
-+ */
-+ DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
-+ PREEMPT_MASK - 10);
-+#endif
-+ preempt_latency_start(val);
-+}
-+EXPORT_SYMBOL(preempt_count_add);
-+NOKPROBE_SYMBOL(preempt_count_add);
-+
-+/*
-+ * If the value passed in equals to the current preempt count
-+ * then we just enabled preemption. Stop timing the latency.
-+ */
-+static inline void preempt_latency_stop(int val)
-+{
-+ if (preempt_count() == val)
-+ trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
-+}
-+
-+void preempt_count_sub(int val)
-+{
-+#ifdef CONFIG_DEBUG_PREEMPT
-+ /*
-+ * Underflow?
-+ */
-+ if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
-+ return;
-+ /*
-+ * Is the spinlock portion underflowing?
-+ */
-+ if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
-+ !(preempt_count() & PREEMPT_MASK)))
-+ return;
-+#endif
-+
-+ preempt_latency_stop(val);
-+ __preempt_count_sub(val);
-+}
-+EXPORT_SYMBOL(preempt_count_sub);
-+NOKPROBE_SYMBOL(preempt_count_sub);
-+
-+#else
-+static inline void preempt_latency_start(int val) { }
-+static inline void preempt_latency_stop(int val) { }
-+#endif
-+
-+static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
-+{
-+#ifdef CONFIG_DEBUG_PREEMPT
-+ return p->preempt_disable_ip;
-+#else
-+ return 0;
-+#endif
-+}
-+
-+/*
-+ * Print scheduling while atomic bug:
-+ */
-+static noinline void __schedule_bug(struct task_struct *prev)
-+{
-+ /* Save this before calling printk(), since that will clobber it */
-+ unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
-+
-+ if (oops_in_progress)
-+ return;
-+
-+ printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
-+ prev->comm, prev->pid, preempt_count());
-+
-+ debug_show_held_locks(prev);
-+ print_modules();
-+ if (irqs_disabled())
-+ print_irqtrace_events(prev);
-+ if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
-+ pr_err("Preemption disabled at:");
-+ print_ip_sym(KERN_ERR, preempt_disable_ip);
-+ }
-+ check_panic_on_warn("scheduling while atomic");
-+
-+ dump_stack();
-+ add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
-+}
-+
-+/*
-+ * Various schedule()-time debugging checks and statistics:
-+ */
-+static inline void schedule_debug(struct task_struct *prev, bool preempt)
-+{
-+#ifdef CONFIG_SCHED_STACK_END_CHECK
-+ if (task_stack_end_corrupted(prev))
-+ panic("corrupted stack end detected inside scheduler\n");
-+
-+ if (task_scs_end_corrupted(prev))
-+ panic("corrupted shadow stack detected inside scheduler\n");
-+#endif
-+
-+#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
-+ if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
-+ printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
-+ prev->comm, prev->pid, prev->non_block_count);
-+ dump_stack();
-+ add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
-+ }
-+#endif
-+
-+ if (unlikely(in_atomic_preempt_off())) {
-+ __schedule_bug(prev);
-+ preempt_count_set(PREEMPT_DISABLED);
-+ }
-+ rcu_sleep_check();
-+ SCHED_WARN_ON(ct_state() == CONTEXT_USER);
-+
-+ profile_hit(SCHED_PROFILING, __builtin_return_address(0));
-+
-+ schedstat_inc(this_rq()->sched_count);
-+}
-+
-+#ifdef ALT_SCHED_DEBUG
-+void alt_sched_debug(void)
-+{
-+ printk(KERN_INFO "sched: pending: 0x%04lx, idle: 0x%04lx, sg_idle: 0x%04lx\n",
-+ sched_rq_pending_mask.bits[0],
-+ sched_idle_mask->bits[0],
-+ sched_sg_idle_mask.bits[0]);
-+}
-+#else
-+inline void alt_sched_debug(void) {}
-+#endif
-+
-+#ifdef CONFIG_SMP
-+
-+#ifdef CONFIG_PREEMPT_RT
-+#define SCHED_NR_MIGRATE_BREAK 8
-+#else
-+#define SCHED_NR_MIGRATE_BREAK 32
-+#endif
-+
-+const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
-+
-+/*
-+ * Migrate pending tasks in @rq to @dest_cpu
-+ */
-+static inline int
-+migrate_pending_tasks(struct rq *rq, struct rq *dest_rq, const int dest_cpu)
-+{
-+ struct task_struct *p, *skip = rq->curr;
-+ int nr_migrated = 0;
-+ int nr_tries = min(rq->nr_running / 2, sysctl_sched_nr_migrate);
-+
-+ /* WA to check rq->curr is still on rq */
-+ if (!task_on_rq_queued(skip))
-+ return 0;
-+
-+ while (skip != rq->idle && nr_tries &&
-+ (p = sched_rq_next_task(skip, rq)) != rq->idle) {
-+ skip = sched_rq_next_task(p, rq);
-+ if (cpumask_test_cpu(dest_cpu, p->cpus_ptr)) {
-+ __SCHED_DEQUEUE_TASK(p, rq, 0, );
-+ set_task_cpu(p, dest_cpu);
-+ sched_task_sanity_check(p, dest_rq);
-+ sched_mm_cid_migrate_to(dest_rq, p, cpu_of(rq));
-+ __SCHED_ENQUEUE_TASK(p, dest_rq, 0);
-+ nr_migrated++;
-+ }
-+ nr_tries--;
-+ }
-+
-+ return nr_migrated;
-+}
-+
-+static inline int take_other_rq_tasks(struct rq *rq, int cpu)
-+{
-+ struct cpumask *topo_mask, *end_mask;
-+
-+ if (unlikely(!rq->online))
-+ return 0;
-+
-+ if (cpumask_empty(&sched_rq_pending_mask))
-+ return 0;
-+
-+ topo_mask = per_cpu(sched_cpu_topo_masks, cpu) + 1;
-+ end_mask = per_cpu(sched_cpu_topo_end_mask, cpu);
-+ do {
-+ int i;
-+ for_each_cpu_and(i, &sched_rq_pending_mask, topo_mask) {
-+ int nr_migrated;
-+ struct rq *src_rq;
-+
-+ src_rq = cpu_rq(i);
-+ if (!do_raw_spin_trylock(&src_rq->lock))
-+ continue;
-+ spin_acquire(&src_rq->lock.dep_map,
-+ SINGLE_DEPTH_NESTING, 1, _RET_IP_);
-+
-+ if ((nr_migrated = migrate_pending_tasks(src_rq, rq, cpu))) {
-+ src_rq->nr_running -= nr_migrated;
-+ if (src_rq->nr_running < 2)
-+ cpumask_clear_cpu(i, &sched_rq_pending_mask);
-+
-+ spin_release(&src_rq->lock.dep_map, _RET_IP_);
-+ do_raw_spin_unlock(&src_rq->lock);
-+
-+ rq->nr_running += nr_migrated;
-+ if (rq->nr_running > 1)
-+ cpumask_set_cpu(cpu, &sched_rq_pending_mask);
-+
-+ update_sched_preempt_mask(rq);
-+ cpufreq_update_util(rq, 0);
-+
-+ return 1;
-+ }
-+
-+ spin_release(&src_rq->lock.dep_map, _RET_IP_);
-+ do_raw_spin_unlock(&src_rq->lock);
-+ }
-+ } while (++topo_mask < end_mask);
-+
-+ return 0;
-+}
-+#endif
-+
-+static inline void time_slice_expired(struct task_struct *p, struct rq *rq)
-+{
-+ p->time_slice = sysctl_sched_base_slice;
-+
-+ sched_task_renew(p, rq);
-+
-+ if (SCHED_FIFO != p->policy && task_on_rq_queued(p))
-+ requeue_task(p, rq, task_sched_prio_idx(p, rq));
-+}
-+
-+/*
-+ * Timeslices below RESCHED_NS are considered as good as expired as there's no
-+ * point rescheduling when there's so little time left.
-+ */
-+static inline void check_curr(struct task_struct *p, struct rq *rq)
-+{
-+ if (unlikely(rq->idle == p))
-+ return;
-+
-+ update_curr(rq, p);
-+
-+ if (p->time_slice < RESCHED_NS)
-+ time_slice_expired(p, rq);
-+}
-+
-+static inline struct task_struct *
-+choose_next_task(struct rq *rq, int cpu)
-+{
-+ struct task_struct *next;
-+
-+ if (unlikely(rq->skip)) {
-+ next = rq_runnable_task(rq);
-+ if (next == rq->idle) {
-+#ifdef CONFIG_SMP
-+ if (!take_other_rq_tasks(rq, cpu)) {
-+#endif
-+ rq->skip = NULL;
-+ schedstat_inc(rq->sched_goidle);
-+ return next;
-+#ifdef CONFIG_SMP
-+ }
-+ next = rq_runnable_task(rq);
-+#endif
-+ }
-+ rq->skip = NULL;
-+#ifdef CONFIG_HIGH_RES_TIMERS
-+ hrtick_start(rq, next->time_slice);
-+#endif
-+ return next;
-+ }
-+
-+ next = sched_rq_first_task(rq);
-+ if (next == rq->idle) {
-+#ifdef CONFIG_SMP
-+ if (!take_other_rq_tasks(rq, cpu)) {
-+#endif
-+ schedstat_inc(rq->sched_goidle);
-+ /*printk(KERN_INFO "sched: choose_next_task(%d) idle %px\n", cpu, next);*/
-+ return next;
-+#ifdef CONFIG_SMP
-+ }
-+ next = sched_rq_first_task(rq);
-+#endif
-+ }
-+#ifdef CONFIG_HIGH_RES_TIMERS
-+ hrtick_start(rq, next->time_slice);
-+#endif
-+ /*printk(KERN_INFO "sched: choose_next_task(%d) next %px\n", cpu, next);*/
-+ return next;
-+}
-+
-+/*
-+ * Constants for the sched_mode argument of __schedule().
-+ *
-+ * The mode argument allows RT enabled kernels to differentiate a
-+ * preemption from blocking on an 'sleeping' spin/rwlock. Note that
-+ * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
-+ * optimize the AND operation out and just check for zero.
-+ */
-+#define SM_NONE 0x0
-+#define SM_PREEMPT 0x1
-+#define SM_RTLOCK_WAIT 0x2
-+
-+#ifndef CONFIG_PREEMPT_RT
-+# define SM_MASK_PREEMPT (~0U)
-+#else
-+# define SM_MASK_PREEMPT SM_PREEMPT
-+#endif
-+
-+/*
-+ * schedule() is the main scheduler function.
-+ *
-+ * The main means of driving the scheduler and thus entering this function are:
-+ *
-+ * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
-+ *
-+ * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
-+ * paths. For example, see arch/x86/entry_64.S.
-+ *
-+ * To drive preemption between tasks, the scheduler sets the flag in timer
-+ * interrupt handler scheduler_tick().
-+ *
-+ * 3. Wakeups don't really cause entry into schedule(). They add a
-+ * task to the run-queue and that's it.
-+ *
-+ * Now, if the new task added to the run-queue preempts the current
-+ * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
-+ * called on the nearest possible occasion:
-+ *
-+ * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
-+ *
-+ * - in syscall or exception context, at the next outmost
-+ * preempt_enable(). (this might be as soon as the wake_up()'s
-+ * spin_unlock()!)
-+ *
-+ * - in IRQ context, return from interrupt-handler to
-+ * preemptible context
-+ *
-+ * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
-+ * then at the next:
-+ *
-+ * - cond_resched() call
-+ * - explicit schedule() call
-+ * - return from syscall or exception to user-space
-+ * - return from interrupt-handler to user-space
-+ *
-+ * WARNING: must be called with preemption disabled!
-+ */
-+static void __sched notrace __schedule(unsigned int sched_mode)
-+{
-+ struct task_struct *prev, *next;
-+ unsigned long *switch_count;
-+ unsigned long prev_state;
-+ struct rq *rq;
-+ int cpu;
-+
-+ cpu = smp_processor_id();
-+ rq = cpu_rq(cpu);
-+ prev = rq->curr;
-+
-+ schedule_debug(prev, !!sched_mode);
-+
-+ /* by passing sched_feat(HRTICK) checking which Alt schedule FW doesn't support */
-+ hrtick_clear(rq);
-+
-+ local_irq_disable();
-+ rcu_note_context_switch(!!sched_mode);
-+
-+ /*
-+ * Make sure that signal_pending_state()->signal_pending() below
-+ * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
-+ * done by the caller to avoid the race with signal_wake_up():
-+ *
-+ * __set_current_state(@state) signal_wake_up()
-+ * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING)
-+ * wake_up_state(p, state)
-+ * LOCK rq->lock LOCK p->pi_state
-+ * smp_mb__after_spinlock() smp_mb__after_spinlock()
-+ * if (signal_pending_state()) if (p->state & @state)
-+ *
-+ * Also, the membarrier system call requires a full memory barrier
-+ * after coming from user-space, before storing to rq->curr.
-+ */
-+ raw_spin_lock(&rq->lock);
-+ smp_mb__after_spinlock();
-+
-+ update_rq_clock(rq);
-+
-+ switch_count = &prev->nivcsw;
-+ /*
-+ * We must load prev->state once (task_struct::state is volatile), such
-+ * that we form a control dependency vs deactivate_task() below.
-+ */
-+ prev_state = READ_ONCE(prev->__state);
-+ if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
-+ if (signal_pending_state(prev_state, prev)) {
-+ WRITE_ONCE(prev->__state, TASK_RUNNING);
-+ } else {
-+ prev->sched_contributes_to_load =
-+ (prev_state & TASK_UNINTERRUPTIBLE) &&
-+ !(prev_state & TASK_NOLOAD) &&
-+ !(prev_state & TASK_FROZEN);
-+
-+ if (prev->sched_contributes_to_load)
-+ rq->nr_uninterruptible++;
-+
-+ /*
-+ * __schedule() ttwu()
-+ * prev_state = prev->state; if (p->on_rq && ...)
-+ * if (prev_state) goto out;
-+ * p->on_rq = 0; smp_acquire__after_ctrl_dep();
-+ * p->state = TASK_WAKING
-+ *
-+ * Where __schedule() and ttwu() have matching control dependencies.
-+ *
-+ * After this, schedule() must not care about p->state any more.
-+ */
-+ sched_task_deactivate(prev, rq);
-+ deactivate_task(prev, rq);
-+
-+ if (prev->in_iowait) {
-+ atomic_inc(&rq->nr_iowait);
-+ delayacct_blkio_start();
-+ }
-+ }
-+ switch_count = &prev->nvcsw;
-+ }
-+
-+ check_curr(prev, rq);
-+
-+ next = choose_next_task(rq, cpu);
-+ clear_tsk_need_resched(prev);
-+ clear_preempt_need_resched();
-+#ifdef CONFIG_SCHED_DEBUG
-+ rq->last_seen_need_resched_ns = 0;
-+#endif
-+
-+ if (likely(prev != next)) {
-+#ifdef CONFIG_SCHED_BMQ
-+ rq->last_ts_switch = rq->clock;
-+#endif
-+ next->last_ran = rq->clock_task;
-+
-+ /*printk(KERN_INFO "sched: %px -> %px\n", prev, next);*/
-+ rq->nr_switches++;
-+ /*
-+ * RCU users of rcu_dereference(rq->curr) may not see
-+ * changes to task_struct made by pick_next_task().
-+ */
-+ RCU_INIT_POINTER(rq->curr, next);
-+ /*
-+ * The membarrier system call requires each architecture
-+ * to have a full memory barrier after updating
-+ * rq->curr, before returning to user-space.
-+ *
-+ * Here are the schemes providing that barrier on the
-+ * various architectures:
-+ * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
-+ * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
-+ * - finish_lock_switch() for weakly-ordered
-+ * architectures where spin_unlock is a full barrier,
-+ * - switch_to() for arm64 (weakly-ordered, spin_unlock
-+ * is a RELEASE barrier),
-+ */
-+ ++*switch_count;
-+
-+ trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state);
-+
-+ /* Also unlocks the rq: */
-+ rq = context_switch(rq, prev, next);
-+
-+ cpu = cpu_of(rq);
-+ } else {
-+ __balance_callbacks(rq);
-+ raw_spin_unlock_irq(&rq->lock);
-+ }
-+
-+#ifdef CONFIG_SCHED_SMT
-+ sg_balance(rq, cpu);
-+#endif
-+}
-+
-+void __noreturn do_task_dead(void)
-+{
-+ /* Causes final put_task_struct in finish_task_switch(): */
-+ set_special_state(TASK_DEAD);
-+
-+ /* Tell freezer to ignore us: */
-+ current->flags |= PF_NOFREEZE;
-+
-+ __schedule(SM_NONE);
-+ BUG();
-+
-+ /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
-+ for (;;)
-+ cpu_relax();
-+}
-+
-+static inline void sched_submit_work(struct task_struct *tsk)
-+{
-+ static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG);
-+ unsigned int task_flags;
-+
-+ /*
-+ * Establish LD_WAIT_CONFIG context to ensure none of the code called
-+ * will use a blocking primitive -- which would lead to recursion.
-+ */
-+ lock_map_acquire_try(&sched_map);
-+
-+ task_flags = tsk->flags;
-+ /*
-+ * If a worker goes to sleep, notify and ask workqueue whether it
-+ * wants to wake up a task to maintain concurrency.
-+ */
-+ if (task_flags & PF_WQ_WORKER)
-+ wq_worker_sleeping(tsk);
-+ else if (task_flags & PF_IO_WORKER)
-+ io_wq_worker_sleeping(tsk);
-+
-+ /*
-+ * spinlock and rwlock must not flush block requests. This will
-+ * deadlock if the callback attempts to acquire a lock which is
-+ * already acquired.
-+ */
-+ SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
-+
-+ /*
-+ * If we are going to sleep and we have plugged IO queued,
-+ * make sure to submit it to avoid deadlocks.
-+ */
-+ blk_flush_plug(tsk->plug, true);
-+
-+ lock_map_release(&sched_map);
-+}
-+
-+static void sched_update_worker(struct task_struct *tsk)
-+{
-+ if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
-+ if (tsk->flags & PF_WQ_WORKER)
-+ wq_worker_running(tsk);
-+ else
-+ io_wq_worker_running(tsk);
-+ }
-+}
-+
-+static __always_inline void __schedule_loop(unsigned int sched_mode)
-+{
-+ do {
-+ preempt_disable();
-+ __schedule(sched_mode);
-+ sched_preempt_enable_no_resched();
-+ } while (need_resched());
-+}
-+
-+asmlinkage __visible void __sched schedule(void)
-+{
-+ struct task_struct *tsk = current;
-+
-+#ifdef CONFIG_RT_MUTEXES
-+ lockdep_assert(!tsk->sched_rt_mutex);
-+#endif
-+
-+ if (!task_is_running(tsk))
-+ sched_submit_work(tsk);
-+ __schedule_loop(SM_NONE);
-+ sched_update_worker(tsk);
-+}
-+EXPORT_SYMBOL(schedule);
-+
-+/*
-+ * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
-+ * state (have scheduled out non-voluntarily) by making sure that all
-+ * tasks have either left the run queue or have gone into user space.
-+ * As idle tasks do not do either, they must not ever be preempted
-+ * (schedule out non-voluntarily).
-+ *
-+ * schedule_idle() is similar to schedule_preempt_disable() except that it
-+ * never enables preemption because it does not call sched_submit_work().
-+ */
-+void __sched schedule_idle(void)
-+{
-+ /*
-+ * As this skips calling sched_submit_work(), which the idle task does
-+ * regardless because that function is a nop when the task is in a
-+ * TASK_RUNNING state, make sure this isn't used someplace that the
-+ * current task can be in any other state. Note, idle is always in the
-+ * TASK_RUNNING state.
-+ */
-+ WARN_ON_ONCE(current->__state);
-+ do {
-+ __schedule(SM_NONE);
-+ } while (need_resched());
-+}
-+
-+#if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
-+asmlinkage __visible void __sched schedule_user(void)
-+{
-+ /*
-+ * If we come here after a random call to set_need_resched(),
-+ * or we have been woken up remotely but the IPI has not yet arrived,
-+ * we haven't yet exited the RCU idle mode. Do it here manually until
-+ * we find a better solution.
-+ *
-+ * NB: There are buggy callers of this function. Ideally we
-+ * should warn if prev_state != CONTEXT_USER, but that will trigger
-+ * too frequently to make sense yet.
-+ */
-+ enum ctx_state prev_state = exception_enter();
-+ schedule();
-+ exception_exit(prev_state);
-+}
-+#endif
-+
-+/**
-+ * schedule_preempt_disabled - called with preemption disabled
-+ *
-+ * Returns with preemption disabled. Note: preempt_count must be 1
-+ */
-+void __sched schedule_preempt_disabled(void)
-+{
-+ sched_preempt_enable_no_resched();
-+ schedule();
-+ preempt_disable();
-+}
-+
-+#ifdef CONFIG_PREEMPT_RT
-+void __sched notrace schedule_rtlock(void)
-+{
-+ __schedule_loop(SM_RTLOCK_WAIT);
-+}
-+NOKPROBE_SYMBOL(schedule_rtlock);
-+#endif
-+
-+static void __sched notrace preempt_schedule_common(void)
-+{
-+ do {
-+ /*
-+ * Because the function tracer can trace preempt_count_sub()
-+ * and it also uses preempt_enable/disable_notrace(), if
-+ * NEED_RESCHED is set, the preempt_enable_notrace() called
-+ * by the function tracer will call this function again and
-+ * cause infinite recursion.
-+ *
-+ * Preemption must be disabled here before the function
-+ * tracer can trace. Break up preempt_disable() into two
-+ * calls. One to disable preemption without fear of being
-+ * traced. The other to still record the preemption latency,
-+ * which can also be traced by the function tracer.
-+ */
-+ preempt_disable_notrace();
-+ preempt_latency_start(1);
-+ __schedule(SM_PREEMPT);
-+ preempt_latency_stop(1);
-+ preempt_enable_no_resched_notrace();
-+
-+ /*
-+ * Check again in case we missed a preemption opportunity
-+ * between schedule and now.
-+ */
-+ } while (need_resched());
-+}
-+
-+#ifdef CONFIG_PREEMPTION
-+/*
-+ * This is the entry point to schedule() from in-kernel preemption
-+ * off of preempt_enable.
-+ */
-+asmlinkage __visible void __sched notrace preempt_schedule(void)
-+{
-+ /*
-+ * If there is a non-zero preempt_count or interrupts are disabled,
-+ * we do not want to preempt the current task. Just return..
-+ */
-+ if (likely(!preemptible()))
-+ return;
-+
-+ preempt_schedule_common();
-+}
-+NOKPROBE_SYMBOL(preempt_schedule);
-+EXPORT_SYMBOL(preempt_schedule);
-+
-+#ifdef CONFIG_PREEMPT_DYNAMIC
-+#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
-+#ifndef preempt_schedule_dynamic_enabled
-+#define preempt_schedule_dynamic_enabled preempt_schedule
-+#define preempt_schedule_dynamic_disabled NULL
-+#endif
-+DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
-+EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
-+#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
-+static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
-+void __sched notrace dynamic_preempt_schedule(void)
-+{
-+ if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
-+ return;
-+ preempt_schedule();
-+}
-+NOKPROBE_SYMBOL(dynamic_preempt_schedule);
-+EXPORT_SYMBOL(dynamic_preempt_schedule);
-+#endif
-+#endif
-+
-+/**
-+ * preempt_schedule_notrace - preempt_schedule called by tracing
-+ *
-+ * The tracing infrastructure uses preempt_enable_notrace to prevent
-+ * recursion and tracing preempt enabling caused by the tracing
-+ * infrastructure itself. But as tracing can happen in areas coming
-+ * from userspace or just about to enter userspace, a preempt enable
-+ * can occur before user_exit() is called. This will cause the scheduler
-+ * to be called when the system is still in usermode.
-+ *
-+ * To prevent this, the preempt_enable_notrace will use this function
-+ * instead of preempt_schedule() to exit user context if needed before
-+ * calling the scheduler.
-+ */
-+asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
-+{
-+ enum ctx_state prev_ctx;
-+
-+ if (likely(!preemptible()))
-+ return;
-+
-+ do {
-+ /*
-+ * Because the function tracer can trace preempt_count_sub()
-+ * and it also uses preempt_enable/disable_notrace(), if
-+ * NEED_RESCHED is set, the preempt_enable_notrace() called
-+ * by the function tracer will call this function again and
-+ * cause infinite recursion.
-+ *
-+ * Preemption must be disabled here before the function
-+ * tracer can trace. Break up preempt_disable() into two
-+ * calls. One to disable preemption without fear of being
-+ * traced. The other to still record the preemption latency,
-+ * which can also be traced by the function tracer.
-+ */
-+ preempt_disable_notrace();
-+ preempt_latency_start(1);
-+ /*
-+ * Needs preempt disabled in case user_exit() is traced
-+ * and the tracer calls preempt_enable_notrace() causing
-+ * an infinite recursion.
-+ */
-+ prev_ctx = exception_enter();
-+ __schedule(SM_PREEMPT);
-+ exception_exit(prev_ctx);
-+
-+ preempt_latency_stop(1);
-+ preempt_enable_no_resched_notrace();
-+ } while (need_resched());
-+}
-+EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
-+
-+#ifdef CONFIG_PREEMPT_DYNAMIC
-+#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
-+#ifndef preempt_schedule_notrace_dynamic_enabled
-+#define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace
-+#define preempt_schedule_notrace_dynamic_disabled NULL
-+#endif
-+DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
-+EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
-+#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
-+static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
-+void __sched notrace dynamic_preempt_schedule_notrace(void)
-+{
-+ if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
-+ return;
-+ preempt_schedule_notrace();
-+}
-+NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
-+EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
-+#endif
-+#endif
-+
-+#endif /* CONFIG_PREEMPTION */
-+
-+/*
-+ * This is the entry point to schedule() from kernel preemption
-+ * off of irq context.
-+ * Note, that this is called and return with irqs disabled. This will
-+ * protect us against recursive calling from irq.
-+ */
-+asmlinkage __visible void __sched preempt_schedule_irq(void)
-+{
-+ enum ctx_state prev_state;
-+
-+ /* Catch callers which need to be fixed */
-+ BUG_ON(preempt_count() || !irqs_disabled());
-+
-+ prev_state = exception_enter();
-+
-+ do {
-+ preempt_disable();
-+ local_irq_enable();
-+ __schedule(SM_PREEMPT);
-+ local_irq_disable();
-+ sched_preempt_enable_no_resched();
-+ } while (need_resched());
-+
-+ exception_exit(prev_state);
-+}
-+
-+int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
-+ void *key)
-+{
-+ WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC|WF_CURRENT_CPU));
-+ return try_to_wake_up(curr->private, mode, wake_flags);
-+}
-+EXPORT_SYMBOL(default_wake_function);
-+
-+static inline void check_task_changed(struct task_struct *p, struct rq *rq)
-+{
-+ /* Trigger resched if task sched_prio has been modified. */
-+ if (task_on_rq_queued(p)) {
-+ int idx;
-+
-+ update_rq_clock(rq);
-+ idx = task_sched_prio_idx(p, rq);
-+ if (idx != p->sq_idx) {
-+ requeue_task(p, rq, idx);
-+ wakeup_preempt(rq);
-+ }
-+ }
-+}
-+
-+static void __setscheduler_prio(struct task_struct *p, int prio)
-+{
-+ p->prio = prio;
-+}
-+
-+#ifdef CONFIG_RT_MUTEXES
-+
-+/*
-+ * Would be more useful with typeof()/auto_type but they don't mix with
-+ * bit-fields. Since it's a local thing, use int. Keep the generic sounding
-+ * name such that if someone were to implement this function we get to compare
-+ * notes.
-+ */
-+#define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; })
-+
-+void rt_mutex_pre_schedule(void)
-+{
-+ lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1));
-+ sched_submit_work(current);
-+}
-+
-+void rt_mutex_schedule(void)
-+{
-+ lockdep_assert(current->sched_rt_mutex);
-+ __schedule_loop(SM_NONE);
-+}
-+
-+void rt_mutex_post_schedule(void)
-+{
-+ sched_update_worker(current);
-+ lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0));
-+}
-+
-+static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
-+{
-+ if (pi_task)
-+ prio = min(prio, pi_task->prio);
-+
-+ return prio;
-+}
-+
-+static inline int rt_effective_prio(struct task_struct *p, int prio)
-+{
-+ struct task_struct *pi_task = rt_mutex_get_top_task(p);
-+
-+ return __rt_effective_prio(pi_task, prio);
-+}
-+
-+/*
-+ * rt_mutex_setprio - set the current priority of a task
-+ * @p: task to boost
-+ * @pi_task: donor task
-+ *
-+ * This function changes the 'effective' priority of a task. It does
-+ * not touch ->normal_prio like __setscheduler().
-+ *
-+ * Used by the rt_mutex code to implement priority inheritance
-+ * logic. Call site only calls if the priority of the task changed.
-+ */
-+void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
-+{
-+ int prio;
-+ struct rq *rq;
-+ raw_spinlock_t *lock;
-+
-+ /* XXX used to be waiter->prio, not waiter->task->prio */
-+ prio = __rt_effective_prio(pi_task, p->normal_prio);
-+
-+ /*
-+ * If nothing changed; bail early.
-+ */
-+ if (p->pi_top_task == pi_task && prio == p->prio)
-+ return;
-+
-+ rq = __task_access_lock(p, &lock);
-+ /*
-+ * Set under pi_lock && rq->lock, such that the value can be used under
-+ * either lock.
-+ *
-+ * Note that there is loads of tricky to make this pointer cache work
-+ * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
-+ * ensure a task is de-boosted (pi_task is set to NULL) before the
-+ * task is allowed to run again (and can exit). This ensures the pointer
-+ * points to a blocked task -- which guarantees the task is present.
-+ */
-+ p->pi_top_task = pi_task;
-+
-+ /*
-+ * For FIFO/RR we only need to set prio, if that matches we're done.
-+ */
-+ if (prio == p->prio)
-+ goto out_unlock;
-+
-+ /*
-+ * Idle task boosting is a nono in general. There is one
-+ * exception, when PREEMPT_RT and NOHZ is active:
-+ *
-+ * The idle task calls get_next_timer_interrupt() and holds
-+ * the timer wheel base->lock on the CPU and another CPU wants
-+ * to access the timer (probably to cancel it). We can safely
-+ * ignore the boosting request, as the idle CPU runs this code
-+ * with interrupts disabled and will complete the lock
-+ * protected section without being interrupted. So there is no
-+ * real need to boost.
-+ */
-+ if (unlikely(p == rq->idle)) {
-+ WARN_ON(p != rq->curr);
-+ WARN_ON(p->pi_blocked_on);
-+ goto out_unlock;
-+ }
-+
-+ trace_sched_pi_setprio(p, pi_task);
-+
-+ __setscheduler_prio(p, prio);
-+
-+ check_task_changed(p, rq);
-+out_unlock:
-+ /* Avoid rq from going away on us: */
-+ preempt_disable();
-+
-+ __balance_callbacks(rq);
-+ __task_access_unlock(p, lock);
-+
-+ preempt_enable();
-+}
-+#else
-+static inline int rt_effective_prio(struct task_struct *p, int prio)
-+{
-+ return prio;
-+}
-+#endif
-+
-+void set_user_nice(struct task_struct *p, long nice)
-+{
-+ unsigned long flags;
-+ struct rq *rq;
-+ raw_spinlock_t *lock;
-+
-+ if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
-+ return;
-+ /*
-+ * We have to be careful, if called from sys_setpriority(),
-+ * the task might be in the middle of scheduling on another CPU.
-+ */
-+ raw_spin_lock_irqsave(&p->pi_lock, flags);
-+ rq = __task_access_lock(p, &lock);
-+
-+ p->static_prio = NICE_TO_PRIO(nice);
-+ /*
-+ * The RT priorities are set via sched_setscheduler(), but we still
-+ * allow the 'normal' nice value to be set - but as expected
-+ * it won't have any effect on scheduling until the task is
-+ * not SCHED_NORMAL/SCHED_BATCH:
-+ */
-+ if (task_has_rt_policy(p))
-+ goto out_unlock;
-+
-+ p->prio = effective_prio(p);
-+
-+ check_task_changed(p, rq);
-+out_unlock:
-+ __task_access_unlock(p, lock);
-+ raw_spin_unlock_irqrestore(&p->pi_lock, flags);
-+}
-+EXPORT_SYMBOL(set_user_nice);
-+
-+/*
-+ * is_nice_reduction - check if nice value is an actual reduction
-+ *
-+ * Similar to can_nice() but does not perform a capability check.
-+ *
-+ * @p: task
-+ * @nice: nice value
-+ */
-+static bool is_nice_reduction(const struct task_struct *p, const int nice)
-+{
-+ /* Convert nice value [19,-20] to rlimit style value [1,40]: */
-+ int nice_rlim = nice_to_rlimit(nice);
-+
-+ return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
-+}
-+
-+/*
-+ * can_nice - check if a task can reduce its nice value
-+ * @p: task
-+ * @nice: nice value
-+ */
-+int can_nice(const struct task_struct *p, const int nice)
-+{
-+ return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
-+}
-+
-+#ifdef __ARCH_WANT_SYS_NICE
-+
-+/*
-+ * sys_nice - change the priority of the current process.
-+ * @increment: priority increment
-+ *
-+ * sys_setpriority is a more generic, but much slower function that
-+ * does similar things.
-+ */
-+SYSCALL_DEFINE1(nice, int, increment)
-+{
-+ long nice, retval;
-+
-+ /*
-+ * Setpriority might change our priority at the same moment.
-+ * We don't have to worry. Conceptually one call occurs first
-+ * and we have a single winner.
-+ */
-+
-+ increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
-+ nice = task_nice(current) + increment;
-+
-+ nice = clamp_val(nice, MIN_NICE, MAX_NICE);
-+ if (increment < 0 && !can_nice(current, nice))
-+ return -EPERM;
-+
-+ retval = security_task_setnice(current, nice);
-+ if (retval)
-+ return retval;
-+
-+ set_user_nice(current, nice);
-+ return 0;
-+}
-+
-+#endif
-+
-+/**
-+ * task_prio - return the priority value of a given task.
-+ * @p: the task in question.
-+ *
-+ * Return: The priority value as seen by users in /proc.
-+ *
-+ * sched policy return value kernel prio user prio/nice
-+ *
-+ * (BMQ)normal, batch, idle[0 ... 53] [100 ... 139] 0/[-20 ... 19]/[-7 ... 7]
-+ * (PDS)normal, batch, idle[0 ... 39] 100 0/[-20 ... 19]
-+ * fifo, rr [-1 ... -100] [99 ... 0] [0 ... 99]
-+ */
-+int task_prio(const struct task_struct *p)
-+{
-+ return (p->prio < MAX_RT_PRIO) ? p->prio - MAX_RT_PRIO :
-+ task_sched_prio_normal(p, task_rq(p));
-+}
-+
-+/**
-+ * idle_cpu - is a given CPU idle currently?
-+ * @cpu: the processor in question.
-+ *
-+ * Return: 1 if the CPU is currently idle. 0 otherwise.
-+ */
-+int idle_cpu(int cpu)
-+{
-+ struct rq *rq = cpu_rq(cpu);
-+
-+ if (rq->curr != rq->idle)
-+ return 0;
-+
-+ if (rq->nr_running)
-+ return 0;
-+
-+#ifdef CONFIG_SMP
-+ if (rq->ttwu_pending)
-+ return 0;
-+#endif
-+
-+ return 1;
-+}
-+
-+/**
-+ * idle_task - return the idle task for a given CPU.
-+ * @cpu: the processor in question.
-+ *
-+ * Return: The idle task for the cpu @cpu.
-+ */
-+struct task_struct *idle_task(int cpu)
-+{
-+ return cpu_rq(cpu)->idle;
-+}
-+
-+/**
-+ * find_process_by_pid - find a process with a matching PID value.
-+ * @pid: the pid in question.
-+ *
-+ * The task of @pid, if found. %NULL otherwise.
-+ */
-+static inline struct task_struct *find_process_by_pid(pid_t pid)
-+{
-+ return pid ? find_task_by_vpid(pid) : current;
-+}
-+
-+static struct task_struct *find_get_task(pid_t pid)
-+{
-+ struct task_struct *p;
-+ guard(rcu)();
-+
-+ p = find_process_by_pid(pid);
-+ if (likely(p))
-+ get_task_struct(p);
-+
-+ return p;
-+}
-+
-+DEFINE_CLASS(find_get_task, struct task_struct *, if (_T) put_task_struct(_T),
-+ find_get_task(pid), pid_t pid)
-+
-+/*
-+ * sched_setparam() passes in -1 for its policy, to let the functions
-+ * it calls know not to change it.
-+ */
-+#define SETPARAM_POLICY -1
-+
-+static void __setscheduler_params(struct task_struct *p,
-+ const struct sched_attr *attr)
-+{
-+ int policy = attr->sched_policy;
-+
-+ if (policy == SETPARAM_POLICY)
-+ policy = p->policy;
-+
-+ p->policy = policy;
-+
-+ /*
-+ * allow normal nice value to be set, but will not have any
-+ * effect on scheduling until the task not SCHED_NORMAL/
-+ * SCHED_BATCH
-+ */
-+ p->static_prio = NICE_TO_PRIO(attr->sched_nice);
-+
-+ /*
-+ * __sched_setscheduler() ensures attr->sched_priority == 0 when
-+ * !rt_policy. Always setting this ensures that things like
-+ * getparam()/getattr() don't report silly values for !rt tasks.
-+ */
-+ p->rt_priority = attr->sched_priority;
-+ p->normal_prio = normal_prio(p);
-+}
-+
-+/*
-+ * check the target process has a UID that matches the current process's
-+ */
-+static bool check_same_owner(struct task_struct *p)
-+{
-+ const struct cred *cred = current_cred(), *pcred;
-+ guard(rcu)();
-+
-+ pcred = __task_cred(p);
-+ return (uid_eq(cred->euid, pcred->euid) ||
-+ uid_eq(cred->euid, pcred->uid));
-+}
-+
-+/*
-+ * Allow unprivileged RT tasks to decrease priority.
-+ * Only issue a capable test if needed and only once to avoid an audit
-+ * event on permitted non-privileged operations:
-+ */
-+static int user_check_sched_setscheduler(struct task_struct *p,
-+ const struct sched_attr *attr,
-+ int policy, int reset_on_fork)
-+{
-+ if (rt_policy(policy)) {
-+ unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
-+
-+ /* Can't set/change the rt policy: */
-+ if (policy != p->policy && !rlim_rtprio)
-+ goto req_priv;
-+
-+ /* Can't increase priority: */
-+ if (attr->sched_priority > p->rt_priority &&
-+ attr->sched_priority > rlim_rtprio)
-+ goto req_priv;
-+ }
-+
-+ /* Can't change other user's priorities: */
-+ if (!check_same_owner(p))
-+ goto req_priv;
-+
-+ /* Normal users shall not reset the sched_reset_on_fork flag: */
-+ if (p->sched_reset_on_fork && !reset_on_fork)
-+ goto req_priv;
-+
-+ return 0;
-+
-+req_priv:
-+ if (!capable(CAP_SYS_NICE))
-+ return -EPERM;
-+
-+ return 0;
-+}
-+
-+static int __sched_setscheduler(struct task_struct *p,
-+ const struct sched_attr *attr,
-+ bool user, bool pi)
-+{
-+ const struct sched_attr dl_squash_attr = {
-+ .size = sizeof(struct sched_attr),
-+ .sched_policy = SCHED_FIFO,
-+ .sched_nice = 0,
-+ .sched_priority = 99,
-+ };
-+ int oldpolicy = -1, policy = attr->sched_policy;
-+ int retval, newprio;
-+ struct balance_callback *head;
-+ unsigned long flags;
-+ struct rq *rq;
-+ int reset_on_fork;
-+ raw_spinlock_t *lock;
-+
-+ /* The pi code expects interrupts enabled */
-+ BUG_ON(pi && in_interrupt());
-+
-+ /*
-+ * Alt schedule FW supports SCHED_DEADLINE by squash it as prio 0 SCHED_FIFO
-+ */
-+ if (unlikely(SCHED_DEADLINE == policy)) {
-+ attr = &dl_squash_attr;
-+ policy = attr->sched_policy;
-+ }
-+recheck:
-+ /* Double check policy once rq lock held */
-+ if (policy < 0) {
-+ reset_on_fork = p->sched_reset_on_fork;
-+ policy = oldpolicy = p->policy;
-+ } else {
-+ reset_on_fork = !!(attr->sched_flags & SCHED_RESET_ON_FORK);
-+
-+ if (policy > SCHED_IDLE)
-+ return -EINVAL;
-+ }
-+
-+ if (attr->sched_flags & ~(SCHED_FLAG_ALL))
-+ return -EINVAL;
-+
-+ /*
-+ * Valid priorities for SCHED_FIFO and SCHED_RR are
-+ * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL and
-+ * SCHED_BATCH and SCHED_IDLE is 0.
-+ */
-+ if (attr->sched_priority < 0 ||
-+ (p->mm && attr->sched_priority > MAX_RT_PRIO - 1) ||
-+ (!p->mm && attr->sched_priority > MAX_RT_PRIO - 1))
-+ return -EINVAL;
-+ if ((SCHED_RR == policy || SCHED_FIFO == policy) !=
-+ (attr->sched_priority != 0))
-+ return -EINVAL;
-+
-+ if (user) {
-+ retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
-+ if (retval)
-+ return retval;
-+
-+ retval = security_task_setscheduler(p);
-+ if (retval)
-+ return retval;
-+ }
-+
-+ /*
-+ * Make sure no PI-waiters arrive (or leave) while we are
-+ * changing the priority of the task:
-+ */
-+ raw_spin_lock_irqsave(&p->pi_lock, flags);
-+
-+ /*
-+ * To be able to change p->policy safely, task_access_lock()
-+ * must be called.
-+ * IF use task_access_lock() here:
-+ * For the task p which is not running, reading rq->stop is
-+ * racy but acceptable as ->stop doesn't change much.
-+ * An enhancemnet can be made to read rq->stop saftly.
-+ */
-+ rq = __task_access_lock(p, &lock);
-+
-+ /*
-+ * Changing the policy of the stop threads its a very bad idea
-+ */
-+ if (p == rq->stop) {
-+ retval = -EINVAL;
-+ goto unlock;
-+ }
-+
-+ /*
-+ * If not changing anything there's no need to proceed further:
-+ */
-+ if (unlikely(policy == p->policy)) {
-+ if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
-+ goto change;
-+ if (!rt_policy(policy) &&
-+ NICE_TO_PRIO(attr->sched_nice) != p->static_prio)
-+ goto change;
-+
-+ p->sched_reset_on_fork = reset_on_fork;
-+ retval = 0;
-+ goto unlock;
-+ }
-+change:
-+
-+ /* Re-check policy now with rq lock held */
-+ if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
-+ policy = oldpolicy = -1;
-+ __task_access_unlock(p, lock);
-+ raw_spin_unlock_irqrestore(&p->pi_lock, flags);
-+ goto recheck;
-+ }
-+
-+ p->sched_reset_on_fork = reset_on_fork;
-+
-+ newprio = __normal_prio(policy, attr->sched_priority, NICE_TO_PRIO(attr->sched_nice));
-+ if (pi) {
-+ /*
-+ * Take priority boosted tasks into account. If the new
-+ * effective priority is unchanged, we just store the new
-+ * normal parameters and do not touch the scheduler class and
-+ * the runqueue. This will be done when the task deboost
-+ * itself.
-+ */
-+ newprio = rt_effective_prio(p, newprio);
-+ }
-+
-+ if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
-+ __setscheduler_params(p, attr);
-+ __setscheduler_prio(p, newprio);
-+ }
-+
-+ check_task_changed(p, rq);
-+
-+ /* Avoid rq from going away on us: */
-+ preempt_disable();
-+ head = splice_balance_callbacks(rq);
-+ __task_access_unlock(p, lock);
-+ raw_spin_unlock_irqrestore(&p->pi_lock, flags);
-+
-+ if (pi)
-+ rt_mutex_adjust_pi(p);
-+
-+ /* Run balance callbacks after we've adjusted the PI chain: */
-+ balance_callbacks(rq, head);
-+ preempt_enable();
-+
-+ return 0;
-+
-+unlock:
-+ __task_access_unlock(p, lock);
-+ raw_spin_unlock_irqrestore(&p->pi_lock, flags);
-+ return retval;
-+}
-+
-+static int _sched_setscheduler(struct task_struct *p, int policy,
-+ const struct sched_param *param, bool check)
-+{
-+ struct sched_attr attr = {
-+ .sched_policy = policy,
-+ .sched_priority = param->sched_priority,
-+ .sched_nice = PRIO_TO_NICE(p->static_prio),
-+ };
-+
-+ /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
-+ if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
-+ attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
-+ policy &= ~SCHED_RESET_ON_FORK;
-+ attr.sched_policy = policy;
-+ }
-+
-+ return __sched_setscheduler(p, &attr, check, true);
-+}
-+
-+/**
-+ * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
-+ * @p: the task in question.
-+ * @policy: new policy.
-+ * @param: structure containing the new RT priority.
-+ *
-+ * Use sched_set_fifo(), read its comment.
-+ *
-+ * Return: 0 on success. An error code otherwise.
-+ *
-+ * NOTE that the task may be already dead.
-+ */
-+int sched_setscheduler(struct task_struct *p, int policy,
-+ const struct sched_param *param)
-+{
-+ return _sched_setscheduler(p, policy, param, true);
-+}
-+
-+int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
-+{
-+ return __sched_setscheduler(p, attr, true, true);
-+}
-+
-+int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
-+{
-+ return __sched_setscheduler(p, attr, false, true);
-+}
-+EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
-+
-+/**
-+ * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
-+ * @p: the task in question.
-+ * @policy: new policy.
-+ * @param: structure containing the new RT priority.
-+ *
-+ * Just like sched_setscheduler, only don't bother checking if the
-+ * current context has permission. For example, this is needed in
-+ * stop_machine(): we create temporary high priority worker threads,
-+ * but our caller might not have that capability.
-+ *
-+ * Return: 0 on success. An error code otherwise.
-+ */
-+int sched_setscheduler_nocheck(struct task_struct *p, int policy,
-+ const struct sched_param *param)
-+{
-+ return _sched_setscheduler(p, policy, param, false);
-+}
-+
-+/*
-+ * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
-+ * incapable of resource management, which is the one thing an OS really should
-+ * be doing.
-+ *
-+ * This is of course the reason it is limited to privileged users only.
-+ *
-+ * Worse still; it is fundamentally impossible to compose static priority
-+ * workloads. You cannot take two correctly working static prio workloads
-+ * and smash them together and still expect them to work.
-+ *
-+ * For this reason 'all' FIFO tasks the kernel creates are basically at:
-+ *
-+ * MAX_RT_PRIO / 2
-+ *
-+ * The administrator _MUST_ configure the system, the kernel simply doesn't
-+ * know enough information to make a sensible choice.
-+ */
-+void sched_set_fifo(struct task_struct *p)
-+{
-+ struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
-+ WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
-+}
-+EXPORT_SYMBOL_GPL(sched_set_fifo);
-+
-+/*
-+ * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
-+ */
-+void sched_set_fifo_low(struct task_struct *p)
-+{
-+ struct sched_param sp = { .sched_priority = 1 };
-+ WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
-+}
-+EXPORT_SYMBOL_GPL(sched_set_fifo_low);
-+
-+void sched_set_normal(struct task_struct *p, int nice)
-+{
-+ struct sched_attr attr = {
-+ .sched_policy = SCHED_NORMAL,
-+ .sched_nice = nice,
-+ };
-+ WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
-+}
-+EXPORT_SYMBOL_GPL(sched_set_normal);
-+
-+static int
-+do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
-+{
-+ struct sched_param lparam;
-+
-+ if (!param || pid < 0)
-+ return -EINVAL;
-+ if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
-+ return -EFAULT;
-+
-+ CLASS(find_get_task, p)(pid);
-+ if (!p)
-+ return -ESRCH;
-+
-+ return sched_setscheduler(p, policy, &lparam);
-+}
-+
-+/*
-+ * Mimics kernel/events/core.c perf_copy_attr().
-+ */
-+static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
-+{
-+ u32 size;
-+ int ret;
-+
-+ /* Zero the full structure, so that a short copy will be nice: */
-+ memset(attr, 0, sizeof(*attr));
-+
-+ ret = get_user(size, &uattr->size);
-+ if (ret)
-+ return ret;
-+
-+ /* ABI compatibility quirk: */
-+ if (!size)
-+ size = SCHED_ATTR_SIZE_VER0;
-+
-+ if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
-+ goto err_size;
-+
-+ ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
-+ if (ret) {
-+ if (ret == -E2BIG)
-+ goto err_size;
-+ return ret;
-+ }
-+
-+ /*
-+ * XXX: Do we want to be lenient like existing syscalls; or do we want
-+ * to be strict and return an error on out-of-bounds values?
-+ */
-+ attr->sched_nice = clamp(attr->sched_nice, -20, 19);
-+
-+ /* sched/core.c uses zero here but we already know ret is zero */
-+ return 0;
-+
-+err_size:
-+ put_user(sizeof(*attr), &uattr->size);
-+ return -E2BIG;
-+}
-+
-+/**
-+ * sys_sched_setscheduler - set/change the scheduler policy and RT priority
-+ * @pid: the pid in question.
-+ * @policy: new policy.
-+ *
-+ * Return: 0 on success. An error code otherwise.
-+ * @param: structure containing the new RT priority.
-+ */
-+SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
-+{
-+ if (policy < 0)
-+ return -EINVAL;
-+
-+ return do_sched_setscheduler(pid, policy, param);
-+}
-+
-+/**
-+ * sys_sched_setparam - set/change the RT priority of a thread
-+ * @pid: the pid in question.
-+ * @param: structure containing the new RT priority.
-+ *
-+ * Return: 0 on success. An error code otherwise.
-+ */
-+SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
-+{
-+ return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
-+}
-+
-+static void get_params(struct task_struct *p, struct sched_attr *attr)
-+{
-+ if (task_has_rt_policy(p))
-+ attr->sched_priority = p->rt_priority;
-+ else
-+ attr->sched_nice = task_nice(p);
-+}
-+
-+/**
-+ * sys_sched_setattr - same as above, but with extended sched_attr
-+ * @pid: the pid in question.
-+ * @uattr: structure containing the extended parameters.
-+ */
-+SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
-+ unsigned int, flags)
-+{
-+ struct sched_attr attr;
-+ int retval;
-+
-+ if (!uattr || pid < 0 || flags)
-+ return -EINVAL;
-+
-+ retval = sched_copy_attr(uattr, &attr);
-+ if (retval)
-+ return retval;
-+
-+ if ((int)attr.sched_policy < 0)
-+ return -EINVAL;
-+
-+ CLASS(find_get_task, p)(pid);
-+ if (!p)
-+ return -ESRCH;
-+
-+ if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
-+ get_params(p, &attr);
-+
-+ return sched_setattr(p, &attr);
-+}
-+
-+/**
-+ * sys_sched_getscheduler - get the policy (scheduling class) of a thread
-+ * @pid: the pid in question.
-+ *
-+ * Return: On success, the policy of the thread. Otherwise, a negative error
-+ * code.
-+ */
-+SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
-+{
-+ struct task_struct *p;
-+ int retval = -EINVAL;
-+
-+ if (pid < 0)
-+ return -ESRCH;
-+
-+ guard(rcu)();
-+ p = find_process_by_pid(pid);
-+ if (!p)
-+ return -ESRCH;
-+
-+ retval = security_task_getscheduler(p);
-+ if (!retval)
-+ retval = p->policy;
-+
-+ return retval;
-+}
-+
-+/**
-+ * sys_sched_getscheduler - get the RT priority of a thread
-+ * @pid: the pid in question.
-+ * @param: structure containing the RT priority.
-+ *
-+ * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
-+ * code.
-+ */
-+SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
-+{
-+ struct sched_param lp = { .sched_priority = 0 };
-+ struct task_struct *p;
-+
-+ if (!param || pid < 0)
-+ return -EINVAL;
-+
-+ scoped_guard (rcu) {
-+ int retval;
-+
-+ p = find_process_by_pid(pid);
-+ if (!p)
-+ return -EINVAL;
-+
-+ retval = security_task_getscheduler(p);
-+ if (retval)
-+ return retval;
-+
-+ if (task_has_rt_policy(p))
-+ lp.sched_priority = p->rt_priority;
-+ }
-+
-+ /*
-+ * This one might sleep, we cannot do it with a spinlock held ...
-+ */
-+ return copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
-+}
-+
-+/*
-+ * Copy the kernel size attribute structure (which might be larger
-+ * than what user-space knows about) to user-space.
-+ *
-+ * Note that all cases are valid: user-space buffer can be larger or
-+ * smaller than the kernel-space buffer. The usual case is that both
-+ * have the same size.
-+ */
-+static int
-+sched_attr_copy_to_user(struct sched_attr __user *uattr,
-+ struct sched_attr *kattr,
-+ unsigned int usize)
-+{
-+ unsigned int ksize = sizeof(*kattr);
-+
-+ if (!access_ok(uattr, usize))
-+ return -EFAULT;
-+
-+ /*
-+ * sched_getattr() ABI forwards and backwards compatibility:
-+ *
-+ * If usize == ksize then we just copy everything to user-space and all is good.
-+ *
-+ * If usize < ksize then we only copy as much as user-space has space for,
-+ * this keeps ABI compatibility as well. We skip the rest.
-+ *
-+ * If usize > ksize then user-space is using a newer version of the ABI,
-+ * which part the kernel doesn't know about. Just ignore it - tooling can
-+ * detect the kernel's knowledge of attributes from the attr->size value
-+ * which is set to ksize in this case.
-+ */
-+ kattr->size = min(usize, ksize);
-+
-+ if (copy_to_user(uattr, kattr, kattr->size))
-+ return -EFAULT;
-+
-+ return 0;
-+}
-+
-+/**
-+ * sys_sched_getattr - similar to sched_getparam, but with sched_attr
-+ * @pid: the pid in question.
-+ * @uattr: structure containing the extended parameters.
-+ * @usize: sizeof(attr) for fwd/bwd comp.
-+ * @flags: for future extension.
-+ */
-+SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
-+ unsigned int, usize, unsigned int, flags)
-+{
-+ struct sched_attr kattr = { };
-+ struct task_struct *p;
-+ int retval;
-+
-+ if (!uattr || pid < 0 || usize > PAGE_SIZE ||
-+ usize < SCHED_ATTR_SIZE_VER0 || flags)
-+ return -EINVAL;
-+
-+ scoped_guard (rcu) {
-+ p = find_process_by_pid(pid);
-+ if (!p)
-+ return -ESRCH;
-+
-+ retval = security_task_getscheduler(p);
-+ if (retval)
-+ return retval;
-+
-+ kattr.sched_policy = p->policy;
-+ if (p->sched_reset_on_fork)
-+ kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
-+ get_params(p, &kattr);
-+ kattr.sched_flags &= SCHED_FLAG_ALL;
-+
-+#ifdef CONFIG_UCLAMP_TASK
-+ kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
-+ kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
-+#endif
-+ }
-+
-+ return sched_attr_copy_to_user(uattr, &kattr, usize);
-+}
-+
-+#ifdef CONFIG_SMP
-+int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
-+{
-+ return 0;
-+}
-+#endif
-+
-+static int
-+__sched_setaffinity(struct task_struct *p, struct affinity_context *ctx)
-+{
-+ int retval;
-+ cpumask_var_t cpus_allowed, new_mask;
-+
-+ if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
-+ return -ENOMEM;
-+
-+ if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
-+ retval = -ENOMEM;
-+ goto out_free_cpus_allowed;
-+ }
-+
-+ cpuset_cpus_allowed(p, cpus_allowed);
-+ cpumask_and(new_mask, ctx->new_mask, cpus_allowed);
-+
-+ ctx->new_mask = new_mask;
-+ ctx->flags |= SCA_CHECK;
-+
-+ retval = __set_cpus_allowed_ptr(p, ctx);
-+ if (retval)
-+ goto out_free_new_mask;
-+
-+ cpuset_cpus_allowed(p, cpus_allowed);
-+ if (!cpumask_subset(new_mask, cpus_allowed)) {
-+ /*
-+ * We must have raced with a concurrent cpuset
-+ * update. Just reset the cpus_allowed to the
-+ * cpuset's cpus_allowed
-+ */
-+ cpumask_copy(new_mask, cpus_allowed);
-+
-+ /*
-+ * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr()
-+ * will restore the previous user_cpus_ptr value.
-+ *
-+ * In the unlikely event a previous user_cpus_ptr exists,
-+ * we need to further restrict the mask to what is allowed
-+ * by that old user_cpus_ptr.
-+ */
-+ if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) {
-+ bool empty = !cpumask_and(new_mask, new_mask,
-+ ctx->user_mask);
-+
-+ if (WARN_ON_ONCE(empty))
-+ cpumask_copy(new_mask, cpus_allowed);
-+ }
-+ __set_cpus_allowed_ptr(p, ctx);
-+ retval = -EINVAL;
-+ }
-+
-+out_free_new_mask:
-+ free_cpumask_var(new_mask);
-+out_free_cpus_allowed:
-+ free_cpumask_var(cpus_allowed);
-+ return retval;
-+}
-+
-+long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
-+{
-+ struct affinity_context ac;
-+ struct cpumask *user_mask;
-+ int retval;
-+
-+ CLASS(find_get_task, p)(pid);
-+ if (!p)
-+ return -ESRCH;
-+
-+ if (p->flags & PF_NO_SETAFFINITY)
-+ return -EINVAL;
-+
-+ if (!check_same_owner(p)) {
-+ guard(rcu)();
-+ if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE))
-+ return -EPERM;
-+ }
-+
-+ retval = security_task_setscheduler(p);
-+ if (retval)
-+ return retval;
-+
-+ /*
-+ * With non-SMP configs, user_cpus_ptr/user_mask isn't used and
-+ * alloc_user_cpus_ptr() returns NULL.
-+ */
-+ user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE);
-+ if (user_mask) {
-+ cpumask_copy(user_mask, in_mask);
-+ } else if (IS_ENABLED(CONFIG_SMP)) {
-+ return -ENOMEM;
-+ }
-+
-+ ac = (struct affinity_context){
-+ .new_mask = in_mask,
-+ .user_mask = user_mask,
-+ .flags = SCA_USER,
-+ };
-+
-+ retval = __sched_setaffinity(p, &ac);
-+ kfree(ac.user_mask);
-+
-+ return retval;
-+}
-+
-+static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
-+ struct cpumask *new_mask)
-+{
-+ if (len < cpumask_size())
-+ cpumask_clear(new_mask);
-+ else if (len > cpumask_size())
-+ len = cpumask_size();
-+
-+ return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
-+}
-+
-+/**
-+ * sys_sched_setaffinity - set the CPU affinity of a process
-+ * @pid: pid of the process
-+ * @len: length in bytes of the bitmask pointed to by user_mask_ptr
-+ * @user_mask_ptr: user-space pointer to the new CPU mask
-+ *
-+ * Return: 0 on success. An error code otherwise.
-+ */
-+SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
-+ unsigned long __user *, user_mask_ptr)
-+{
-+ cpumask_var_t new_mask;
-+ int retval;
-+
-+ if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
-+ return -ENOMEM;
-+
-+ retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
-+ if (retval == 0)
-+ retval = sched_setaffinity(pid, new_mask);
-+ free_cpumask_var(new_mask);
-+ return retval;
-+}
-+
-+long sched_getaffinity(pid_t pid, cpumask_t *mask)
-+{
-+ struct task_struct *p;
-+ int retval;
-+
-+ guard(rcu)();
-+ p = find_process_by_pid(pid);
-+ if (!p)
-+ return -ESRCH;
-+
-+ retval = security_task_getscheduler(p);
-+ if (retval)
-+ return retval;
-+
-+ guard(raw_spinlock_irqsave)(&p->pi_lock);
-+ cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
-+
-+ return retval;
-+}
-+
-+/**
-+ * sys_sched_getaffinity - get the CPU affinity of a process
-+ * @pid: pid of the process
-+ * @len: length in bytes of the bitmask pointed to by user_mask_ptr
-+ * @user_mask_ptr: user-space pointer to hold the current CPU mask
-+ *
-+ * Return: size of CPU mask copied to user_mask_ptr on success. An
-+ * error code otherwise.
-+ */
-+SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
-+ unsigned long __user *, user_mask_ptr)
-+{
-+ int ret;
-+ cpumask_var_t mask;
-+
-+ if ((len * BITS_PER_BYTE) < nr_cpu_ids)
-+ return -EINVAL;
-+ if (len & (sizeof(unsigned long)-1))
-+ return -EINVAL;
-+
-+ if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
-+ return -ENOMEM;
-+
-+ ret = sched_getaffinity(pid, mask);
-+ if (ret == 0) {
-+ unsigned int retlen = min(len, cpumask_size());
-+
-+ if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen))
-+ ret = -EFAULT;
-+ else
-+ ret = retlen;
-+ }
-+ free_cpumask_var(mask);
-+
-+ return ret;
-+}
-+
-+static void do_sched_yield(void)
-+{
-+ struct rq *rq;
-+ struct rq_flags rf;
-+ struct task_struct *p;
-+
-+ if (!sched_yield_type)
-+ return;
-+
-+ rq = this_rq_lock_irq(&rf);
-+
-+ schedstat_inc(rq->yld_count);
-+
-+ p = current;
-+ if (rt_task(p)) {
-+ if (task_on_rq_queued(p))
-+ requeue_task(p, rq, task_sched_prio_idx(p, rq));
-+ } else if (rq->nr_running > 1) {
-+ if (1 == sched_yield_type) {
-+ do_sched_yield_type_1(p, rq);
-+ if (task_on_rq_queued(p))
-+ requeue_task(p, rq, task_sched_prio_idx(p, rq));
-+ } else if (2 == sched_yield_type) {
-+ rq->skip = p;
-+ }
-+ }
-+
-+ preempt_disable();
-+ raw_spin_unlock_irq(&rq->lock);
-+ sched_preempt_enable_no_resched();
-+
-+ schedule();
-+}
-+
-+/**
-+ * sys_sched_yield - yield the current processor to other threads.
-+ *
-+ * This function yields the current CPU to other tasks. If there are no
-+ * other threads running on this CPU then this function will return.
-+ *
-+ * Return: 0.
-+ */
-+SYSCALL_DEFINE0(sched_yield)
-+{
-+ do_sched_yield();
-+ return 0;
-+}
-+
-+#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
-+int __sched __cond_resched(void)
-+{
-+ if (should_resched(0)) {
-+ preempt_schedule_common();
-+ return 1;
-+ }
-+ /*
-+ * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
-+ * whether the current CPU is in an RCU read-side critical section,
-+ * so the tick can report quiescent states even for CPUs looping
-+ * in kernel context. In contrast, in non-preemptible kernels,
-+ * RCU readers leave no in-memory hints, which means that CPU-bound
-+ * processes executing in kernel context might never report an
-+ * RCU quiescent state. Therefore, the following code causes
-+ * cond_resched() to report a quiescent state, but only when RCU
-+ * is in urgent need of one.
-+ */
-+#ifndef CONFIG_PREEMPT_RCU
-+ rcu_all_qs();
-+#endif
-+ return 0;
-+}
-+EXPORT_SYMBOL(__cond_resched);
-+#endif
-+
-+#ifdef CONFIG_PREEMPT_DYNAMIC
-+#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
-+#define cond_resched_dynamic_enabled __cond_resched
-+#define cond_resched_dynamic_disabled ((void *)&__static_call_return0)
-+DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
-+EXPORT_STATIC_CALL_TRAMP(cond_resched);
-+
-+#define might_resched_dynamic_enabled __cond_resched
-+#define might_resched_dynamic_disabled ((void *)&__static_call_return0)
-+DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
-+EXPORT_STATIC_CALL_TRAMP(might_resched);
-+#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
-+static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
-+int __sched dynamic_cond_resched(void)
-+{
-+ klp_sched_try_switch();
-+ if (!static_branch_unlikely(&sk_dynamic_cond_resched))
-+ return 0;
-+ return __cond_resched();
-+}
-+EXPORT_SYMBOL(dynamic_cond_resched);
-+
-+static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
-+int __sched dynamic_might_resched(void)
-+{
-+ if (!static_branch_unlikely(&sk_dynamic_might_resched))
-+ return 0;
-+ return __cond_resched();
-+}
-+EXPORT_SYMBOL(dynamic_might_resched);
-+#endif
-+#endif
-+
-+/*
-+ * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
-+ * call schedule, and on return reacquire the lock.
-+ *
-+ * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
-+ * operations here to prevent schedule() from being called twice (once via
-+ * spin_unlock(), once by hand).
-+ */
-+int __cond_resched_lock(spinlock_t *lock)
-+{
-+ int resched = should_resched(PREEMPT_LOCK_OFFSET);
-+ int ret = 0;
-+
-+ lockdep_assert_held(lock);
-+
-+ if (spin_needbreak(lock) || resched) {
-+ spin_unlock(lock);
-+ if (!_cond_resched())
-+ cpu_relax();
-+ ret = 1;
-+ spin_lock(lock);
-+ }
-+ return ret;
-+}
-+EXPORT_SYMBOL(__cond_resched_lock);
-+
-+int __cond_resched_rwlock_read(rwlock_t *lock)
-+{
-+ int resched = should_resched(PREEMPT_LOCK_OFFSET);
-+ int ret = 0;
-+
-+ lockdep_assert_held_read(lock);
-+
-+ if (rwlock_needbreak(lock) || resched) {
-+ read_unlock(lock);
-+ if (!_cond_resched())
-+ cpu_relax();
-+ ret = 1;
-+ read_lock(lock);
-+ }
-+ return ret;
-+}
-+EXPORT_SYMBOL(__cond_resched_rwlock_read);
-+
-+int __cond_resched_rwlock_write(rwlock_t *lock)
-+{
-+ int resched = should_resched(PREEMPT_LOCK_OFFSET);
-+ int ret = 0;
-+
-+ lockdep_assert_held_write(lock);
-+
-+ if (rwlock_needbreak(lock) || resched) {
-+ write_unlock(lock);
-+ if (!_cond_resched())
-+ cpu_relax();
-+ ret = 1;
-+ write_lock(lock);
-+ }
-+ return ret;
-+}
-+EXPORT_SYMBOL(__cond_resched_rwlock_write);
-+
-+#ifdef CONFIG_PREEMPT_DYNAMIC
-+
-+#ifdef CONFIG_GENERIC_ENTRY
-+#include <linux/entry-common.h>
-+#endif
-+
-+/*
-+ * SC:cond_resched
-+ * SC:might_resched
-+ * SC:preempt_schedule
-+ * SC:preempt_schedule_notrace
-+ * SC:irqentry_exit_cond_resched
-+ *
-+ *
-+ * NONE:
-+ * cond_resched <- __cond_resched
-+ * might_resched <- RET0
-+ * preempt_schedule <- NOP
-+ * preempt_schedule_notrace <- NOP
-+ * irqentry_exit_cond_resched <- NOP
-+ *
-+ * VOLUNTARY:
-+ * cond_resched <- __cond_resched
-+ * might_resched <- __cond_resched
-+ * preempt_schedule <- NOP
-+ * preempt_schedule_notrace <- NOP
-+ * irqentry_exit_cond_resched <- NOP
-+ *
-+ * FULL:
-+ * cond_resched <- RET0
-+ * might_resched <- RET0
-+ * preempt_schedule <- preempt_schedule
-+ * preempt_schedule_notrace <- preempt_schedule_notrace
-+ * irqentry_exit_cond_resched <- irqentry_exit_cond_resched
-+ */
-+
-+enum {
-+ preempt_dynamic_undefined = -1,
-+ preempt_dynamic_none,
-+ preempt_dynamic_voluntary,
-+ preempt_dynamic_full,
-+};
-+
-+int preempt_dynamic_mode = preempt_dynamic_undefined;
-+
-+int sched_dynamic_mode(const char *str)
-+{
-+ if (!strcmp(str, "none"))
-+ return preempt_dynamic_none;
-+
-+ if (!strcmp(str, "voluntary"))
-+ return preempt_dynamic_voluntary;
-+
-+ if (!strcmp(str, "full"))
-+ return preempt_dynamic_full;
-+
-+ return -EINVAL;
-+}
-+
-+#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
-+#define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled)
-+#define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled)
-+#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
-+#define preempt_dynamic_enable(f) static_key_enable(&sk_dynamic_##f.key)
-+#define preempt_dynamic_disable(f) static_key_disable(&sk_dynamic_##f.key)
-+#else
-+#error "Unsupported PREEMPT_DYNAMIC mechanism"
-+#endif
-+
-+static DEFINE_MUTEX(sched_dynamic_mutex);
-+static bool klp_override;
-+
-+static void __sched_dynamic_update(int mode)
-+{
-+ /*
-+ * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
-+ * the ZERO state, which is invalid.
-+ */
-+ if (!klp_override)
-+ preempt_dynamic_enable(cond_resched);
-+ preempt_dynamic_enable(cond_resched);
-+ preempt_dynamic_enable(might_resched);
-+ preempt_dynamic_enable(preempt_schedule);
-+ preempt_dynamic_enable(preempt_schedule_notrace);
-+ preempt_dynamic_enable(irqentry_exit_cond_resched);
-+
-+ switch (mode) {
-+ case preempt_dynamic_none:
-+ if (!klp_override)
-+ preempt_dynamic_enable(cond_resched);
-+ preempt_dynamic_disable(might_resched);
-+ preempt_dynamic_disable(preempt_schedule);
-+ preempt_dynamic_disable(preempt_schedule_notrace);
-+ preempt_dynamic_disable(irqentry_exit_cond_resched);
-+ if (mode != preempt_dynamic_mode)
-+ pr_info("Dynamic Preempt: none\n");
-+ break;
-+
-+ case preempt_dynamic_voluntary:
-+ if (!klp_override)
-+ preempt_dynamic_enable(cond_resched);
-+ preempt_dynamic_enable(might_resched);
-+ preempt_dynamic_disable(preempt_schedule);
-+ preempt_dynamic_disable(preempt_schedule_notrace);
-+ preempt_dynamic_disable(irqentry_exit_cond_resched);
-+ if (mode != preempt_dynamic_mode)
-+ pr_info("Dynamic Preempt: voluntary\n");
-+ break;
-+
-+ case preempt_dynamic_full:
-+ if (!klp_override)
-+ preempt_dynamic_enable(cond_resched);
-+ preempt_dynamic_disable(might_resched);
-+ preempt_dynamic_enable(preempt_schedule);
-+ preempt_dynamic_enable(preempt_schedule_notrace);
-+ preempt_dynamic_enable(irqentry_exit_cond_resched);
-+ if (mode != preempt_dynamic_mode)
-+ pr_info("Dynamic Preempt: full\n");
-+ break;
-+ }
-+
-+ preempt_dynamic_mode = mode;
-+}
-+
-+void sched_dynamic_update(int mode)
-+{
-+ mutex_lock(&sched_dynamic_mutex);
-+ __sched_dynamic_update(mode);
-+ mutex_unlock(&sched_dynamic_mutex);
-+}
-+
-+#ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
-+
-+static int klp_cond_resched(void)
-+{
-+ __klp_sched_try_switch();
-+ return __cond_resched();
-+}
-+
-+void sched_dynamic_klp_enable(void)
-+{
-+ mutex_lock(&sched_dynamic_mutex);
-+
-+ klp_override = true;
-+ static_call_update(cond_resched, klp_cond_resched);
-+
-+ mutex_unlock(&sched_dynamic_mutex);
-+}
-+
-+void sched_dynamic_klp_disable(void)
-+{
-+ mutex_lock(&sched_dynamic_mutex);
-+
-+ klp_override = false;
-+ __sched_dynamic_update(preempt_dynamic_mode);
-+
-+ mutex_unlock(&sched_dynamic_mutex);
-+}
-+
-+#endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
-+
-+
-+static int __init setup_preempt_mode(char *str)
-+{
-+ int mode = sched_dynamic_mode(str);
-+ if (mode < 0) {
-+ pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
-+ return 0;
-+ }
-+
-+ sched_dynamic_update(mode);
-+ return 1;
-+}
-+__setup("preempt=", setup_preempt_mode);
-+
-+static void __init preempt_dynamic_init(void)
-+{
-+ if (preempt_dynamic_mode == preempt_dynamic_undefined) {
-+ if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
-+ sched_dynamic_update(preempt_dynamic_none);
-+ } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
-+ sched_dynamic_update(preempt_dynamic_voluntary);
-+ } else {
-+ /* Default static call setting, nothing to do */
-+ WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
-+ preempt_dynamic_mode = preempt_dynamic_full;
-+ pr_info("Dynamic Preempt: full\n");
-+ }
-+ }
-+}
-+
-+#define PREEMPT_MODEL_ACCESSOR(mode) \
-+ bool preempt_model_##mode(void) \
-+ { \
-+ WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
-+ return preempt_dynamic_mode == preempt_dynamic_##mode; \
-+ } \
-+ EXPORT_SYMBOL_GPL(preempt_model_##mode)
-+
-+PREEMPT_MODEL_ACCESSOR(none);
-+PREEMPT_MODEL_ACCESSOR(voluntary);
-+PREEMPT_MODEL_ACCESSOR(full);
-+
-+#else /* !CONFIG_PREEMPT_DYNAMIC */
-+
-+static inline void preempt_dynamic_init(void) { }
-+
-+#endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */
-+
-+/**
-+ * yield - yield the current processor to other threads.
-+ *
-+ * Do not ever use this function, there's a 99% chance you're doing it wrong.
-+ *
-+ * The scheduler is at all times free to pick the calling task as the most
-+ * eligible task to run, if removing the yield() call from your code breaks
-+ * it, it's already broken.
-+ *
-+ * Typical broken usage is:
-+ *
-+ * while (!event)
-+ * yield();
-+ *
-+ * where one assumes that yield() will let 'the other' process run that will
-+ * make event true. If the current task is a SCHED_FIFO task that will never
-+ * happen. Never use yield() as a progress guarantee!!
-+ *
-+ * If you want to use yield() to wait for something, use wait_event().
-+ * If you want to use yield() to be 'nice' for others, use cond_resched().
-+ * If you still want to use yield(), do not!
-+ */
-+void __sched yield(void)
-+{
-+ set_current_state(TASK_RUNNING);
-+ do_sched_yield();
-+}
-+EXPORT_SYMBOL(yield);
-+
-+/**
-+ * yield_to - yield the current processor to another thread in
-+ * your thread group, or accelerate that thread toward the
-+ * processor it's on.
-+ * @p: target task
-+ * @preempt: whether task preemption is allowed or not
-+ *
-+ * It's the caller's job to ensure that the target task struct
-+ * can't go away on us before we can do any checks.
-+ *
-+ * In Alt schedule FW, yield_to is not supported.
-+ *
-+ * Return:
-+ * true (>0) if we indeed boosted the target task.
-+ * false (0) if we failed to boost the target.
-+ * -ESRCH if there's no task to yield to.
-+ */
-+int __sched yield_to(struct task_struct *p, bool preempt)
-+{
-+ return 0;
-+}
-+EXPORT_SYMBOL_GPL(yield_to);
-+
-+int io_schedule_prepare(void)
-+{
-+ int old_iowait = current->in_iowait;
-+
-+ current->in_iowait = 1;
-+ blk_flush_plug(current->plug, true);
-+ return old_iowait;
-+}
-+
-+void io_schedule_finish(int token)
-+{
-+ current->in_iowait = token;
-+}
-+
-+/*
-+ * This task is about to go to sleep on IO. Increment rq->nr_iowait so
-+ * that process accounting knows that this is a task in IO wait state.
-+ *
-+ * But don't do that if it is a deliberate, throttling IO wait (this task
-+ * has set its backing_dev_info: the queue against which it should throttle)
-+ */
-+
-+long __sched io_schedule_timeout(long timeout)
-+{
-+ int token;
-+ long ret;
-+
-+ token = io_schedule_prepare();
-+ ret = schedule_timeout(timeout);
-+ io_schedule_finish(token);
-+
-+ return ret;
-+}
-+EXPORT_SYMBOL(io_schedule_timeout);
-+
-+void __sched io_schedule(void)
-+{
-+ int token;
-+
-+ token = io_schedule_prepare();
-+ schedule();
-+ io_schedule_finish(token);
-+}
-+EXPORT_SYMBOL(io_schedule);
-+
-+/**
-+ * sys_sched_get_priority_max - return maximum RT priority.
-+ * @policy: scheduling class.
-+ *
-+ * Return: On success, this syscall returns the maximum
-+ * rt_priority that can be used by a given scheduling class.
-+ * On failure, a negative error code is returned.
-+ */
-+SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
-+{
-+ int ret = -EINVAL;
-+
-+ switch (policy) {
-+ case SCHED_FIFO:
-+ case SCHED_RR:
-+ ret = MAX_RT_PRIO - 1;
-+ break;
-+ case SCHED_NORMAL:
-+ case SCHED_BATCH:
-+ case SCHED_IDLE:
-+ ret = 0;
-+ break;
-+ }
-+ return ret;
-+}
-+
-+/**
-+ * sys_sched_get_priority_min - return minimum RT priority.
-+ * @policy: scheduling class.
-+ *
-+ * Return: On success, this syscall returns the minimum
-+ * rt_priority that can be used by a given scheduling class.
-+ * On failure, a negative error code is returned.
-+ */
-+SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
-+{
-+ int ret = -EINVAL;
-+
-+ switch (policy) {
-+ case SCHED_FIFO:
-+ case SCHED_RR:
-+ ret = 1;
-+ break;
-+ case SCHED_NORMAL:
-+ case SCHED_BATCH:
-+ case SCHED_IDLE:
-+ ret = 0;
-+ break;
-+ }
-+ return ret;
-+}
-+
-+static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
-+{
-+ struct task_struct *p;
-+ int retval;
-+
-+ alt_sched_debug();
-+
-+ if (pid < 0)
-+ return -EINVAL;
-+
-+ guard(rcu)();
-+ p = find_process_by_pid(pid);
-+ if (!p)
-+ return -EINVAL;
-+
-+ retval = security_task_getscheduler(p);
-+ if (retval)
-+ return retval;
-+
-+ *t = ns_to_timespec64(sysctl_sched_base_slice);
-+ return 0;
-+}
-+
-+/**
-+ * sys_sched_rr_get_interval - return the default timeslice of a process.
-+ * @pid: pid of the process.
-+ * @interval: userspace pointer to the timeslice value.
-+ *
-+ *
-+ * Return: On success, 0 and the timeslice is in @interval. Otherwise,
-+ * an error code.
-+ */
-+SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
-+ struct __kernel_timespec __user *, interval)
-+{
-+ struct timespec64 t;
-+ int retval = sched_rr_get_interval(pid, &t);
-+
-+ if (retval == 0)
-+ retval = put_timespec64(&t, interval);
-+
-+ return retval;
-+}
-+
-+#ifdef CONFIG_COMPAT_32BIT_TIME
-+SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
-+ struct old_timespec32 __user *, interval)
-+{
-+ struct timespec64 t;
-+ int retval = sched_rr_get_interval(pid, &t);
-+
-+ if (retval == 0)
-+ retval = put_old_timespec32(&t, interval);
-+ return retval;
-+}
-+#endif
-+
-+void sched_show_task(struct task_struct *p)
-+{
-+ unsigned long free = 0;
-+ int ppid;
-+
-+ if (!try_get_task_stack(p))
-+ return;
-+
-+ pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
-+
-+ if (task_is_running(p))
-+ pr_cont(" running task ");
-+#ifdef CONFIG_DEBUG_STACK_USAGE
-+ free = stack_not_used(p);
-+#endif
-+ ppid = 0;
-+ rcu_read_lock();
-+ if (pid_alive(p))
-+ ppid = task_pid_nr(rcu_dereference(p->real_parent));
-+ rcu_read_unlock();
-+ pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d flags:0x%08lx\n",
-+ free, task_pid_nr(p), task_tgid_nr(p),
-+ ppid, read_task_thread_flags(p));
-+
-+ print_worker_info(KERN_INFO, p);
-+ print_stop_info(KERN_INFO, p);
-+ show_stack(p, NULL, KERN_INFO);
-+ put_task_stack(p);
-+}
-+EXPORT_SYMBOL_GPL(sched_show_task);
-+
-+static inline bool
-+state_filter_match(unsigned long state_filter, struct task_struct *p)
-+{
-+ unsigned int state = READ_ONCE(p->__state);
-+
-+ /* no filter, everything matches */
-+ if (!state_filter)
-+ return true;
-+
-+ /* filter, but doesn't match */
-+ if (!(state & state_filter))
-+ return false;
-+
-+ /*
-+ * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
-+ * TASK_KILLABLE).
-+ */
-+ if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
-+ return false;
-+
-+ return true;
-+}
-+
-+
-+void show_state_filter(unsigned int state_filter)
-+{
-+ struct task_struct *g, *p;
-+
-+ rcu_read_lock();
-+ for_each_process_thread(g, p) {
-+ /*
-+ * reset the NMI-timeout, listing all files on a slow
-+ * console might take a lot of time:
-+ * Also, reset softlockup watchdogs on all CPUs, because
-+ * another CPU might be blocked waiting for us to process
-+ * an IPI.
-+ */
-+ touch_nmi_watchdog();
-+ touch_all_softlockup_watchdogs();
-+ if (state_filter_match(state_filter, p))
-+ sched_show_task(p);
-+ }
-+
-+#ifdef CONFIG_SCHED_DEBUG
-+ /* TODO: Alt schedule FW should support this
-+ if (!state_filter)
-+ sysrq_sched_debug_show();
-+ */
-+#endif
-+ rcu_read_unlock();
-+ /*
-+ * Only show locks if all tasks are dumped:
-+ */
-+ if (!state_filter)
-+ debug_show_all_locks();
-+}
-+
-+void dump_cpu_task(int cpu)
-+{
-+ if (cpu == smp_processor_id() && in_hardirq()) {
-+ struct pt_regs *regs;
-+
-+ regs = get_irq_regs();
-+ if (regs) {
-+ show_regs(regs);
-+ return;
-+ }
-+ }
-+
-+ if (trigger_single_cpu_backtrace(cpu))
-+ return;
-+
-+ pr_info("Task dump for CPU %d:\n", cpu);
-+ sched_show_task(cpu_curr(cpu));
-+}
-+
-+/**
-+ * init_idle - set up an idle thread for a given CPU
-+ * @idle: task in question
-+ * @cpu: CPU the idle task belongs to
-+ *
-+ * NOTE: this function does not set the idle thread's NEED_RESCHED
-+ * flag, to make booting more robust.
-+ */
-+void __init init_idle(struct task_struct *idle, int cpu)
-+{
-+#ifdef CONFIG_SMP
-+ struct affinity_context ac = (struct affinity_context) {
-+ .new_mask = cpumask_of(cpu),
-+ .flags = 0,
-+ };
-+#endif
-+ struct rq *rq = cpu_rq(cpu);
-+ unsigned long flags;
-+
-+ __sched_fork(0, idle);
-+
-+ raw_spin_lock_irqsave(&idle->pi_lock, flags);
-+ raw_spin_lock(&rq->lock);
-+
-+ idle->last_ran = rq->clock_task;
-+ idle->__state = TASK_RUNNING;
-+ /*
-+ * PF_KTHREAD should already be set at this point; regardless, make it
-+ * look like a proper per-CPU kthread.
-+ */
-+ idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY;
-+ kthread_set_per_cpu(idle, cpu);
-+
-+ sched_queue_init_idle(&rq->queue, idle);
-+
-+#ifdef CONFIG_SMP
-+ /*
-+ * It's possible that init_idle() gets called multiple times on a task,
-+ * in that case do_set_cpus_allowed() will not do the right thing.
-+ *
-+ * And since this is boot we can forgo the serialisation.
-+ */
-+ set_cpus_allowed_common(idle, &ac);
-+#endif
-+
-+ /* Silence PROVE_RCU */
-+ rcu_read_lock();
-+ __set_task_cpu(idle, cpu);
-+ rcu_read_unlock();
-+
-+ rq->idle = idle;
-+ rcu_assign_pointer(rq->curr, idle);
-+ idle->on_cpu = 1;
-+
-+ raw_spin_unlock(&rq->lock);
-+ raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
-+
-+ /* Set the preempt count _outside_ the spinlocks! */
-+ init_idle_preempt_count(idle, cpu);
-+
-+ ftrace_graph_init_idle_task(idle, cpu);
-+ vtime_init_idle(idle, cpu);
-+#ifdef CONFIG_SMP
-+ sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
-+#endif
-+}
-+
-+#ifdef CONFIG_SMP
-+
-+int cpuset_cpumask_can_shrink(const struct cpumask __maybe_unused *cur,
-+ const struct cpumask __maybe_unused *trial)
-+{
-+ return 1;
-+}
-+
-+int task_can_attach(struct task_struct *p)
-+{
-+ int ret = 0;
-+
-+ /*
-+ * Kthreads which disallow setaffinity shouldn't be moved
-+ * to a new cpuset; we don't want to change their CPU
-+ * affinity and isolating such threads by their set of
-+ * allowed nodes is unnecessary. Thus, cpusets are not
-+ * applicable for such threads. This prevents checking for
-+ * success of set_cpus_allowed_ptr() on all attached tasks
-+ * before cpus_mask may be changed.
-+ */
-+ if (p->flags & PF_NO_SETAFFINITY)
-+ ret = -EINVAL;
-+
-+ return ret;
-+}
-+
-+bool sched_smp_initialized __read_mostly;
-+
-+#ifdef CONFIG_HOTPLUG_CPU
-+/*
-+ * Ensures that the idle task is using init_mm right before its CPU goes
-+ * offline.
-+ */
-+void idle_task_exit(void)
-+{
-+ struct mm_struct *mm = current->active_mm;
-+
-+ BUG_ON(current != this_rq()->idle);
-+
-+ if (mm != &init_mm) {
-+ switch_mm(mm, &init_mm, current);
-+ finish_arch_post_lock_switch();
-+ }
-+
-+ /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
-+}
-+
-+static int __balance_push_cpu_stop(void *arg)
-+{
-+ struct task_struct *p = arg;
-+ struct rq *rq = this_rq();
-+ struct rq_flags rf;
-+ int cpu;
-+
-+ raw_spin_lock_irq(&p->pi_lock);
-+ rq_lock(rq, &rf);
-+
-+ update_rq_clock(rq);
-+
-+ if (task_rq(p) == rq && task_on_rq_queued(p)) {
-+ cpu = select_fallback_rq(rq->cpu, p);
-+ rq = __migrate_task(rq, p, cpu);
-+ }
-+
-+ rq_unlock(rq, &rf);
-+ raw_spin_unlock_irq(&p->pi_lock);
-+
-+ put_task_struct(p);
-+
-+ return 0;
-+}
-+
-+static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
-+
-+/*
-+ * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
-+ * effective when the hotplug motion is down.
-+ */
-+static void balance_push(struct rq *rq)
-+{
-+ struct task_struct *push_task = rq->curr;
-+
-+ lockdep_assert_held(&rq->lock);
-+
-+ /*
-+ * Ensure the thing is persistent until balance_push_set(.on = false);
-+ */
-+ rq->balance_callback = &balance_push_callback;
-+
-+ /*
-+ * Only active while going offline and when invoked on the outgoing
-+ * CPU.
-+ */
-+ if (!cpu_dying(rq->cpu) || rq != this_rq())
-+ return;
-+
-+ /*
-+ * Both the cpu-hotplug and stop task are in this case and are
-+ * required to complete the hotplug process.
-+ */
-+ if (kthread_is_per_cpu(push_task) ||
-+ is_migration_disabled(push_task)) {
-+
-+ /*
-+ * If this is the idle task on the outgoing CPU try to wake
-+ * up the hotplug control thread which might wait for the
-+ * last task to vanish. The rcuwait_active() check is
-+ * accurate here because the waiter is pinned on this CPU
-+ * and can't obviously be running in parallel.
-+ *
-+ * On RT kernels this also has to check whether there are
-+ * pinned and scheduled out tasks on the runqueue. They
-+ * need to leave the migrate disabled section first.
-+ */
-+ if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
-+ rcuwait_active(&rq->hotplug_wait)) {
-+ raw_spin_unlock(&rq->lock);
-+ rcuwait_wake_up(&rq->hotplug_wait);
-+ raw_spin_lock(&rq->lock);
-+ }
-+ return;
-+ }
-+
-+ get_task_struct(push_task);
-+ /*
-+ * Temporarily drop rq->lock such that we can wake-up the stop task.
-+ * Both preemption and IRQs are still disabled.
-+ */
-+ preempt_disable();
-+ raw_spin_unlock(&rq->lock);
-+ stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
-+ this_cpu_ptr(&push_work));
-+ preempt_enable();
-+ /*
-+ * At this point need_resched() is true and we'll take the loop in
-+ * schedule(). The next pick is obviously going to be the stop task
-+ * which kthread_is_per_cpu() and will push this task away.
-+ */
-+ raw_spin_lock(&rq->lock);
-+}
-+
-+static void balance_push_set(int cpu, bool on)
-+{
-+ struct rq *rq = cpu_rq(cpu);
-+ struct rq_flags rf;
-+
-+ rq_lock_irqsave(rq, &rf);
-+ if (on) {
-+ WARN_ON_ONCE(rq->balance_callback);
-+ rq->balance_callback = &balance_push_callback;
-+ } else if (rq->balance_callback == &balance_push_callback) {
-+ rq->balance_callback = NULL;
-+ }
-+ rq_unlock_irqrestore(rq, &rf);
-+}
-+
-+/*
-+ * Invoked from a CPUs hotplug control thread after the CPU has been marked
-+ * inactive. All tasks which are not per CPU kernel threads are either
-+ * pushed off this CPU now via balance_push() or placed on a different CPU
-+ * during wakeup. Wait until the CPU is quiescent.
-+ */
-+static void balance_hotplug_wait(void)
-+{
-+ struct rq *rq = this_rq();
-+
-+ rcuwait_wait_event(&rq->hotplug_wait,
-+ rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
-+ TASK_UNINTERRUPTIBLE);
-+}
-+
-+#else
-+
-+static void balance_push(struct rq *rq)
-+{
-+}
-+
-+static void balance_push_set(int cpu, bool on)
-+{
-+}
-+
-+static inline void balance_hotplug_wait(void)
-+{
-+}
-+#endif /* CONFIG_HOTPLUG_CPU */
-+
-+static void set_rq_offline(struct rq *rq)
-+{
-+ if (rq->online) {
-+ update_rq_clock(rq);
-+ rq->online = false;
-+ }
-+}
-+
-+static void set_rq_online(struct rq *rq)
-+{
-+ if (!rq->online)
-+ rq->online = true;
-+}
-+
-+/*
-+ * used to mark begin/end of suspend/resume:
-+ */
-+static int num_cpus_frozen;
-+
-+/*
-+ * Update cpusets according to cpu_active mask. If cpusets are
-+ * disabled, cpuset_update_active_cpus() becomes a simple wrapper
-+ * around partition_sched_domains().
-+ *
-+ * If we come here as part of a suspend/resume, don't touch cpusets because we
-+ * want to restore it back to its original state upon resume anyway.
-+ */
-+static void cpuset_cpu_active(void)
-+{
-+ if (cpuhp_tasks_frozen) {
-+ /*
-+ * num_cpus_frozen tracks how many CPUs are involved in suspend
-+ * resume sequence. As long as this is not the last online
-+ * operation in the resume sequence, just build a single sched
-+ * domain, ignoring cpusets.
-+ */
-+ partition_sched_domains(1, NULL, NULL);
-+ if (--num_cpus_frozen)
-+ return;
-+ /*
-+ * This is the last CPU online operation. So fall through and
-+ * restore the original sched domains by considering the
-+ * cpuset configurations.
-+ */
-+ cpuset_force_rebuild();
-+ }
-+
-+ cpuset_update_active_cpus();
-+}
-+
-+static int cpuset_cpu_inactive(unsigned int cpu)
-+{
-+ if (!cpuhp_tasks_frozen) {
-+ cpuset_update_active_cpus();
-+ } else {
-+ num_cpus_frozen++;
-+ partition_sched_domains(1, NULL, NULL);
-+ }
-+ return 0;
-+}
-+
-+int sched_cpu_activate(unsigned int cpu)
-+{
-+ struct rq *rq = cpu_rq(cpu);
-+ unsigned long flags;
-+
-+ /*
-+ * Clear the balance_push callback and prepare to schedule
-+ * regular tasks.
-+ */
-+ balance_push_set(cpu, false);
-+
-+#ifdef CONFIG_SCHED_SMT
-+ /*
-+ * When going up, increment the number of cores with SMT present.
-+ */
-+ if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
-+ static_branch_inc_cpuslocked(&sched_smt_present);
-+#endif
-+ set_cpu_active(cpu, true);
-+
-+ if (sched_smp_initialized)
-+ cpuset_cpu_active();
-+
-+ /*
-+ * Put the rq online, if not already. This happens:
-+ *
-+ * 1) In the early boot process, because we build the real domains
-+ * after all cpus have been brought up.
-+ *
-+ * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
-+ * domains.
-+ */
-+ raw_spin_lock_irqsave(&rq->lock, flags);
-+ set_rq_online(rq);
-+ raw_spin_unlock_irqrestore(&rq->lock, flags);
-+
-+ return 0;
-+}
-+
-+int sched_cpu_deactivate(unsigned int cpu)
-+{
-+ struct rq *rq = cpu_rq(cpu);
-+ unsigned long flags;
-+ int ret;
-+
-+ set_cpu_active(cpu, false);
-+
-+ /*
-+ * From this point forward, this CPU will refuse to run any task that
-+ * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
-+ * push those tasks away until this gets cleared, see
-+ * sched_cpu_dying().
-+ */
-+ balance_push_set(cpu, true);
-+
-+ /*
-+ * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
-+ * users of this state to go away such that all new such users will
-+ * observe it.
-+ *
-+ * Specifically, we rely on ttwu to no longer target this CPU, see
-+ * ttwu_queue_cond() and is_cpu_allowed().
-+ *
-+ * Do sync before park smpboot threads to take care the rcu boost case.
-+ */
-+ synchronize_rcu();
-+
-+ raw_spin_lock_irqsave(&rq->lock, flags);
-+ set_rq_offline(rq);
-+ raw_spin_unlock_irqrestore(&rq->lock, flags);
-+
-+#ifdef CONFIG_SCHED_SMT
-+ /*
-+ * When going down, decrement the number of cores with SMT present.
-+ */
-+ if (cpumask_weight(cpu_smt_mask(cpu)) == 2) {
-+ static_branch_dec_cpuslocked(&sched_smt_present);
-+ if (!static_branch_likely(&sched_smt_present))
-+ cpumask_clear(&sched_sg_idle_mask);
-+ }
-+#endif
-+
-+ if (!sched_smp_initialized)
-+ return 0;
-+
-+ ret = cpuset_cpu_inactive(cpu);
-+ if (ret) {
-+ balance_push_set(cpu, false);
-+ set_cpu_active(cpu, true);
-+ return ret;
-+ }
-+
-+ return 0;
-+}
-+
-+static void sched_rq_cpu_starting(unsigned int cpu)
-+{
-+ struct rq *rq = cpu_rq(cpu);
-+
-+ rq->calc_load_update = calc_load_update;
-+}
-+
-+int sched_cpu_starting(unsigned int cpu)
-+{
-+ sched_rq_cpu_starting(cpu);
-+ sched_tick_start(cpu);
-+ return 0;
-+}
-+
-+#ifdef CONFIG_HOTPLUG_CPU
-+
-+/*
-+ * Invoked immediately before the stopper thread is invoked to bring the
-+ * CPU down completely. At this point all per CPU kthreads except the
-+ * hotplug thread (current) and the stopper thread (inactive) have been
-+ * either parked or have been unbound from the outgoing CPU. Ensure that
-+ * any of those which might be on the way out are gone.
-+ *
-+ * If after this point a bound task is being woken on this CPU then the
-+ * responsible hotplug callback has failed to do it's job.
-+ * sched_cpu_dying() will catch it with the appropriate fireworks.
-+ */
-+int sched_cpu_wait_empty(unsigned int cpu)
-+{
-+ balance_hotplug_wait();
-+ return 0;
-+}
-+
-+/*
-+ * Since this CPU is going 'away' for a while, fold any nr_active delta we
-+ * might have. Called from the CPU stopper task after ensuring that the
-+ * stopper is the last running task on the CPU, so nr_active count is
-+ * stable. We need to take the teardown thread which is calling this into
-+ * account, so we hand in adjust = 1 to the load calculation.
-+ *
-+ * Also see the comment "Global load-average calculations".
-+ */
-+static void calc_load_migrate(struct rq *rq)
-+{
-+ long delta = calc_load_fold_active(rq, 1);
-+
-+ if (delta)
-+ atomic_long_add(delta, &calc_load_tasks);
-+}
-+
-+static void dump_rq_tasks(struct rq *rq, const char *loglvl)
-+{
-+ struct task_struct *g, *p;
-+ int cpu = cpu_of(rq);
-+
-+ lockdep_assert_held(&rq->lock);
-+
-+ printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
-+ for_each_process_thread(g, p) {
-+ if (task_cpu(p) != cpu)
-+ continue;
-+
-+ if (!task_on_rq_queued(p))
-+ continue;
-+
-+ printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
-+ }
-+}
-+
-+int sched_cpu_dying(unsigned int cpu)
-+{
-+ struct rq *rq = cpu_rq(cpu);
-+ unsigned long flags;
-+
-+ /* Handle pending wakeups and then migrate everything off */
-+ sched_tick_stop(cpu);
-+
-+ raw_spin_lock_irqsave(&rq->lock, flags);
-+ if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
-+ WARN(true, "Dying CPU not properly vacated!");
-+ dump_rq_tasks(rq, KERN_WARNING);
-+ }
-+ raw_spin_unlock_irqrestore(&rq->lock, flags);
-+
-+ calc_load_migrate(rq);
-+ hrtick_clear(rq);
-+ return 0;
-+}
-+#endif
-+
-+#ifdef CONFIG_SMP
-+static void sched_init_topology_cpumask_early(void)
-+{
-+ int cpu;
-+ cpumask_t *tmp;
-+
-+ for_each_possible_cpu(cpu) {
-+ /* init topo masks */
-+ tmp = per_cpu(sched_cpu_topo_masks, cpu);
-+
-+ cpumask_copy(tmp, cpumask_of(cpu));
-+ tmp++;
-+ cpumask_copy(tmp, cpu_possible_mask);
-+ per_cpu(sched_cpu_llc_mask, cpu) = tmp;
-+ per_cpu(sched_cpu_topo_end_mask, cpu) = ++tmp;
-+ /*per_cpu(sd_llc_id, cpu) = cpu;*/
-+ }
-+}
-+
-+#define TOPOLOGY_CPUMASK(name, mask, last)\
-+ if (cpumask_and(topo, topo, mask)) { \
-+ cpumask_copy(topo, mask); \
-+ printk(KERN_INFO "sched: cpu#%02d topo: 0x%08lx - "#name, \
-+ cpu, (topo++)->bits[0]); \
-+ } \
-+ if (!last) \
-+ bitmap_complement(cpumask_bits(topo), cpumask_bits(mask), \
-+ nr_cpumask_bits);
-+
-+static void sched_init_topology_cpumask(void)
-+{
-+ int cpu;
-+ cpumask_t *topo;
-+
-+ for_each_online_cpu(cpu) {
-+ /* take chance to reset time slice for idle tasks */
-+ cpu_rq(cpu)->idle->time_slice = sysctl_sched_base_slice;
-+
-+ topo = per_cpu(sched_cpu_topo_masks, cpu) + 1;
-+
-+ bitmap_complement(cpumask_bits(topo), cpumask_bits(cpumask_of(cpu)),
-+ nr_cpumask_bits);
-+#ifdef CONFIG_SCHED_SMT
-+ TOPOLOGY_CPUMASK(smt, topology_sibling_cpumask(cpu), false);
-+#endif
-+ per_cpu(sd_llc_id, cpu) = cpumask_first(cpu_coregroup_mask(cpu));
-+ per_cpu(sched_cpu_llc_mask, cpu) = topo;
-+ TOPOLOGY_CPUMASK(coregroup, cpu_coregroup_mask(cpu), false);
-+
-+ TOPOLOGY_CPUMASK(core, topology_core_cpumask(cpu), false);
-+
-+ TOPOLOGY_CPUMASK(others, cpu_online_mask, true);
-+
-+ per_cpu(sched_cpu_topo_end_mask, cpu) = topo;
-+ printk(KERN_INFO "sched: cpu#%02d llc_id = %d, llc_mask idx = %d\n",
-+ cpu, per_cpu(sd_llc_id, cpu),
-+ (int) (per_cpu(sched_cpu_llc_mask, cpu) -
-+ per_cpu(sched_cpu_topo_masks, cpu)));
-+ }
-+}
-+#endif
-+
-+void __init sched_init_smp(void)
-+{
-+ /* Move init over to a non-isolated CPU */
-+ if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
-+ BUG();
-+ current->flags &= ~PF_NO_SETAFFINITY;
-+
-+ sched_init_topology_cpumask();
-+
-+ sched_smp_initialized = true;
-+}
-+
-+static int __init migration_init(void)
-+{
-+ sched_cpu_starting(smp_processor_id());
-+ return 0;
-+}
-+early_initcall(migration_init);
-+
-+#else
-+void __init sched_init_smp(void)
-+{
-+ cpu_rq(0)->idle->time_slice = sysctl_sched_base_slice;
-+}
-+#endif /* CONFIG_SMP */
-+
-+int in_sched_functions(unsigned long addr)
-+{
-+ return in_lock_functions(addr) ||
-+ (addr >= (unsigned long)__sched_text_start
-+ && addr < (unsigned long)__sched_text_end);
-+}
-+
-+#ifdef CONFIG_CGROUP_SCHED
-+/* task group related information */
-+struct task_group {
-+ struct cgroup_subsys_state css;
-+
-+ struct rcu_head rcu;
-+ struct list_head list;
-+
-+ struct task_group *parent;
-+ struct list_head siblings;
-+ struct list_head children;
-+#ifdef CONFIG_FAIR_GROUP_SCHED
-+ unsigned long shares;
-+#endif
-+};
-+
-+/*
-+ * Default task group.
-+ * Every task in system belongs to this group at bootup.
-+ */
-+struct task_group root_task_group;
-+LIST_HEAD(task_groups);
-+
-+/* Cacheline aligned slab cache for task_group */
-+static struct kmem_cache *task_group_cache __ro_after_init;
-+#endif /* CONFIG_CGROUP_SCHED */
-+
-+void __init sched_init(void)
-+{
-+ int i;
-+ struct rq *rq;
-+
-+ printk(KERN_INFO "sched/alt: "ALT_SCHED_NAME" CPU Scheduler "ALT_SCHED_VERSION\
-+ " by Alfred Chen.\n");
-+
-+ wait_bit_init();
-+
-+#ifdef CONFIG_SMP
-+ for (i = 0; i < SCHED_QUEUE_BITS; i++)
-+ cpumask_copy(sched_preempt_mask + i, cpu_present_mask);
-+#endif
-+
-+#ifdef CONFIG_CGROUP_SCHED
-+ task_group_cache = KMEM_CACHE(task_group, 0);
-+
-+ list_add(&root_task_group.list, &task_groups);
-+ INIT_LIST_HEAD(&root_task_group.children);
-+ INIT_LIST_HEAD(&root_task_group.siblings);
-+#endif /* CONFIG_CGROUP_SCHED */
-+ for_each_possible_cpu(i) {
-+ rq = cpu_rq(i);
-+
-+ sched_queue_init(&rq->queue);
-+ rq->prio = IDLE_TASK_SCHED_PRIO;
-+ rq->skip = NULL;
-+
-+ raw_spin_lock_init(&rq->lock);
-+ rq->nr_running = rq->nr_uninterruptible = 0;
-+ rq->calc_load_active = 0;
-+ rq->calc_load_update = jiffies + LOAD_FREQ;
-+#ifdef CONFIG_SMP
-+ rq->online = false;
-+ rq->cpu = i;
-+
-+#ifdef CONFIG_SCHED_SMT
-+ rq->active_balance = 0;
-+#endif
-+
-+#ifdef CONFIG_NO_HZ_COMMON
-+ INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
-+#endif
-+ rq->balance_callback = &balance_push_callback;
-+#ifdef CONFIG_HOTPLUG_CPU
-+ rcuwait_init(&rq->hotplug_wait);
-+#endif
-+#endif /* CONFIG_SMP */
-+ rq->nr_switches = 0;
-+
-+ hrtick_rq_init(rq);
-+ atomic_set(&rq->nr_iowait, 0);
-+
-+ zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
-+ }
-+#ifdef CONFIG_SMP
-+ /* Set rq->online for cpu 0 */
-+ cpu_rq(0)->online = true;
-+#endif
-+ /*
-+ * The boot idle thread does lazy MMU switching as well:
-+ */
-+ mmgrab(&init_mm);
-+ enter_lazy_tlb(&init_mm, current);
-+
-+ /*
-+ * The idle task doesn't need the kthread struct to function, but it
-+ * is dressed up as a per-CPU kthread and thus needs to play the part
-+ * if we want to avoid special-casing it in code that deals with per-CPU
-+ * kthreads.
-+ */
-+ WARN_ON(!set_kthread_struct(current));
-+
-+ /*
-+ * Make us the idle thread. Technically, schedule() should not be
-+ * called from this thread, however somewhere below it might be,
-+ * but because we are the idle thread, we just pick up running again
-+ * when this runqueue becomes "idle".
-+ */
-+ init_idle(current, smp_processor_id());
-+
-+ calc_load_update = jiffies + LOAD_FREQ;
-+
-+#ifdef CONFIG_SMP
-+ idle_thread_set_boot_cpu();
-+ balance_push_set(smp_processor_id(), false);
-+
-+ sched_init_topology_cpumask_early();
-+#endif /* SMP */
-+
-+ preempt_dynamic_init();
-+}
-+
-+#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
-+
-+void __might_sleep(const char *file, int line)
-+{
-+ unsigned int state = get_current_state();
-+ /*
-+ * Blocking primitives will set (and therefore destroy) current->state,
-+ * since we will exit with TASK_RUNNING make sure we enter with it,
-+ * otherwise we will destroy state.
-+ */
-+ WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
-+ "do not call blocking ops when !TASK_RUNNING; "
-+ "state=%x set at [<%p>] %pS\n", state,
-+ (void *)current->task_state_change,
-+ (void *)current->task_state_change);
-+
-+ __might_resched(file, line, 0);
-+}
-+EXPORT_SYMBOL(__might_sleep);
-+
-+static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
-+{
-+ if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
-+ return;
-+
-+ if (preempt_count() == preempt_offset)
-+ return;
-+
-+ pr_err("Preemption disabled at:");
-+ print_ip_sym(KERN_ERR, ip);
-+}
-+
-+static inline bool resched_offsets_ok(unsigned int offsets)
-+{
-+ unsigned int nested = preempt_count();
-+
-+ nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
-+
-+ return nested == offsets;
-+}
-+
-+void __might_resched(const char *file, int line, unsigned int offsets)
-+{
-+ /* Ratelimiting timestamp: */
-+ static unsigned long prev_jiffy;
-+
-+ unsigned long preempt_disable_ip;
-+
-+ /* WARN_ON_ONCE() by default, no rate limit required: */
-+ rcu_sleep_check();
-+
-+ if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
-+ !is_idle_task(current) && !current->non_block_count) ||
-+ system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
-+ oops_in_progress)
-+ return;
-+ if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
-+ return;
-+ prev_jiffy = jiffies;
-+
-+ /* Save this before calling printk(), since that will clobber it: */
-+ preempt_disable_ip = get_preempt_disable_ip(current);
-+
-+ pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
-+ file, line);
-+ pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
-+ in_atomic(), irqs_disabled(), current->non_block_count,
-+ current->pid, current->comm);
-+ pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
-+ offsets & MIGHT_RESCHED_PREEMPT_MASK);
-+
-+ if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
-+ pr_err("RCU nest depth: %d, expected: %u\n",
-+ rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
-+ }
-+
-+ if (task_stack_end_corrupted(current))
-+ pr_emerg("Thread overran stack, or stack corrupted\n");
-+
-+ debug_show_held_locks(current);
-+ if (irqs_disabled())
-+ print_irqtrace_events(current);
-+
-+ print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
-+ preempt_disable_ip);
-+
-+ dump_stack();
-+ add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
-+}
-+EXPORT_SYMBOL(__might_resched);
-+
-+void __cant_sleep(const char *file, int line, int preempt_offset)
-+{
-+ static unsigned long prev_jiffy;
-+
-+ if (irqs_disabled())
-+ return;
-+
-+ if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
-+ return;
-+
-+ if (preempt_count() > preempt_offset)
-+ return;
-+
-+ if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
-+ return;
-+ prev_jiffy = jiffies;
-+
-+ printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
-+ printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
-+ in_atomic(), irqs_disabled(),
-+ current->pid, current->comm);
-+
-+ debug_show_held_locks(current);
-+ dump_stack();
-+ add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
-+}
-+EXPORT_SYMBOL_GPL(__cant_sleep);
-+
-+#ifdef CONFIG_SMP
-+void __cant_migrate(const char *file, int line)
-+{
-+ static unsigned long prev_jiffy;
-+
-+ if (irqs_disabled())
-+ return;
-+
-+ if (is_migration_disabled(current))
-+ return;
-+
-+ if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
-+ return;
-+
-+ if (preempt_count() > 0)
-+ return;
-+
-+ if (current->migration_flags & MDF_FORCE_ENABLED)
-+ return;
-+
-+ if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
-+ return;
-+ prev_jiffy = jiffies;
-+
-+ pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
-+ pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
-+ in_atomic(), irqs_disabled(), is_migration_disabled(current),
-+ current->pid, current->comm);
-+
-+ debug_show_held_locks(current);
-+ dump_stack();
-+ add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
-+}
-+EXPORT_SYMBOL_GPL(__cant_migrate);
-+#endif
-+#endif
-+
-+#ifdef CONFIG_MAGIC_SYSRQ
-+void normalize_rt_tasks(void)
-+{
-+ struct task_struct *g, *p;
-+ struct sched_attr attr = {
-+ .sched_policy = SCHED_NORMAL,
-+ };
-+
-+ read_lock(&tasklist_lock);
-+ for_each_process_thread(g, p) {
-+ /*
-+ * Only normalize user tasks:
-+ */
-+ if (p->flags & PF_KTHREAD)
-+ continue;
-+
-+ schedstat_set(p->stats.wait_start, 0);
-+ schedstat_set(p->stats.sleep_start, 0);
-+ schedstat_set(p->stats.block_start, 0);
-+
-+ if (!rt_task(p)) {
-+ /*
-+ * Renice negative nice level userspace
-+ * tasks back to 0:
-+ */
-+ if (task_nice(p) < 0)
-+ set_user_nice(p, 0);
-+ continue;
-+ }
-+
-+ __sched_setscheduler(p, &attr, false, false);
-+ }
-+ read_unlock(&tasklist_lock);
-+}
-+#endif /* CONFIG_MAGIC_SYSRQ */
-+
-+#if defined(CONFIG_KGDB_KDB)
-+/*
-+ * These functions are only useful for kdb.
-+ *
-+ * They can only be called when the whole system has been
-+ * stopped - every CPU needs to be quiescent, and no scheduling
-+ * activity can take place. Using them for anything else would
-+ * be a serious bug, and as a result, they aren't even visible
-+ * under any other configuration.
-+ */
-+
-+/**
-+ * curr_task - return the current task for a given CPU.
-+ * @cpu: the processor in question.
-+ *
-+ * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
-+ *
-+ * Return: The current task for @cpu.
-+ */
-+struct task_struct *curr_task(int cpu)
-+{
-+ return cpu_curr(cpu);
-+}
-+
-+#endif /* defined(CONFIG_KGDB_KDB) */
-+
-+#ifdef CONFIG_CGROUP_SCHED
-+static void sched_free_group(struct task_group *tg)
-+{
-+ kmem_cache_free(task_group_cache, tg);
-+}
-+
-+static void sched_free_group_rcu(struct rcu_head *rhp)
-+{
-+ sched_free_group(container_of(rhp, struct task_group, rcu));
-+}
-+
-+static void sched_unregister_group(struct task_group *tg)
-+{
-+ /*
-+ * We have to wait for yet another RCU grace period to expire, as
-+ * print_cfs_stats() might run concurrently.
-+ */
-+ call_rcu(&tg->rcu, sched_free_group_rcu);
-+}
-+
-+/* allocate runqueue etc for a new task group */
-+struct task_group *sched_create_group(struct task_group *parent)
-+{
-+ struct task_group *tg;
-+
-+ tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
-+ if (!tg)
-+ return ERR_PTR(-ENOMEM);
-+
-+ return tg;
-+}
-+
-+void sched_online_group(struct task_group *tg, struct task_group *parent)
-+{
-+}
-+
-+/* rcu callback to free various structures associated with a task group */
-+static void sched_unregister_group_rcu(struct rcu_head *rhp)
-+{
-+ /* Now it should be safe to free those cfs_rqs: */
-+ sched_unregister_group(container_of(rhp, struct task_group, rcu));
-+}
-+
-+void sched_destroy_group(struct task_group *tg)
-+{
-+ /* Wait for possible concurrent references to cfs_rqs complete: */
-+ call_rcu(&tg->rcu, sched_unregister_group_rcu);
-+}
-+
-+void sched_release_group(struct task_group *tg)
-+{
-+}
-+
-+static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
-+{
-+ return css ? container_of(css, struct task_group, css) : NULL;
-+}
-+
-+static struct cgroup_subsys_state *
-+cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
-+{
-+ struct task_group *parent = css_tg(parent_css);
-+ struct task_group *tg;
-+
-+ if (!parent) {
-+ /* This is early initialization for the top cgroup */
-+ return &root_task_group.css;
-+ }
-+
-+ tg = sched_create_group(parent);
-+ if (IS_ERR(tg))
-+ return ERR_PTR(-ENOMEM);
-+ return &tg->css;
-+}
-+
-+/* Expose task group only after completing cgroup initialization */
-+static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
-+{
-+ struct task_group *tg = css_tg(css);
-+ struct task_group *parent = css_tg(css->parent);
-+
-+ if (parent)
-+ sched_online_group(tg, parent);
-+ return 0;
-+}
-+
-+static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
-+{
-+ struct task_group *tg = css_tg(css);
-+
-+ sched_release_group(tg);
-+}
-+
-+static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
-+{
-+ struct task_group *tg = css_tg(css);
-+
-+ /*
-+ * Relies on the RCU grace period between css_released() and this.
-+ */
-+ sched_unregister_group(tg);
-+}
-+
-+#ifdef CONFIG_RT_GROUP_SCHED
-+static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
-+{
-+ return 0;
-+}
-+#endif
-+
-+static void cpu_cgroup_attach(struct cgroup_taskset *tset)
-+{
-+}
-+
-+#ifdef CONFIG_FAIR_GROUP_SCHED
-+static DEFINE_MUTEX(shares_mutex);
-+
-+int sched_group_set_shares(struct task_group *tg, unsigned long shares)
-+{
-+ /*
-+ * We can't change the weight of the root cgroup.
-+ */
-+ if (&root_task_group == tg)
-+ return -EINVAL;
-+
-+ shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
-+
-+ mutex_lock(&shares_mutex);
-+ if (tg->shares == shares)
-+ goto done;
-+
-+ tg->shares = shares;
-+done:
-+ mutex_unlock(&shares_mutex);
-+ return 0;
-+}
-+
-+static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
-+ struct cftype *cftype, u64 shareval)
-+{
-+ if (shareval > scale_load_down(ULONG_MAX))
-+ shareval = MAX_SHARES;
-+ return sched_group_set_shares(css_tg(css), scale_load(shareval));
-+}
-+
-+static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
-+ struct cftype *cft)
-+{
-+ struct task_group *tg = css_tg(css);
-+
-+ return (u64) scale_load_down(tg->shares);
-+}
-+#endif
-+
-+static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
-+ struct cftype *cft)
-+{
-+ return 0;
-+}
-+
-+static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
-+ struct cftype *cftype, s64 cfs_quota_us)
-+{
-+ return 0;
-+}
-+
-+static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
-+ struct cftype *cft)
-+{
-+ return 0;
-+}
-+
-+static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
-+ struct cftype *cftype, u64 cfs_period_us)
-+{
-+ return 0;
-+}
-+
-+static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
-+ struct cftype *cft)
-+{
-+ return 0;
-+}
-+
-+static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
-+ struct cftype *cftype, u64 cfs_burst_us)
-+{
-+ return 0;
-+}
-+
-+static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
-+{
-+ return 0;
-+}
-+
-+static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v)
-+{
-+ return 0;
-+}
-+
-+static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
-+ struct cftype *cft, s64 val)
-+{
-+ return 0;
-+}
-+
-+static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
-+ struct cftype *cft)
-+{
-+ return 0;
-+}
-+
-+static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
-+ struct cftype *cftype, u64 rt_period_us)
-+{
-+ return 0;
-+}
-+
-+static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
-+ struct cftype *cft)
-+{
-+ return 0;
-+}
-+
-+static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
-+{
-+ return 0;
-+}
-+
-+static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
-+{
-+ return 0;
-+}
-+
-+static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
-+ char *buf, size_t nbytes,
-+ loff_t off)
-+{
-+ return nbytes;
-+}
-+
-+static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
-+ char *buf, size_t nbytes,
-+ loff_t off)
-+{
-+ return nbytes;
-+}
-+
-+static struct cftype cpu_legacy_files[] = {
-+#ifdef CONFIG_FAIR_GROUP_SCHED
-+ {
-+ .name = "shares",
-+ .read_u64 = cpu_shares_read_u64,
-+ .write_u64 = cpu_shares_write_u64,
-+ },
-+#endif
-+ {
-+ .name = "cfs_quota_us",
-+ .read_s64 = cpu_cfs_quota_read_s64,
-+ .write_s64 = cpu_cfs_quota_write_s64,
-+ },
-+ {
-+ .name = "cfs_period_us",
-+ .read_u64 = cpu_cfs_period_read_u64,
-+ .write_u64 = cpu_cfs_period_write_u64,
-+ },
-+ {
-+ .name = "cfs_burst_us",
-+ .read_u64 = cpu_cfs_burst_read_u64,
-+ .write_u64 = cpu_cfs_burst_write_u64,
-+ },
-+ {
-+ .name = "stat",
-+ .seq_show = cpu_cfs_stat_show,
-+ },
-+ {
-+ .name = "stat.local",
-+ .seq_show = cpu_cfs_local_stat_show,
-+ },
-+ {
-+ .name = "rt_runtime_us",
-+ .read_s64 = cpu_rt_runtime_read,
-+ .write_s64 = cpu_rt_runtime_write,
-+ },
-+ {
-+ .name = "rt_period_us",
-+ .read_u64 = cpu_rt_period_read_uint,
-+ .write_u64 = cpu_rt_period_write_uint,
-+ },
-+ {
-+ .name = "uclamp.min",
-+ .flags = CFTYPE_NOT_ON_ROOT,
-+ .seq_show = cpu_uclamp_min_show,
-+ .write = cpu_uclamp_min_write,
-+ },
-+ {
-+ .name = "uclamp.max",
-+ .flags = CFTYPE_NOT_ON_ROOT,
-+ .seq_show = cpu_uclamp_max_show,
-+ .write = cpu_uclamp_max_write,
-+ },
-+ { } /* Terminate */
-+};
-+
-+static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
-+ struct cftype *cft)
-+{
-+ return 0;
-+}
-+
-+static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
-+ struct cftype *cft, u64 weight)
-+{
-+ return 0;
-+}
-+
-+static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
-+ struct cftype *cft)
-+{
-+ return 0;
-+}
-+
-+static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
-+ struct cftype *cft, s64 nice)
-+{
-+ return 0;
-+}
-+
-+static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
-+ struct cftype *cft)
-+{
-+ return 0;
-+}
-+
-+static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
-+ struct cftype *cft, s64 idle)
-+{
-+ return 0;
-+}
-+
-+static int cpu_max_show(struct seq_file *sf, void *v)
-+{
-+ return 0;
-+}
-+
-+static ssize_t cpu_max_write(struct kernfs_open_file *of,
-+ char *buf, size_t nbytes, loff_t off)
-+{
-+ return nbytes;
-+}
-+
-+static struct cftype cpu_files[] = {
-+ {
-+ .name = "weight",
-+ .flags = CFTYPE_NOT_ON_ROOT,
-+ .read_u64 = cpu_weight_read_u64,
-+ .write_u64 = cpu_weight_write_u64,
-+ },
-+ {
-+ .name = "weight.nice",
-+ .flags = CFTYPE_NOT_ON_ROOT,
-+ .read_s64 = cpu_weight_nice_read_s64,
-+ .write_s64 = cpu_weight_nice_write_s64,
-+ },
-+ {
-+ .name = "idle",
-+ .flags = CFTYPE_NOT_ON_ROOT,
-+ .read_s64 = cpu_idle_read_s64,
-+ .write_s64 = cpu_idle_write_s64,
-+ },
-+ {
-+ .name = "max",
-+ .flags = CFTYPE_NOT_ON_ROOT,
-+ .seq_show = cpu_max_show,
-+ .write = cpu_max_write,
-+ },
-+ {
-+ .name = "max.burst",
-+ .flags = CFTYPE_NOT_ON_ROOT,
-+ .read_u64 = cpu_cfs_burst_read_u64,
-+ .write_u64 = cpu_cfs_burst_write_u64,
-+ },
-+ {
-+ .name = "uclamp.min",
-+ .flags = CFTYPE_NOT_ON_ROOT,
-+ .seq_show = cpu_uclamp_min_show,
-+ .write = cpu_uclamp_min_write,
-+ },
-+ {
-+ .name = "uclamp.max",
-+ .flags = CFTYPE_NOT_ON_ROOT,
-+ .seq_show = cpu_uclamp_max_show,
-+ .write = cpu_uclamp_max_write,
-+ },
-+ { } /* terminate */
-+};
-+
-+static int cpu_extra_stat_show(struct seq_file *sf,
-+ struct cgroup_subsys_state *css)
-+{
-+ return 0;
-+}
-+
-+static int cpu_local_stat_show(struct seq_file *sf,
-+ struct cgroup_subsys_state *css)
-+{
-+ return 0;
-+}
-+
-+struct cgroup_subsys cpu_cgrp_subsys = {
-+ .css_alloc = cpu_cgroup_css_alloc,
-+ .css_online = cpu_cgroup_css_online,
-+ .css_released = cpu_cgroup_css_released,
-+ .css_free = cpu_cgroup_css_free,
-+ .css_extra_stat_show = cpu_extra_stat_show,
-+ .css_local_stat_show = cpu_local_stat_show,
-+#ifdef CONFIG_RT_GROUP_SCHED
-+ .can_attach = cpu_cgroup_can_attach,
-+#endif
-+ .attach = cpu_cgroup_attach,
-+ .legacy_cftypes = cpu_legacy_files,
-+ .dfl_cftypes = cpu_files,
-+ .early_init = true,
-+ .threaded = true,
-+};
-+#endif /* CONFIG_CGROUP_SCHED */
-+
-+#undef CREATE_TRACE_POINTS
-+
-+#ifdef CONFIG_SCHED_MM_CID
-+
-+#
-+/*
-+ * @cid_lock: Guarantee forward-progress of cid allocation.
-+ *
-+ * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock
-+ * is only used when contention is detected by the lock-free allocation so
-+ * forward progress can be guaranteed.
-+ */
-+DEFINE_RAW_SPINLOCK(cid_lock);
-+
-+/*
-+ * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
-+ *
-+ * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is
-+ * detected, it is set to 1 to ensure that all newly coming allocations are
-+ * serialized by @cid_lock until the allocation which detected contention
-+ * completes and sets @use_cid_lock back to 0. This guarantees forward progress
-+ * of a cid allocation.
-+ */
-+int use_cid_lock;
-+
-+/*
-+ * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid
-+ * concurrently with respect to the execution of the source runqueue context
-+ * switch.
-+ *
-+ * There is one basic properties we want to guarantee here:
-+ *
-+ * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively
-+ * used by a task. That would lead to concurrent allocation of the cid and
-+ * userspace corruption.
-+ *
-+ * Provide this guarantee by introducing a Dekker memory ordering to guarantee
-+ * that a pair of loads observe at least one of a pair of stores, which can be
-+ * shown as:
-+ *
-+ * X = Y = 0
-+ *
-+ * w[X]=1 w[Y]=1
-+ * MB MB
-+ * r[Y]=y r[X]=x
-+ *
-+ * Which guarantees that x==0 && y==0 is impossible. But rather than using
-+ * values 0 and 1, this algorithm cares about specific state transitions of the
-+ * runqueue current task (as updated by the scheduler context switch), and the
-+ * per-mm/cpu cid value.
-+ *
-+ * Let's introduce task (Y) which has task->mm == mm and task (N) which has
-+ * task->mm != mm for the rest of the discussion. There are two scheduler state
-+ * transitions on context switch we care about:
-+ *
-+ * (TSA) Store to rq->curr with transition from (N) to (Y)
-+ *
-+ * (TSB) Store to rq->curr with transition from (Y) to (N)
-+ *
-+ * On the remote-clear side, there is one transition we care about:
-+ *
-+ * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag
-+ *
-+ * There is also a transition to UNSET state which can be performed from all
-+ * sides (scheduler, remote-clear). It is always performed with a cmpxchg which
-+ * guarantees that only a single thread will succeed:
-+ *
-+ * (TMB) cmpxchg to *pcpu_cid to mark UNSET
-+ *
-+ * Just to be clear, what we do _not_ want to happen is a transition to UNSET
-+ * when a thread is actively using the cid (property (1)).
-+ *
-+ * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions.
-+ *
-+ * Scenario A) (TSA)+(TMA) (from next task perspective)
-+ *
-+ * CPU0 CPU1
-+ *
-+ * Context switch CS-1 Remote-clear
-+ * - store to rq->curr: (N)->(Y) (TSA) - cmpxchg to *pcpu_id to LAZY (TMA)
-+ * (implied barrier after cmpxchg)
-+ * - switch_mm_cid()
-+ * - memory barrier (see switch_mm_cid()
-+ * comment explaining how this barrier
-+ * is combined with other scheduler
-+ * barriers)
-+ * - mm_cid_get (next)
-+ * - READ_ONCE(*pcpu_cid) - rcu_dereference(src_rq->curr)
-+ *
-+ * This Dekker ensures that either task (Y) is observed by the
-+ * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are
-+ * observed.
-+ *
-+ * If task (Y) store is observed by rcu_dereference(), it means that there is
-+ * still an active task on the cpu. Remote-clear will therefore not transition
-+ * to UNSET, which fulfills property (1).
-+ *
-+ * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(),
-+ * it will move its state to UNSET, which clears the percpu cid perhaps
-+ * uselessly (which is not an issue for correctness). Because task (Y) is not
-+ * observed, CPU1 can move ahead to set the state to UNSET. Because moving
-+ * state to UNSET is done with a cmpxchg expecting that the old state has the
-+ * LAZY flag set, only one thread will successfully UNSET.
-+ *
-+ * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0
-+ * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and
-+ * CPU1 will observe task (Y) and do nothing more, which is fine.
-+ *
-+ * What we are effectively preventing with this Dekker is a scenario where
-+ * neither LAZY flag nor store (Y) are observed, which would fail property (1)
-+ * because this would UNSET a cid which is actively used.
-+ */
-+
-+void sched_mm_cid_migrate_from(struct task_struct *t)
-+{
-+ t->migrate_from_cpu = task_cpu(t);
-+}
-+
-+static
-+int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
-+ struct task_struct *t,
-+ struct mm_cid *src_pcpu_cid)
-+{
-+ struct mm_struct *mm = t->mm;
-+ struct task_struct *src_task;
-+ int src_cid, last_mm_cid;
-+
-+ if (!mm)
-+ return -1;
-+
-+ last_mm_cid = t->last_mm_cid;
-+ /*
-+ * If the migrated task has no last cid, or if the current
-+ * task on src rq uses the cid, it means the source cid does not need
-+ * to be moved to the destination cpu.
-+ */
-+ if (last_mm_cid == -1)
-+ return -1;
-+ src_cid = READ_ONCE(src_pcpu_cid->cid);
-+ if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid)
-+ return -1;
-+
-+ /*
-+ * If we observe an active task using the mm on this rq, it means we
-+ * are not the last task to be migrated from this cpu for this mm, so
-+ * there is no need to move src_cid to the destination cpu.
-+ */
-+ rcu_read_lock();
-+ src_task = rcu_dereference(src_rq->curr);
-+ if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
-+ rcu_read_unlock();
-+ t->last_mm_cid = -1;
-+ return -1;
-+ }
-+ rcu_read_unlock();
-+
-+ return src_cid;
-+}
-+
-+static
-+int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
-+ struct task_struct *t,
-+ struct mm_cid *src_pcpu_cid,
-+ int src_cid)
-+{
-+ struct task_struct *src_task;
-+ struct mm_struct *mm = t->mm;
-+ int lazy_cid;
-+
-+ if (src_cid == -1)
-+ return -1;
-+
-+ /*
-+ * Attempt to clear the source cpu cid to move it to the destination
-+ * cpu.
-+ */
-+ lazy_cid = mm_cid_set_lazy_put(src_cid);
-+ if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid))
-+ return -1;
-+
-+ /*
-+ * The implicit barrier after cmpxchg per-mm/cpu cid before loading
-+ * rq->curr->mm matches the scheduler barrier in context_switch()
-+ * between store to rq->curr and load of prev and next task's
-+ * per-mm/cpu cid.
-+ *
-+ * The implicit barrier after cmpxchg per-mm/cpu cid before loading
-+ * rq->curr->mm_cid_active matches the barrier in
-+ * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
-+ * sched_mm_cid_after_execve() between store to t->mm_cid_active and
-+ * load of per-mm/cpu cid.
-+ */
-+
-+ /*
-+ * If we observe an active task using the mm on this rq after setting
-+ * the lazy-put flag, this task will be responsible for transitioning
-+ * from lazy-put flag set to MM_CID_UNSET.
-+ */
-+ scoped_guard (rcu) {
-+ src_task = rcu_dereference(src_rq->curr);
-+ if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
-+ rcu_read_unlock();
-+ /*
-+ * We observed an active task for this mm, there is therefore
-+ * no point in moving this cid to the destination cpu.
-+ */
-+ t->last_mm_cid = -1;
-+ return -1;
-+ }
-+ }
-+
-+ /*
-+ * The src_cid is unused, so it can be unset.
-+ */
-+ if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
-+ return -1;
-+ return src_cid;
-+}
-+
-+/*
-+ * Migration to dst cpu. Called with dst_rq lock held.
-+ * Interrupts are disabled, which keeps the window of cid ownership without the
-+ * source rq lock held small.
-+ */
-+void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t, int src_cpu)
-+{
-+ struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
-+ struct mm_struct *mm = t->mm;
-+ int src_cid, dst_cid;
-+ struct rq *src_rq;
-+
-+ lockdep_assert_rq_held(dst_rq);
-+
-+ if (!mm)
-+ return;
-+ if (src_cpu == -1) {
-+ t->last_mm_cid = -1;
-+ return;
-+ }
-+ /*
-+ * Move the src cid if the dst cid is unset. This keeps id
-+ * allocation closest to 0 in cases where few threads migrate around
-+ * many cpus.
-+ *
-+ * If destination cid is already set, we may have to just clear
-+ * the src cid to ensure compactness in frequent migrations
-+ * scenarios.
-+ *
-+ * It is not useful to clear the src cid when the number of threads is
-+ * greater or equal to the number of allowed cpus, because user-space
-+ * can expect that the number of allowed cids can reach the number of
-+ * allowed cpus.
-+ */
-+ dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
-+ dst_cid = READ_ONCE(dst_pcpu_cid->cid);
-+ if (!mm_cid_is_unset(dst_cid) &&
-+ atomic_read(&mm->mm_users) >= t->nr_cpus_allowed)
-+ return;
-+ src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
-+ src_rq = cpu_rq(src_cpu);
-+ src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid);
-+ if (src_cid == -1)
-+ return;
-+ src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid,
-+ src_cid);
-+ if (src_cid == -1)
-+ return;
-+ if (!mm_cid_is_unset(dst_cid)) {
-+ __mm_cid_put(mm, src_cid);
-+ return;
-+ }
-+ /* Move src_cid to dst cpu. */
-+ mm_cid_snapshot_time(dst_rq, mm);
-+ WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
-+}
-+
-+static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
-+ int cpu)
-+{
-+ struct rq *rq = cpu_rq(cpu);
-+ struct task_struct *t;
-+ int cid, lazy_cid;
-+
-+ cid = READ_ONCE(pcpu_cid->cid);
-+ if (!mm_cid_is_valid(cid))
-+ return;
-+
-+ /*
-+ * Clear the cpu cid if it is set to keep cid allocation compact. If
-+ * there happens to be other tasks left on the source cpu using this
-+ * mm, the next task using this mm will reallocate its cid on context
-+ * switch.
-+ */
-+ lazy_cid = mm_cid_set_lazy_put(cid);
-+ if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid))
-+ return;
-+
-+ /*
-+ * The implicit barrier after cmpxchg per-mm/cpu cid before loading
-+ * rq->curr->mm matches the scheduler barrier in context_switch()
-+ * between store to rq->curr and load of prev and next task's
-+ * per-mm/cpu cid.
-+ *
-+ * The implicit barrier after cmpxchg per-mm/cpu cid before loading
-+ * rq->curr->mm_cid_active matches the barrier in
-+ * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
-+ * sched_mm_cid_after_execve() between store to t->mm_cid_active and
-+ * load of per-mm/cpu cid.
-+ */
-+
-+ /*
-+ * If we observe an active task using the mm on this rq after setting
-+ * the lazy-put flag, that task will be responsible for transitioning
-+ * from lazy-put flag set to MM_CID_UNSET.
-+ */
-+ scoped_guard (rcu) {
-+ t = rcu_dereference(rq->curr);
-+ if (READ_ONCE(t->mm_cid_active) && t->mm == mm)
-+ return;
-+ }
-+
-+ /*
-+ * The cid is unused, so it can be unset.
-+ * Disable interrupts to keep the window of cid ownership without rq
-+ * lock small.
-+ */
-+ scoped_guard (irqsave) {
-+ if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
-+ __mm_cid_put(mm, cid);
-+ }
-+}
-+
-+static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
-+{
-+ struct rq *rq = cpu_rq(cpu);
-+ struct mm_cid *pcpu_cid;
-+ struct task_struct *curr;
-+ u64 rq_clock;
-+
-+ /*
-+ * rq->clock load is racy on 32-bit but one spurious clear once in a
-+ * while is irrelevant.
-+ */
-+ rq_clock = READ_ONCE(rq->clock);
-+ pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
-+
-+ /*
-+ * In order to take care of infrequently scheduled tasks, bump the time
-+ * snapshot associated with this cid if an active task using the mm is
-+ * observed on this rq.
-+ */
-+ scoped_guard (rcu) {
-+ curr = rcu_dereference(rq->curr);
-+ if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) {
-+ WRITE_ONCE(pcpu_cid->time, rq_clock);
-+ return;
-+ }
-+ }
-+
-+ if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS)
-+ return;
-+ sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
-+}
-+
-+static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
-+ int weight)
-+{
-+ struct mm_cid *pcpu_cid;
-+ int cid;
-+
-+ pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
-+ cid = READ_ONCE(pcpu_cid->cid);
-+ if (!mm_cid_is_valid(cid) || cid < weight)
-+ return;
-+ sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
-+}
-+
-+static void task_mm_cid_work(struct callback_head *work)
-+{
-+ unsigned long now = jiffies, old_scan, next_scan;
-+ struct task_struct *t = current;
-+ struct cpumask *cidmask;
-+ struct mm_struct *mm;
-+ int weight, cpu;
-+
-+ SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work));
-+
-+ work->next = work; /* Prevent double-add */
-+ if (t->flags & PF_EXITING)
-+ return;
-+ mm = t->mm;
-+ if (!mm)
-+ return;
-+ old_scan = READ_ONCE(mm->mm_cid_next_scan);
-+ next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY);
-+ if (!old_scan) {
-+ unsigned long res;
-+
-+ res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan);
-+ if (res != old_scan)
-+ old_scan = res;
-+ else
-+ old_scan = next_scan;
-+ }
-+ if (time_before(now, old_scan))
-+ return;
-+ if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan))
-+ return;
-+ cidmask = mm_cidmask(mm);
-+ /* Clear cids that were not recently used. */
-+ for_each_possible_cpu(cpu)
-+ sched_mm_cid_remote_clear_old(mm, cpu);
-+ weight = cpumask_weight(cidmask);
-+ /*
-+ * Clear cids that are greater or equal to the cidmask weight to
-+ * recompact it.
-+ */
-+ for_each_possible_cpu(cpu)
-+ sched_mm_cid_remote_clear_weight(mm, cpu, weight);
-+}
-+
-+void init_sched_mm_cid(struct task_struct *t)
-+{
-+ struct mm_struct *mm = t->mm;
-+ int mm_users = 0;
-+
-+ if (mm) {
-+ mm_users = atomic_read(&mm->mm_users);
-+ if (mm_users == 1)
-+ mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY);
-+ }
-+ t->cid_work.next = &t->cid_work; /* Protect against double add */
-+ init_task_work(&t->cid_work, task_mm_cid_work);
-+}
-+
-+void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
-+{
-+ struct callback_head *work = &curr->cid_work;
-+ unsigned long now = jiffies;
-+
-+ if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) ||
-+ work->next != work)
-+ return;
-+ if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan)))
-+ return;
-+ task_work_add(curr, work, TWA_RESUME);
-+}
-+
-+void sched_mm_cid_exit_signals(struct task_struct *t)
-+{
-+ struct mm_struct *mm = t->mm;
-+ struct rq *rq;
-+
-+ if (!mm)
-+ return;
-+
-+ preempt_disable();
-+ rq = this_rq();
-+ guard(rq_lock_irqsave)(rq);
-+ preempt_enable_no_resched(); /* holding spinlock */
-+ WRITE_ONCE(t->mm_cid_active, 0);
-+ /*
-+ * Store t->mm_cid_active before loading per-mm/cpu cid.
-+ * Matches barrier in sched_mm_cid_remote_clear_old().
-+ */
-+ smp_mb();
-+ mm_cid_put(mm);
-+ t->last_mm_cid = t->mm_cid = -1;
-+}
-+
-+void sched_mm_cid_before_execve(struct task_struct *t)
-+{
-+ struct mm_struct *mm = t->mm;
-+ struct rq *rq;
-+
-+ if (!mm)
-+ return;
-+
-+ preempt_disable();
-+ rq = this_rq();
-+ guard(rq_lock_irqsave)(rq);
-+ preempt_enable_no_resched(); /* holding spinlock */
-+ WRITE_ONCE(t->mm_cid_active, 0);
-+ /*
-+ * Store t->mm_cid_active before loading per-mm/cpu cid.
-+ * Matches barrier in sched_mm_cid_remote_clear_old().
-+ */
-+ smp_mb();
-+ mm_cid_put(mm);
-+ t->last_mm_cid = t->mm_cid = -1;
-+}
-+
-+void sched_mm_cid_after_execve(struct task_struct *t)
-+{
-+ struct mm_struct *mm = t->mm;
-+ struct rq *rq;
-+
-+ if (!mm)
-+ return;
-+
-+ preempt_disable();
-+ rq = this_rq();
-+ scoped_guard (rq_lock_irqsave, rq) {
-+ preempt_enable_no_resched(); /* holding spinlock */
-+ WRITE_ONCE(t->mm_cid_active, 1);
-+ /*
-+ * Store t->mm_cid_active before loading per-mm/cpu cid.
-+ * Matches barrier in sched_mm_cid_remote_clear_old().
-+ */
-+ smp_mb();
-+ t->last_mm_cid = t->mm_cid = mm_cid_get(rq, mm);
-+ }
-+ rseq_set_notify_resume(t);
-+}
-+
-+void sched_mm_cid_fork(struct task_struct *t)
-+{
-+ WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
-+ t->mm_cid_active = 1;
-+}
-+#endif
-diff --git a/kernel/sched/alt_debug.c b/kernel/sched/alt_debug.c
-new file mode 100644
-index 000000000000..1212a031700e
---- /dev/null
-+++ b/kernel/sched/alt_debug.c
-@@ -0,0 +1,31 @@
-+/*
-+ * kernel/sched/alt_debug.c
-+ *
-+ * Print the alt scheduler debugging details
-+ *
-+ * Author: Alfred Chen
-+ * Date : 2020
-+ */
-+#include "sched.h"
-+
-+/*
-+ * This allows printing both to /proc/sched_debug and
-+ * to the console
-+ */
-+#define SEQ_printf(m, x...) \
-+ do { \
-+ if (m) \
-+ seq_printf(m, x); \
-+ else \
-+ pr_cont(x); \
-+ } while (0)
-+
-+void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
-+ struct seq_file *m)
-+{
-+ SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns),
-+ get_nr_threads(p));
-+}
-+
-+void proc_sched_set_task(struct task_struct *p)
-+{}
-diff --git a/kernel/sched/alt_sched.h b/kernel/sched/alt_sched.h
-new file mode 100644
-index 000000000000..0eff5391092c
---- /dev/null
-+++ b/kernel/sched/alt_sched.h
-@@ -0,0 +1,923 @@
-+#ifndef ALT_SCHED_H
-+#define ALT_SCHED_H
-+
-+#include <linux/context_tracking.h>
-+#include <linux/profile.h>
-+#include <linux/stop_machine.h>
-+#include <linux/syscalls.h>
-+#include <linux/tick.h>
-+
-+#include <trace/events/power.h>
-+#include <trace/events/sched.h>
-+
-+#include "../workqueue_internal.h"
-+
-+#include "cpupri.h"
-+
-+#define MIN_SCHED_NORMAL_PRIO (32)
-+/*
-+ * levels: RT(0-24), reserved(25-31), NORMAL(32-63), cpu idle task(64)
-+ *
-+ * -- BMQ --
-+ * NORMAL: (lower boost range 12, NICE_WIDTH 40, higher boost range 12) / 2
-+ * -- PDS --
-+ * NORMAL: SCHED_EDGE_DELTA + ((NICE_WIDTH 40) / 2)
-+ */
-+#define SCHED_LEVELS (64 + 1)
-+
-+#define IDLE_TASK_SCHED_PRIO (SCHED_LEVELS - 1)
-+
-+#ifdef CONFIG_SCHED_DEBUG
-+# define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
-+extern void resched_latency_warn(int cpu, u64 latency);
-+#else
-+# define SCHED_WARN_ON(x) ({ (void)(x), 0; })
-+static inline void resched_latency_warn(int cpu, u64 latency) {}
-+#endif
-+
-+/*
-+ * Increase resolution of nice-level calculations for 64-bit architectures.
-+ * The extra resolution improves shares distribution and load balancing of
-+ * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
-+ * hierarchies, especially on larger systems. This is not a user-visible change
-+ * and does not change the user-interface for setting shares/weights.
-+ *
-+ * We increase resolution only if we have enough bits to allow this increased
-+ * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
-+ * are pretty high and the returns do not justify the increased costs.
-+ *
-+ * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
-+ * increase coverage and consistency always enable it on 64-bit platforms.
-+ */
-+#ifdef CONFIG_64BIT
-+# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
-+# define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
-+# define scale_load_down(w) \
-+({ \
-+ unsigned long __w = (w); \
-+ if (__w) \
-+ __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
-+ __w; \
-+})
-+#else
-+# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
-+# define scale_load(w) (w)
-+# define scale_load_down(w) (w)
-+#endif
-+
-+#ifdef CONFIG_FAIR_GROUP_SCHED
-+#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
-+
-+/*
-+ * A weight of 0 or 1 can cause arithmetics problems.
-+ * A weight of a cfs_rq is the sum of weights of which entities
-+ * are queued on this cfs_rq, so a weight of a entity should not be
-+ * too large, so as the shares value of a task group.
-+ * (The default weight is 1024 - so there's no practical
-+ * limitation from this.)
-+ */
-+#define MIN_SHARES (1UL << 1)
-+#define MAX_SHARES (1UL << 18)
-+#endif
-+
-+/*
-+ * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
-+ */
-+#ifdef CONFIG_SCHED_DEBUG
-+# define const_debug __read_mostly
-+#else
-+# define const_debug const
-+#endif
-+
-+/* task_struct::on_rq states: */
-+#define TASK_ON_RQ_QUEUED 1
-+#define TASK_ON_RQ_MIGRATING 2
-+
-+static inline int task_on_rq_queued(struct task_struct *p)
-+{
-+ return p->on_rq == TASK_ON_RQ_QUEUED;
-+}
-+
-+static inline int task_on_rq_migrating(struct task_struct *p)
-+{
-+ return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
-+}
-+
-+/* Wake flags. The first three directly map to some SD flag value */
-+#define WF_EXEC 0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
-+#define WF_FORK 0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
-+#define WF_TTWU 0x08 /* Wakeup; maps to SD_BALANCE_WAKE */
-+
-+#define WF_SYNC 0x10 /* Waker goes to sleep after wakeup */
-+#define WF_MIGRATED 0x20 /* Internal use, task got migrated */
-+#define WF_CURRENT_CPU 0x40 /* Prefer to move the wakee to the current CPU. */
-+
-+#ifdef CONFIG_SMP
-+static_assert(WF_EXEC == SD_BALANCE_EXEC);
-+static_assert(WF_FORK == SD_BALANCE_FORK);
-+static_assert(WF_TTWU == SD_BALANCE_WAKE);
-+#endif
-+
-+#define SCHED_QUEUE_BITS (SCHED_LEVELS - 1)
-+
-+struct sched_queue {
-+ DECLARE_BITMAP(bitmap, SCHED_QUEUE_BITS);
-+ struct list_head heads[SCHED_LEVELS];
-+};
-+
-+struct rq;
-+struct cpuidle_state;
-+
-+struct balance_callback {
-+ struct balance_callback *next;
-+ void (*func)(struct rq *rq);
-+};
-+
-+/*
-+ * This is the main, per-CPU runqueue data structure.
-+ * This data should only be modified by the local cpu.
-+ */
-+struct rq {
-+ /* runqueue lock: */
-+ raw_spinlock_t lock;
-+
-+ struct task_struct __rcu *curr;
-+ struct task_struct *idle;
-+ struct task_struct *stop;
-+ struct task_struct *skip;
-+ struct mm_struct *prev_mm;
-+
-+ struct sched_queue queue;
-+#ifdef CONFIG_SCHED_PDS
-+ u64 time_edge;
-+#endif
-+ unsigned long prio;
-+
-+ /* switch count */
-+ u64 nr_switches;
-+
-+ atomic_t nr_iowait;
-+
-+#ifdef CONFIG_SCHED_DEBUG
-+ u64 last_seen_need_resched_ns;
-+ int ticks_without_resched;
-+#endif
-+
-+#ifdef CONFIG_MEMBARRIER
-+ int membarrier_state;
-+#endif
-+
-+#ifdef CONFIG_SMP
-+ int cpu; /* cpu of this runqueue */
-+ bool online;
-+
-+ unsigned int ttwu_pending;
-+ unsigned char nohz_idle_balance;
-+ unsigned char idle_balance;
-+
-+#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
-+ struct sched_avg avg_irq;
-+#endif
-+
-+#ifdef CONFIG_SCHED_SMT
-+ int active_balance;
-+ struct cpu_stop_work active_balance_work;
-+#endif
-+ struct balance_callback *balance_callback;
-+#ifdef CONFIG_HOTPLUG_CPU
-+ struct rcuwait hotplug_wait;
-+#endif
-+ unsigned int nr_pinned;
-+
-+#endif /* CONFIG_SMP */
-+#ifdef CONFIG_IRQ_TIME_ACCOUNTING
-+ u64 prev_irq_time;
-+#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
-+#ifdef CONFIG_PARAVIRT
-+ u64 prev_steal_time;
-+#endif /* CONFIG_PARAVIRT */
-+#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
-+ u64 prev_steal_time_rq;
-+#endif /* CONFIG_PARAVIRT_TIME_ACCOUNTING */
-+
-+ /* For genenal cpu load util */
-+ s32 load_history;
-+ u64 load_block;
-+ u64 load_stamp;
-+
-+ /* calc_load related fields */
-+ unsigned long calc_load_update;
-+ long calc_load_active;
-+
-+ /* Ensure that all clocks are in the same cache line */
-+ u64 clock ____cacheline_aligned;
-+ u64 clock_task;
-+#ifdef CONFIG_SCHED_BMQ
-+ u64 last_ts_switch;
-+#endif
-+
-+ unsigned int nr_running;
-+ unsigned long nr_uninterruptible;
-+
-+#ifdef CONFIG_SCHED_HRTICK
-+#ifdef CONFIG_SMP
-+ call_single_data_t hrtick_csd;
-+#endif
-+ struct hrtimer hrtick_timer;
-+ ktime_t hrtick_time;
-+#endif
-+
-+#ifdef CONFIG_SCHEDSTATS
-+
-+ /* latency stats */
-+ struct sched_info rq_sched_info;
-+ unsigned long long rq_cpu_time;
-+ /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
-+
-+ /* sys_sched_yield() stats */
-+ unsigned int yld_count;
-+
-+ /* schedule() stats */
-+ unsigned int sched_switch;
-+ unsigned int sched_count;
-+ unsigned int sched_goidle;
-+
-+ /* try_to_wake_up() stats */
-+ unsigned int ttwu_count;
-+ unsigned int ttwu_local;
-+#endif /* CONFIG_SCHEDSTATS */
-+
-+#ifdef CONFIG_CPU_IDLE
-+ /* Must be inspected within a rcu lock section */
-+ struct cpuidle_state *idle_state;
-+#endif
-+
-+#ifdef CONFIG_NO_HZ_COMMON
-+#ifdef CONFIG_SMP
-+ call_single_data_t nohz_csd;
-+#endif
-+ atomic_t nohz_flags;
-+#endif /* CONFIG_NO_HZ_COMMON */
-+
-+ /* Scratch cpumask to be temporarily used under rq_lock */
-+ cpumask_var_t scratch_mask;
-+};
-+
-+extern unsigned int sysctl_sched_base_slice;
-+
-+extern unsigned long rq_load_util(struct rq *rq, unsigned long max);
-+
-+extern unsigned long calc_load_update;
-+extern atomic_long_t calc_load_tasks;
-+
-+extern void calc_global_load_tick(struct rq *this_rq);
-+extern long calc_load_fold_active(struct rq *this_rq, long adjust);
-+
-+DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
-+#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
-+#define this_rq() this_cpu_ptr(&runqueues)
-+#define task_rq(p) cpu_rq(task_cpu(p))
-+#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
-+#define raw_rq() raw_cpu_ptr(&runqueues)
-+
-+#ifdef CONFIG_SMP
-+#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
-+void register_sched_domain_sysctl(void);
-+void unregister_sched_domain_sysctl(void);
-+#else
-+static inline void register_sched_domain_sysctl(void)
-+{
-+}
-+static inline void unregister_sched_domain_sysctl(void)
-+{
-+}
-+#endif
-+
-+extern bool sched_smp_initialized;
-+
-+enum {
-+ ITSELF_LEVEL_SPACE_HOLDER,
-+#ifdef CONFIG_SCHED_SMT
-+ SMT_LEVEL_SPACE_HOLDER,
-+#endif
-+ COREGROUP_LEVEL_SPACE_HOLDER,
-+ CORE_LEVEL_SPACE_HOLDER,
-+ OTHER_LEVEL_SPACE_HOLDER,
-+ NR_CPU_AFFINITY_LEVELS
-+};
-+
-+DECLARE_PER_CPU_ALIGNED(cpumask_t [NR_CPU_AFFINITY_LEVELS], sched_cpu_topo_masks);
-+
-+static inline int
-+__best_mask_cpu(const cpumask_t *cpumask, const cpumask_t *mask)
-+{
-+ int cpu;
-+
-+ while ((cpu = cpumask_any_and(cpumask, mask)) >= nr_cpu_ids)
-+ mask++;
-+
-+ return cpu;
-+}
-+
-+static inline int best_mask_cpu(int cpu, const cpumask_t *mask)
-+{
-+ return __best_mask_cpu(mask, per_cpu(sched_cpu_topo_masks, cpu));
-+}
-+
-+extern void flush_smp_call_function_queue(void);
-+
-+#else /* !CONFIG_SMP */
-+static inline void flush_smp_call_function_queue(void) { }
-+#endif
-+
-+#ifndef arch_scale_freq_tick
-+static __always_inline
-+void arch_scale_freq_tick(void)
-+{
-+}
-+#endif
-+
-+#ifndef arch_scale_freq_capacity
-+static __always_inline
-+unsigned long arch_scale_freq_capacity(int cpu)
-+{
-+ return SCHED_CAPACITY_SCALE;
-+}
-+#endif
-+
-+static inline u64 __rq_clock_broken(struct rq *rq)
-+{
-+ return READ_ONCE(rq->clock);
-+}
-+
-+static inline u64 rq_clock(struct rq *rq)
-+{
-+ /*
-+ * Relax lockdep_assert_held() checking as in VRQ, call to
-+ * sched_info_xxxx() may not held rq->lock
-+ * lockdep_assert_held(&rq->lock);
-+ */
-+ return rq->clock;
-+}
-+
-+static inline u64 rq_clock_task(struct rq *rq)
-+{
-+ /*
-+ * Relax lockdep_assert_held() checking as in VRQ, call to
-+ * sched_info_xxxx() may not held rq->lock
-+ * lockdep_assert_held(&rq->lock);
-+ */
-+ return rq->clock_task;
-+}
-+
-+/*
-+ * {de,en}queue flags:
-+ *
-+ * DEQUEUE_SLEEP - task is no longer runnable
-+ * ENQUEUE_WAKEUP - task just became runnable
-+ *
-+ */
-+
-+#define DEQUEUE_SLEEP 0x01
-+
-+#define ENQUEUE_WAKEUP 0x01
-+
-+
-+/*
-+ * Below are scheduler API which using in other kernel code
-+ * It use the dummy rq_flags
-+ * ToDo : BMQ need to support these APIs for compatibility with mainline
-+ * scheduler code.
-+ */
-+struct rq_flags {
-+ unsigned long flags;
-+};
-+
-+struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
-+ __acquires(rq->lock);
-+
-+struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
-+ __acquires(p->pi_lock)
-+ __acquires(rq->lock);
-+
-+static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
-+ __releases(rq->lock)
-+{
-+ raw_spin_unlock(&rq->lock);
-+}
-+
-+static inline void
-+task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
-+ __releases(rq->lock)
-+ __releases(p->pi_lock)
-+{
-+ raw_spin_unlock(&rq->lock);
-+ raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
-+}
-+
-+static inline void
-+rq_lock(struct rq *rq, struct rq_flags *rf)
-+ __acquires(rq->lock)
-+{
-+ raw_spin_lock(&rq->lock);
-+}
-+
-+static inline void
-+rq_unlock(struct rq *rq, struct rq_flags *rf)
-+ __releases(rq->lock)
-+{
-+ raw_spin_unlock(&rq->lock);
-+}
-+
-+static inline void
-+rq_lock_irq(struct rq *rq, struct rq_flags *rf)
-+ __acquires(rq->lock)
-+{
-+ raw_spin_lock_irq(&rq->lock);
-+}
-+
-+static inline void
-+rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
-+ __releases(rq->lock)
-+{
-+ raw_spin_unlock_irq(&rq->lock);
-+}
-+
-+static inline struct rq *
-+this_rq_lock_irq(struct rq_flags *rf)
-+ __acquires(rq->lock)
-+{
-+ struct rq *rq;
-+
-+ local_irq_disable();
-+ rq = this_rq();
-+ raw_spin_lock(&rq->lock);
-+
-+ return rq;
-+}
-+
-+static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
-+{
-+ return &rq->lock;
-+}
-+
-+static inline raw_spinlock_t *rq_lockp(struct rq *rq)
-+{
-+ return __rq_lockp(rq);
-+}
-+
-+static inline void lockdep_assert_rq_held(struct rq *rq)
-+{
-+ lockdep_assert_held(__rq_lockp(rq));
-+}
-+
-+extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass);
-+extern void raw_spin_rq_unlock(struct rq *rq);
-+
-+static inline void raw_spin_rq_lock(struct rq *rq)
-+{
-+ raw_spin_rq_lock_nested(rq, 0);
-+}
-+
-+static inline void raw_spin_rq_lock_irq(struct rq *rq)
-+{
-+ local_irq_disable();
-+ raw_spin_rq_lock(rq);
-+}
-+
-+static inline void raw_spin_rq_unlock_irq(struct rq *rq)
-+{
-+ raw_spin_rq_unlock(rq);
-+ local_irq_enable();
-+}
-+
-+static inline int task_current(struct rq *rq, struct task_struct *p)
-+{
-+ return rq->curr == p;
-+}
-+
-+static inline bool task_on_cpu(struct task_struct *p)
-+{
-+ return p->on_cpu;
-+}
-+
-+extern int task_running_nice(struct task_struct *p);
-+
-+extern struct static_key_false sched_schedstats;
-+
-+#ifdef CONFIG_CPU_IDLE
-+static inline void idle_set_state(struct rq *rq,
-+ struct cpuidle_state *idle_state)
-+{
-+ rq->idle_state = idle_state;
-+}
-+
-+static inline struct cpuidle_state *idle_get_state(struct rq *rq)
-+{
-+ WARN_ON(!rcu_read_lock_held());
-+ return rq->idle_state;
-+}
-+#else
-+static inline void idle_set_state(struct rq *rq,
-+ struct cpuidle_state *idle_state)
-+{
-+}
-+
-+static inline struct cpuidle_state *idle_get_state(struct rq *rq)
-+{
-+ return NULL;
-+}
-+#endif
-+
-+static inline int cpu_of(const struct rq *rq)
-+{
-+#ifdef CONFIG_SMP
-+ return rq->cpu;
-+#else
-+ return 0;
-+#endif
-+}
-+
-+#include "stats.h"
-+
-+#ifdef CONFIG_NO_HZ_COMMON
-+#define NOHZ_BALANCE_KICK_BIT 0
-+#define NOHZ_STATS_KICK_BIT 1
-+
-+#define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT)
-+#define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT)
-+
-+#define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
-+
-+#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
-+
-+/* TODO: needed?
-+extern void nohz_balance_exit_idle(struct rq *rq);
-+#else
-+static inline void nohz_balance_exit_idle(struct rq *rq) { }
-+*/
-+#endif
-+
-+#ifdef CONFIG_IRQ_TIME_ACCOUNTING
-+struct irqtime {
-+ u64 total;
-+ u64 tick_delta;
-+ u64 irq_start_time;
-+ struct u64_stats_sync sync;
-+};
-+
-+DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
-+
-+/*
-+ * Returns the irqtime minus the softirq time computed by ksoftirqd.
-+ * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
-+ * and never move forward.
-+ */
-+static inline u64 irq_time_read(int cpu)
-+{
-+ struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
-+ unsigned int seq;
-+ u64 total;
-+
-+ do {
-+ seq = __u64_stats_fetch_begin(&irqtime->sync);
-+ total = irqtime->total;
-+ } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
-+
-+ return total;
-+}
-+#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
-+
-+#ifdef CONFIG_CPU_FREQ
-+DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
-+#endif /* CONFIG_CPU_FREQ */
-+
-+#ifdef CONFIG_NO_HZ_FULL
-+extern int __init sched_tick_offload_init(void);
-+#else
-+static inline int sched_tick_offload_init(void) { return 0; }
-+#endif
-+
-+#ifdef arch_scale_freq_capacity
-+#ifndef arch_scale_freq_invariant
-+#define arch_scale_freq_invariant() (true)
-+#endif
-+#else /* arch_scale_freq_capacity */
-+#define arch_scale_freq_invariant() (false)
-+#endif
-+
-+extern void schedule_idle(void);
-+
-+#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
-+
-+/*
-+ * !! For sched_setattr_nocheck() (kernel) only !!
-+ *
-+ * This is actually gross. :(
-+ *
-+ * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
-+ * tasks, but still be able to sleep. We need this on platforms that cannot
-+ * atomically change clock frequency. Remove once fast switching will be
-+ * available on such platforms.
-+ *
-+ * SUGOV stands for SchedUtil GOVernor.
-+ */
-+#define SCHED_FLAG_SUGOV 0x10000000
-+
-+#ifdef CONFIG_MEMBARRIER
-+/*
-+ * The scheduler provides memory barriers required by membarrier between:
-+ * - prior user-space memory accesses and store to rq->membarrier_state,
-+ * - store to rq->membarrier_state and following user-space memory accesses.
-+ * In the same way it provides those guarantees around store to rq->curr.
-+ */
-+static inline void membarrier_switch_mm(struct rq *rq,
-+ struct mm_struct *prev_mm,
-+ struct mm_struct *next_mm)
-+{
-+ int membarrier_state;
-+
-+ if (prev_mm == next_mm)
-+ return;
-+
-+ membarrier_state = atomic_read(&next_mm->membarrier_state);
-+ if (READ_ONCE(rq->membarrier_state) == membarrier_state)
-+ return;
-+
-+ WRITE_ONCE(rq->membarrier_state, membarrier_state);
-+}
-+#else
-+static inline void membarrier_switch_mm(struct rq *rq,
-+ struct mm_struct *prev_mm,
-+ struct mm_struct *next_mm)
-+{
-+}
-+#endif
-+
-+#ifdef CONFIG_NUMA
-+extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
-+#else
-+static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
-+{
-+ return nr_cpu_ids;
-+}
-+#endif
-+
-+extern void swake_up_all_locked(struct swait_queue_head *q);
-+extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
-+
-+extern int try_to_wake_up(struct task_struct *tsk, unsigned int state, int wake_flags);
-+
-+#ifdef CONFIG_PREEMPT_DYNAMIC
-+extern int preempt_dynamic_mode;
-+extern int sched_dynamic_mode(const char *str);
-+extern void sched_dynamic_update(int mode);
-+#endif
-+
-+static inline void nohz_run_idle_balance(int cpu) { }
-+
-+static inline
-+unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
-+ struct task_struct *p)
-+{
-+ return util;
-+}
-+
-+static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; }
-+
-+#ifdef CONFIG_SCHED_MM_CID
-+
-+#define SCHED_MM_CID_PERIOD_NS (100ULL * 1000000) /* 100ms */
-+#define MM_CID_SCAN_DELAY 100 /* 100ms */
-+
-+extern raw_spinlock_t cid_lock;
-+extern int use_cid_lock;
-+
-+extern void sched_mm_cid_migrate_from(struct task_struct *t);
-+extern void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t, int src_cpu);
-+extern void task_tick_mm_cid(struct rq *rq, struct task_struct *curr);
-+extern void init_sched_mm_cid(struct task_struct *t);
-+
-+static inline void __mm_cid_put(struct mm_struct *mm, int cid)
-+{
-+ if (cid < 0)
-+ return;
-+ cpumask_clear_cpu(cid, mm_cidmask(mm));
-+}
-+
-+/*
-+ * The per-mm/cpu cid can have the MM_CID_LAZY_PUT flag set or transition to
-+ * the MM_CID_UNSET state without holding the rq lock, but the rq lock needs to
-+ * be held to transition to other states.
-+ *
-+ * State transitions synchronized with cmpxchg or try_cmpxchg need to be
-+ * consistent across cpus, which prevents use of this_cpu_cmpxchg.
-+ */
-+static inline void mm_cid_put_lazy(struct task_struct *t)
-+{
-+ struct mm_struct *mm = t->mm;
-+ struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
-+ int cid;
-+
-+ lockdep_assert_irqs_disabled();
-+ cid = __this_cpu_read(pcpu_cid->cid);
-+ if (!mm_cid_is_lazy_put(cid) ||
-+ !try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
-+ return;
-+ __mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
-+}
-+
-+static inline int mm_cid_pcpu_unset(struct mm_struct *mm)
-+{
-+ struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
-+ int cid, res;
-+
-+ lockdep_assert_irqs_disabled();
-+ cid = __this_cpu_read(pcpu_cid->cid);
-+ for (;;) {
-+ if (mm_cid_is_unset(cid))
-+ return MM_CID_UNSET;
-+ /*
-+ * Attempt transition from valid or lazy-put to unset.
-+ */
-+ res = cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, cid, MM_CID_UNSET);
-+ if (res == cid)
-+ break;
-+ cid = res;
-+ }
-+ return cid;
-+}
-+
-+static inline void mm_cid_put(struct mm_struct *mm)
-+{
-+ int cid;
-+
-+ lockdep_assert_irqs_disabled();
-+ cid = mm_cid_pcpu_unset(mm);
-+ if (cid == MM_CID_UNSET)
-+ return;
-+ __mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
-+}
-+
-+static inline int __mm_cid_try_get(struct mm_struct *mm)
-+{
-+ struct cpumask *cpumask;
-+ int cid;
-+
-+ cpumask = mm_cidmask(mm);
-+ /*
-+ * Retry finding first zero bit if the mask is temporarily
-+ * filled. This only happens during concurrent remote-clear
-+ * which owns a cid without holding a rq lock.
-+ */
-+ for (;;) {
-+ cid = cpumask_first_zero(cpumask);
-+ if (cid < nr_cpu_ids)
-+ break;
-+ cpu_relax();
-+ }
-+ if (cpumask_test_and_set_cpu(cid, cpumask))
-+ return -1;
-+ return cid;
-+}
-+
-+/*
-+ * Save a snapshot of the current runqueue time of this cpu
-+ * with the per-cpu cid value, allowing to estimate how recently it was used.
-+ */
-+static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm)
-+{
-+ struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(rq));
-+
-+ lockdep_assert_rq_held(rq);
-+ WRITE_ONCE(pcpu_cid->time, rq->clock);
-+}
-+
-+static inline int __mm_cid_get(struct rq *rq, struct mm_struct *mm)
-+{
-+ int cid;
-+
-+ /*
-+ * All allocations (even those using the cid_lock) are lock-free. If
-+ * use_cid_lock is set, hold the cid_lock to perform cid allocation to
-+ * guarantee forward progress.
-+ */
-+ if (!READ_ONCE(use_cid_lock)) {
-+ cid = __mm_cid_try_get(mm);
-+ if (cid >= 0)
-+ goto end;
-+ raw_spin_lock(&cid_lock);
-+ } else {
-+ raw_spin_lock(&cid_lock);
-+ cid = __mm_cid_try_get(mm);
-+ if (cid >= 0)
-+ goto unlock;
-+ }
-+
-+ /*
-+ * cid concurrently allocated. Retry while forcing following
-+ * allocations to use the cid_lock to ensure forward progress.
-+ */
-+ WRITE_ONCE(use_cid_lock, 1);
-+ /*
-+ * Set use_cid_lock before allocation. Only care about program order
-+ * because this is only required for forward progress.
-+ */
-+ barrier();
-+ /*
-+ * Retry until it succeeds. It is guaranteed to eventually succeed once
-+ * all newcoming allocations observe the use_cid_lock flag set.
-+ */
-+ do {
-+ cid = __mm_cid_try_get(mm);
-+ cpu_relax();
-+ } while (cid < 0);
-+ /*
-+ * Allocate before clearing use_cid_lock. Only care about
-+ * program order because this is for forward progress.
-+ */
-+ barrier();
-+ WRITE_ONCE(use_cid_lock, 0);
-+unlock:
-+ raw_spin_unlock(&cid_lock);
-+end:
-+ mm_cid_snapshot_time(rq, mm);
-+ return cid;
-+}
-+
-+static inline int mm_cid_get(struct rq *rq, struct mm_struct *mm)
-+{
-+ struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
-+ struct cpumask *cpumask;
-+ int cid;
-+
-+ lockdep_assert_rq_held(rq);
-+ cpumask = mm_cidmask(mm);
-+ cid = __this_cpu_read(pcpu_cid->cid);
-+ if (mm_cid_is_valid(cid)) {
-+ mm_cid_snapshot_time(rq, mm);
-+ return cid;
-+ }
-+ if (mm_cid_is_lazy_put(cid)) {
-+ if (try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
-+ __mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
-+ }
-+ cid = __mm_cid_get(rq, mm);
-+ __this_cpu_write(pcpu_cid->cid, cid);
-+ return cid;
-+}
-+
-+static inline void switch_mm_cid(struct rq *rq,
-+ struct task_struct *prev,
-+ struct task_struct *next)
-+{
-+ /*
-+ * Provide a memory barrier between rq->curr store and load of
-+ * {prev,next}->mm->pcpu_cid[cpu] on rq->curr->mm transition.
-+ *
-+ * Should be adapted if context_switch() is modified.
-+ */
-+ if (!next->mm) { // to kernel
-+ /*
-+ * user -> kernel transition does not guarantee a barrier, but
-+ * we can use the fact that it performs an atomic operation in
-+ * mmgrab().
-+ */
-+ if (prev->mm) // from user
-+ smp_mb__after_mmgrab();
-+ /*
-+ * kernel -> kernel transition does not change rq->curr->mm
-+ * state. It stays NULL.
-+ */
-+ } else { // to user
-+ /*
-+ * kernel -> user transition does not provide a barrier
-+ * between rq->curr store and load of {prev,next}->mm->pcpu_cid[cpu].
-+ * Provide it here.
-+ */
-+ if (!prev->mm) // from kernel
-+ smp_mb();
-+ /*
-+ * user -> user transition guarantees a memory barrier through
-+ * switch_mm() when current->mm changes. If current->mm is
-+ * unchanged, no barrier is needed.
-+ */
-+ }
-+ if (prev->mm_cid_active) {
-+ mm_cid_snapshot_time(rq, prev->mm);
-+ mm_cid_put_lazy(prev);
-+ prev->mm_cid = -1;
-+ }
-+ if (next->mm_cid_active)
-+ next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next->mm);
-+}
-+
-+#else
-+static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev, struct task_struct *next) { }
-+static inline void sched_mm_cid_migrate_from(struct task_struct *t) { }
-+static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t, int src_cpu) { }
-+static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { }
-+static inline void init_sched_mm_cid(struct task_struct *t) { }
-+#endif
-+
-+#endif /* ALT_SCHED_H */
-diff --git a/kernel/sched/bmq.h b/kernel/sched/bmq.h
-new file mode 100644
-index 000000000000..840009dc1e8d
---- /dev/null
-+++ b/kernel/sched/bmq.h
-@@ -0,0 +1,99 @@
-+#define ALT_SCHED_NAME "BMQ"
-+
-+/*
-+ * BMQ only routines
-+ */
-+#define rq_switch_time(rq) ((rq)->clock - (rq)->last_ts_switch)
-+#define boost_threshold(p) (sysctl_sched_base_slice >> ((14 - (p)->boost_prio) / 2))
-+
-+static inline void boost_task(struct task_struct *p)
-+{
-+ int limit;
-+
-+ switch (p->policy) {
-+ case SCHED_NORMAL:
-+ limit = -MAX_PRIORITY_ADJ;
-+ break;
-+ case SCHED_BATCH:
-+ case SCHED_IDLE:
-+ limit = 0;
-+ break;
-+ default:
-+ return;
-+ }
-+
-+ if (p->boost_prio > limit)
-+ p->boost_prio--;
-+}
-+
-+static inline void deboost_task(struct task_struct *p)
-+{
-+ if (p->boost_prio < MAX_PRIORITY_ADJ)
-+ p->boost_prio++;
-+}
-+
-+/*
-+ * Common interfaces
-+ */
-+static inline void sched_timeslice_imp(const int timeslice_ms) {}
-+
-+static inline int
-+task_sched_prio_normal(const struct task_struct *p, const struct rq *rq)
-+{
-+ return p->prio + p->boost_prio - MAX_RT_PRIO;
-+}
-+
-+static inline int task_sched_prio(const struct task_struct *p)
-+{
-+ return (p->prio < MAX_RT_PRIO)? (p->prio >> 2) :
-+ MIN_SCHED_NORMAL_PRIO + (p->prio + p->boost_prio - MAX_RT_PRIO) / 2;
-+}
-+
-+static inline int
-+task_sched_prio_idx(const struct task_struct *p, const struct rq *rq)
-+{
-+ return task_sched_prio(p);
-+}
-+
-+static inline int sched_prio2idx(int prio, struct rq *rq)
-+{
-+ return prio;
-+}
-+
-+static inline int sched_idx2prio(int idx, struct rq *rq)
-+{
-+ return idx;
-+}
-+
-+inline int task_running_nice(struct task_struct *p)
-+{
-+ return (p->prio + p->boost_prio > DEFAULT_PRIO + MAX_PRIORITY_ADJ);
-+}
-+
-+static inline void sched_update_rq_clock(struct rq *rq) {}
-+
-+static inline void sched_task_renew(struct task_struct *p, const struct rq *rq)
-+{
-+ if (rq_switch_time(rq) > sysctl_sched_base_slice)
-+ deboost_task(p);
-+}
-+
-+static inline void sched_task_sanity_check(struct task_struct *p, struct rq *rq) {}
-+static void sched_task_fork(struct task_struct *p, struct rq *rq) {}
-+
-+static inline void do_sched_yield_type_1(struct task_struct *p, struct rq *rq)
-+{
-+ p->boost_prio = MAX_PRIORITY_ADJ;
-+}
-+
-+static inline void sched_task_ttwu(struct task_struct *p)
-+{
-+ if(this_rq()->clock_task - p->last_ran > sysctl_sched_base_slice)
-+ boost_task(p);
-+}
-+
-+static inline void sched_task_deactivate(struct task_struct *p, struct rq *rq)
-+{
-+ if (rq_switch_time(rq) < boost_threshold(p))
-+ boost_task(p);
-+}
-diff --git a/kernel/sched/build_policy.c b/kernel/sched/build_policy.c
-index d9dc9ab3773f..71a25540d65e 100644
---- a/kernel/sched/build_policy.c
-+++ b/kernel/sched/build_policy.c
-@@ -42,13 +42,19 @@
-
- #include "idle.c"
-
-+#ifndef CONFIG_SCHED_ALT
- #include "rt.c"
-+#endif
-
- #ifdef CONFIG_SMP
-+#ifndef CONFIG_SCHED_ALT
- # include "cpudeadline.c"
-+#endif
- # include "pelt.c"
- #endif
-
- #include "cputime.c"
--#include "deadline.c"
-
-+#ifndef CONFIG_SCHED_ALT
-+#include "deadline.c"
-+#endif
-diff --git a/kernel/sched/build_utility.c b/kernel/sched/build_utility.c
-index 80a3df49ab47..bc17d5a6fc41 100644
---- a/kernel/sched/build_utility.c
-+++ b/kernel/sched/build_utility.c
-@@ -84,7 +84,9 @@
-
- #ifdef CONFIG_SMP
- # include "cpupri.c"
-+#ifndef CONFIG_SCHED_ALT
- # include "stop_task.c"
-+#endif
- # include "topology.c"
- #endif
-
-diff --git a/kernel/sched/cpufreq_schedutil.c b/kernel/sched/cpufreq_schedutil.c
-index 5888176354e2..6ab2534714f6 100644
---- a/kernel/sched/cpufreq_schedutil.c
-+++ b/kernel/sched/cpufreq_schedutil.c
-@@ -155,12 +155,18 @@ static unsigned int get_next_freq(struct sugov_policy *sg_policy,
-
- static void sugov_get_util(struct sugov_cpu *sg_cpu)
- {
-- unsigned long util = cpu_util_cfs_boost(sg_cpu->cpu);
- struct rq *rq = cpu_rq(sg_cpu->cpu);
-
-+#ifndef CONFIG_SCHED_ALT
-+ unsigned long util = cpu_util_cfs_boost(sg_cpu->cpu);
-+
- sg_cpu->bw_dl = cpu_bw_dl(rq);
- sg_cpu->util = effective_cpu_util(sg_cpu->cpu, util,
- FREQUENCY_UTIL, NULL);
-+#else
-+ sg_cpu->bw_dl = 0;
-+ sg_cpu->util = rq_load_util(rq, arch_scale_cpu_capacity(sg_cpu->cpu));
-+#endif /* CONFIG_SCHED_ALT */
- }
-
- /**
-@@ -306,8 +312,10 @@ static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; }
- */
- static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu)
- {
-+#ifndef CONFIG_SCHED_ALT
- if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_dl)
- sg_cpu->sg_policy->limits_changed = true;
-+#endif
- }
-
- static inline bool sugov_update_single_common(struct sugov_cpu *sg_cpu,
-@@ -636,6 +644,7 @@ static int sugov_kthread_create(struct sugov_policy *sg_policy)
- }
-
- ret = sched_setattr_nocheck(thread, &attr);
-+
- if (ret) {
- kthread_stop(thread);
- pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
-diff --git a/kernel/sched/cputime.c b/kernel/sched/cputime.c
-index af7952f12e6c..6461cbbb734d 100644
---- a/kernel/sched/cputime.c
-+++ b/kernel/sched/cputime.c
-@@ -126,7 +126,7 @@ void account_user_time(struct task_struct *p, u64 cputime)
- p->utime += cputime;
- account_group_user_time(p, cputime);
-
-- index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
-+ index = task_running_nice(p) ? CPUTIME_NICE : CPUTIME_USER;
-
- /* Add user time to cpustat. */
- task_group_account_field(p, index, cputime);
-@@ -150,7 +150,7 @@ void account_guest_time(struct task_struct *p, u64 cputime)
- p->gtime += cputime;
-
- /* Add guest time to cpustat. */
-- if (task_nice(p) > 0) {
-+ if (task_running_nice(p)) {
- task_group_account_field(p, CPUTIME_NICE, cputime);
- cpustat[CPUTIME_GUEST_NICE] += cputime;
- } else {
-@@ -288,7 +288,7 @@ static inline u64 account_other_time(u64 max)
- #ifdef CONFIG_64BIT
- static inline u64 read_sum_exec_runtime(struct task_struct *t)
- {
-- return t->se.sum_exec_runtime;
-+ return tsk_seruntime(t);
- }
- #else
- static u64 read_sum_exec_runtime(struct task_struct *t)
-@@ -298,7 +298,7 @@ static u64 read_sum_exec_runtime(struct task_struct *t)
- struct rq *rq;
-
- rq = task_rq_lock(t, &rf);
-- ns = t->se.sum_exec_runtime;
-+ ns = tsk_seruntime(t);
- task_rq_unlock(rq, t, &rf);
-
- return ns;
-@@ -630,7 +630,7 @@ void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
- void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
- {
- struct task_cputime cputime = {
-- .sum_exec_runtime = p->se.sum_exec_runtime,
-+ .sum_exec_runtime = tsk_seruntime(p),
- };
-
- if (task_cputime(p, &cputime.utime, &cputime.stime))
-diff --git a/kernel/sched/debug.c b/kernel/sched/debug.c
-index 4580a450700e..8c8fd7da4617 100644
---- a/kernel/sched/debug.c
-+++ b/kernel/sched/debug.c
-@@ -7,6 +7,7 @@
- * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
- */
-
-+#ifndef CONFIG_SCHED_ALT
- /*
- * This allows printing both to /sys/kernel/debug/sched/debug and
- * to the console
-@@ -215,6 +216,7 @@ static const struct file_operations sched_scaling_fops = {
- };
-
- #endif /* SMP */
-+#endif /* !CONFIG_SCHED_ALT */
-
- #ifdef CONFIG_PREEMPT_DYNAMIC
-
-@@ -278,6 +280,7 @@ static const struct file_operations sched_dynamic_fops = {
-
- #endif /* CONFIG_PREEMPT_DYNAMIC */
-
-+#ifndef CONFIG_SCHED_ALT
- __read_mostly bool sched_debug_verbose;
-
- #ifdef CONFIG_SMP
-@@ -332,6 +335,7 @@ static const struct file_operations sched_debug_fops = {
- .llseek = seq_lseek,
- .release = seq_release,
- };
-+#endif /* !CONFIG_SCHED_ALT */
-
- static struct dentry *debugfs_sched;
-
-@@ -341,14 +345,17 @@ static __init int sched_init_debug(void)
-
- debugfs_sched = debugfs_create_dir("sched", NULL);
-
-+#ifndef CONFIG_SCHED_ALT
- debugfs_create_file("features", 0644, debugfs_sched, NULL, &sched_feat_fops);
- debugfs_create_file_unsafe("verbose", 0644, debugfs_sched, &sched_debug_verbose, &sched_verbose_fops);
-+#endif /* !CONFIG_SCHED_ALT */
- #ifdef CONFIG_PREEMPT_DYNAMIC
- debugfs_create_file("preempt", 0644, debugfs_sched, NULL, &sched_dynamic_fops);
- #endif
-
- debugfs_create_u32("base_slice_ns", 0644, debugfs_sched, &sysctl_sched_base_slice);
-
-+#ifndef CONFIG_SCHED_ALT
- debugfs_create_u32("latency_warn_ms", 0644, debugfs_sched, &sysctl_resched_latency_warn_ms);
- debugfs_create_u32("latency_warn_once", 0644, debugfs_sched, &sysctl_resched_latency_warn_once);
-
-@@ -373,11 +380,13 @@ static __init int sched_init_debug(void)
- #endif
-
- debugfs_create_file("debug", 0444, debugfs_sched, NULL, &sched_debug_fops);
-+#endif /* !CONFIG_SCHED_ALT */
-
- return 0;
- }
- late_initcall(sched_init_debug);
-
-+#ifndef CONFIG_SCHED_ALT
- #ifdef CONFIG_SMP
-
- static cpumask_var_t sd_sysctl_cpus;
-@@ -1106,6 +1115,7 @@ void proc_sched_set_task(struct task_struct *p)
- memset(&p->stats, 0, sizeof(p->stats));
- #endif
- }
-+#endif /* !CONFIG_SCHED_ALT */
-
- void resched_latency_warn(int cpu, u64 latency)
- {
-diff --git a/kernel/sched/idle.c b/kernel/sched/idle.c
-index 565f8374ddbb..67d51e05a8ac 100644
---- a/kernel/sched/idle.c
-+++ b/kernel/sched/idle.c
-@@ -380,6 +380,7 @@ void cpu_startup_entry(enum cpuhp_state state)
- do_idle();
- }
-
-+#ifndef CONFIG_SCHED_ALT
- /*
- * idle-task scheduling class.
- */
-@@ -501,3 +502,4 @@ DEFINE_SCHED_CLASS(idle) = {
- .switched_to = switched_to_idle,
- .update_curr = update_curr_idle,
- };
-+#endif
-diff --git a/kernel/sched/pds.h b/kernel/sched/pds.h
-new file mode 100644
-index 000000000000..c35dfb909f23
---- /dev/null
-+++ b/kernel/sched/pds.h
-@@ -0,0 +1,141 @@
-+#define ALT_SCHED_NAME "PDS"
-+
-+static const u64 RT_MASK = ((1ULL << MIN_SCHED_NORMAL_PRIO) - 1);
-+
-+#define SCHED_NORMAL_PRIO_NUM (32)
-+#define SCHED_EDGE_DELTA (SCHED_NORMAL_PRIO_NUM - NICE_WIDTH / 2)
-+
-+/* PDS assume NORMAL_PRIO_NUM is power of 2 */
-+#define SCHED_NORMAL_PRIO_MOD(x) ((x) & (SCHED_NORMAL_PRIO_NUM - 1))
-+
-+/* default time slice 4ms -> shift 22, 2 time slice slots -> shift 23 */
-+static __read_mostly int sched_timeslice_shift = 23;
-+
-+/*
-+ * Common interfaces
-+ */
-+static inline void sched_timeslice_imp(const int timeslice_ms)
-+{
-+ if (2 == timeslice_ms)
-+ sched_timeslice_shift = 22;
-+}
-+
-+static inline int
-+task_sched_prio_normal(const struct task_struct *p, const struct rq *rq)
-+{
-+ s64 delta = p->deadline - rq->time_edge + SCHED_EDGE_DELTA;
-+
-+#ifdef ALT_SCHED_DEBUG
-+ if (WARN_ONCE(delta > NORMAL_PRIO_NUM - 1,
-+ "pds: task_sched_prio_normal() delta %lld\n", delta))
-+ return SCHED_NORMAL_PRIO_NUM - 1;
-+#endif
-+
-+ return max(0LL, delta);
-+}
-+
-+static inline int task_sched_prio(const struct task_struct *p)
-+{
-+ return (p->prio < MIN_NORMAL_PRIO) ? (p->prio >> 2) :
-+ MIN_SCHED_NORMAL_PRIO + task_sched_prio_normal(p, task_rq(p));
-+}
-+
-+static inline int
-+task_sched_prio_idx(const struct task_struct *p, const struct rq *rq)
-+{
-+ u64 idx;
-+
-+ if (p->prio < MIN_NORMAL_PRIO)
-+ return p->prio >> 2;
-+
-+ idx = max(p->deadline + SCHED_EDGE_DELTA, rq->time_edge);
-+ /*printk(KERN_INFO "sched: task_sched_prio_idx edge:%llu, deadline=%llu idx=%llu\n", rq->time_edge, p->deadline, idx);*/
-+ return MIN_SCHED_NORMAL_PRIO + SCHED_NORMAL_PRIO_MOD(idx);
-+}
-+
-+static inline int sched_prio2idx(int sched_prio, struct rq *rq)
-+{
-+ return (IDLE_TASK_SCHED_PRIO == sched_prio || sched_prio < MIN_SCHED_NORMAL_PRIO) ?
-+ sched_prio :
-+ MIN_SCHED_NORMAL_PRIO + SCHED_NORMAL_PRIO_MOD(sched_prio + rq->time_edge);
-+}
-+
-+static inline int sched_idx2prio(int sched_idx, struct rq *rq)
-+{
-+ return (sched_idx < MIN_SCHED_NORMAL_PRIO) ?
-+ sched_idx :
-+ MIN_SCHED_NORMAL_PRIO + SCHED_NORMAL_PRIO_MOD(sched_idx - rq->time_edge);
-+}
-+
-+int task_running_nice(struct task_struct *p)
-+{
-+ return (p->prio > DEFAULT_PRIO);
-+}
-+
-+static inline void sched_update_rq_clock(struct rq *rq)
-+{
-+ struct list_head head;
-+ u64 old = rq->time_edge;
-+ u64 now = rq->clock >> sched_timeslice_shift;
-+ u64 prio, delta;
-+ DECLARE_BITMAP(normal, SCHED_QUEUE_BITS);
-+
-+ if (now == old)
-+ return;
-+
-+ rq->time_edge = now;
-+ delta = min_t(u64, SCHED_NORMAL_PRIO_NUM, now - old);
-+ INIT_LIST_HEAD(&head);
-+
-+ prio = MIN_SCHED_NORMAL_PRIO;
-+ for_each_set_bit_from(prio, rq->queue.bitmap, MIN_SCHED_NORMAL_PRIO + delta)
-+ list_splice_tail_init(rq->queue.heads + MIN_SCHED_NORMAL_PRIO +
-+ SCHED_NORMAL_PRIO_MOD(prio + old), &head);
-+
-+ bitmap_shift_right(normal, rq->queue.bitmap, delta, SCHED_QUEUE_BITS);
-+ if (!list_empty(&head)) {
-+ struct task_struct *p;
-+ u64 idx = MIN_SCHED_NORMAL_PRIO + SCHED_NORMAL_PRIO_MOD(now);
-+
-+ list_for_each_entry(p, &head, sq_node)
-+ p->sq_idx = idx;
-+
-+ list_splice(&head, rq->queue.heads + idx);
-+ set_bit(MIN_SCHED_NORMAL_PRIO, normal);
-+ }
-+ bitmap_replace(rq->queue.bitmap, normal, rq->queue.bitmap,
-+ (const unsigned long *)&RT_MASK, SCHED_QUEUE_BITS);
-+
-+ if (rq->prio < MIN_SCHED_NORMAL_PRIO || IDLE_TASK_SCHED_PRIO == rq->prio)
-+ return;
-+
-+ rq->prio = (rq->prio < MIN_SCHED_NORMAL_PRIO + delta) ?
-+ MIN_SCHED_NORMAL_PRIO : rq->prio - delta;
-+}
-+
-+static inline void sched_task_renew(struct task_struct *p, const struct rq *rq)
-+{
-+ if (p->prio >= MIN_NORMAL_PRIO)
-+ p->deadline = rq->time_edge + (p->static_prio - (MAX_PRIO - NICE_WIDTH)) / 2;
-+}
-+
-+static inline void sched_task_sanity_check(struct task_struct *p, struct rq *rq)
-+{
-+ u64 max_dl = rq->time_edge + NICE_WIDTH / 2 - 1;
-+ if (unlikely(p->deadline > max_dl))
-+ p->deadline = max_dl;
-+}
-+
-+static void sched_task_fork(struct task_struct *p, struct rq *rq)
-+{
-+ sched_task_renew(p, rq);
-+}
-+
-+static inline void do_sched_yield_type_1(struct task_struct *p, struct rq *rq)
-+{
-+ p->time_slice = sysctl_sched_base_slice;
-+ sched_task_renew(p, rq);
-+}
-+
-+static inline void sched_task_ttwu(struct task_struct *p) {}
-+static inline void sched_task_deactivate(struct task_struct *p, struct rq *rq) {}
-diff --git a/kernel/sched/pelt.c b/kernel/sched/pelt.c
-index 63b6cf898220..9ca10ece4d3a 100644
---- a/kernel/sched/pelt.c
-+++ b/kernel/sched/pelt.c
-@@ -266,6 +266,7 @@ ___update_load_avg(struct sched_avg *sa, unsigned long load)
- WRITE_ONCE(sa->util_avg, sa->util_sum / divider);
- }
-
-+#ifndef CONFIG_SCHED_ALT
- /*
- * sched_entity:
- *
-@@ -383,8 +384,9 @@ int update_dl_rq_load_avg(u64 now, struct rq *rq, int running)
-
- return 0;
- }
-+#endif
-
--#ifdef CONFIG_SCHED_THERMAL_PRESSURE
-+#if defined(CONFIG_SCHED_THERMAL_PRESSURE) && !defined(CONFIG_SCHED_ALT)
- /*
- * thermal:
- *
-diff --git a/kernel/sched/pelt.h b/kernel/sched/pelt.h
-index 3a0e0dc28721..e8a7d84aa5a5 100644
---- a/kernel/sched/pelt.h
-+++ b/kernel/sched/pelt.h
-@@ -1,13 +1,15 @@
- #ifdef CONFIG_SMP
- #include "sched-pelt.h"
-
-+#ifndef CONFIG_SCHED_ALT
- int __update_load_avg_blocked_se(u64 now, struct sched_entity *se);
- int __update_load_avg_se(u64 now, struct cfs_rq *cfs_rq, struct sched_entity *se);
- int __update_load_avg_cfs_rq(u64 now, struct cfs_rq *cfs_rq);
- int update_rt_rq_load_avg(u64 now, struct rq *rq, int running);
- int update_dl_rq_load_avg(u64 now, struct rq *rq, int running);
-+#endif
-
--#ifdef CONFIG_SCHED_THERMAL_PRESSURE
-+#if defined(CONFIG_SCHED_THERMAL_PRESSURE) && !defined(CONFIG_SCHED_ALT)
- int update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity);
-
- static inline u64 thermal_load_avg(struct rq *rq)
-@@ -44,6 +46,7 @@ static inline u32 get_pelt_divider(struct sched_avg *avg)
- return PELT_MIN_DIVIDER + avg->period_contrib;
- }
-
-+#ifndef CONFIG_SCHED_ALT
- static inline void cfs_se_util_change(struct sched_avg *avg)
- {
- unsigned int enqueued;
-@@ -180,9 +183,11 @@ static inline u64 cfs_rq_clock_pelt(struct cfs_rq *cfs_rq)
- return rq_clock_pelt(rq_of(cfs_rq));
- }
- #endif
-+#endif /* CONFIG_SCHED_ALT */
-
- #else
-
-+#ifndef CONFIG_SCHED_ALT
- static inline int
- update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
- {
-@@ -200,6 +205,7 @@ update_dl_rq_load_avg(u64 now, struct rq *rq, int running)
- {
- return 0;
- }
-+#endif
-
- static inline int
- update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity)
-diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h
-index 2e5a95486a42..0c86131a2a64 100644
---- a/kernel/sched/sched.h
-+++ b/kernel/sched/sched.h
-@@ -5,6 +5,10 @@
- #ifndef _KERNEL_SCHED_SCHED_H
- #define _KERNEL_SCHED_SCHED_H
-
-+#ifdef CONFIG_SCHED_ALT
-+#include "alt_sched.h"
-+#else
-+
- #include <linux/sched/affinity.h>
- #include <linux/sched/autogroup.h>
- #include <linux/sched/cpufreq.h>
-@@ -3509,4 +3513,9 @@ static inline void init_sched_mm_cid(struct task_struct *t) { }
- extern u64 avg_vruntime(struct cfs_rq *cfs_rq);
- extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se);
-
-+static inline int task_running_nice(struct task_struct *p)
-+{
-+ return (task_nice(p) > 0);
-+}
-+#endif /* !CONFIG_SCHED_ALT */
- #endif /* _KERNEL_SCHED_SCHED_H */
-diff --git a/kernel/sched/stats.c b/kernel/sched/stats.c
-index 857f837f52cb..5486c63e4790 100644
---- a/kernel/sched/stats.c
-+++ b/kernel/sched/stats.c
-@@ -125,8 +125,10 @@ static int show_schedstat(struct seq_file *seq, void *v)
- } else {
- struct rq *rq;
- #ifdef CONFIG_SMP
-+#ifndef CONFIG_SCHED_ALT
- struct sched_domain *sd;
- int dcount = 0;
-+#endif
- #endif
- cpu = (unsigned long)(v - 2);
- rq = cpu_rq(cpu);
-@@ -143,6 +145,7 @@ static int show_schedstat(struct seq_file *seq, void *v)
- seq_printf(seq, "\n");
-
- #ifdef CONFIG_SMP
-+#ifndef CONFIG_SCHED_ALT
- /* domain-specific stats */
- rcu_read_lock();
- for_each_domain(cpu, sd) {
-@@ -171,6 +174,7 @@ static int show_schedstat(struct seq_file *seq, void *v)
- sd->ttwu_move_balance);
- }
- rcu_read_unlock();
-+#endif
- #endif
- }
- return 0;
-diff --git a/kernel/sched/stats.h b/kernel/sched/stats.h
-index 38f3698f5e5b..b9d597394316 100644
---- a/kernel/sched/stats.h
-+++ b/kernel/sched/stats.h
-@@ -89,6 +89,7 @@ static inline void rq_sched_info_depart (struct rq *rq, unsigned long long delt
-
- #endif /* CONFIG_SCHEDSTATS */
-
-+#ifndef CONFIG_SCHED_ALT
- #ifdef CONFIG_FAIR_GROUP_SCHED
- struct sched_entity_stats {
- struct sched_entity se;
-@@ -105,6 +106,7 @@ __schedstats_from_se(struct sched_entity *se)
- #endif
- return &task_of(se)->stats;
- }
-+#endif /* CONFIG_SCHED_ALT */
-
- #ifdef CONFIG_PSI
- void psi_task_change(struct task_struct *task, int clear, int set);
-diff --git a/kernel/sched/topology.c b/kernel/sched/topology.c
-index 10d1391e7416..120933a5b206 100644
---- a/kernel/sched/topology.c
-+++ b/kernel/sched/topology.c
-@@ -3,6 +3,7 @@
- * Scheduler topology setup/handling methods
- */
-
-+#ifndef CONFIG_SCHED_ALT
- #include <linux/bsearch.h>
-
- DEFINE_MUTEX(sched_domains_mutex);
-@@ -1445,8 +1446,10 @@ static void asym_cpu_capacity_scan(void)
- */
-
- static int default_relax_domain_level = -1;
-+#endif /* CONFIG_SCHED_ALT */
- int sched_domain_level_max;
-
-+#ifndef CONFIG_SCHED_ALT
- static int __init setup_relax_domain_level(char *str)
- {
- if (kstrtoint(str, 0, &default_relax_domain_level))
-@@ -1680,6 +1683,7 @@ sd_init(struct sched_domain_topology_level *tl,
-
- return sd;
- }
-+#endif /* CONFIG_SCHED_ALT */
-
- /*
- * Topology list, bottom-up.
-@@ -1716,6 +1720,7 @@ void __init set_sched_topology(struct sched_domain_topology_level *tl)
- sched_domain_topology_saved = NULL;
- }
-
-+#ifndef CONFIG_SCHED_ALT
- #ifdef CONFIG_NUMA
-
- static const struct cpumask *sd_numa_mask(int cpu)
-@@ -2793,3 +2798,20 @@ void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
- partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
- mutex_unlock(&sched_domains_mutex);
- }
-+#else /* CONFIG_SCHED_ALT */
-+void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
-+ struct sched_domain_attr *dattr_new)
-+{}
-+
-+#ifdef CONFIG_NUMA
-+int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
-+{
-+ return best_mask_cpu(cpu, cpus);
-+}
-+
-+int sched_numa_find_nth_cpu(const struct cpumask *cpus, int cpu, int node)
-+{
-+ return cpumask_nth(cpu, cpus);
-+}
-+#endif /* CONFIG_NUMA */
-+#endif
-diff --git a/kernel/sysctl.c b/kernel/sysctl.c
-index 157f7ce2942d..63083a9a2935 100644
---- a/kernel/sysctl.c
-+++ b/kernel/sysctl.c
-@@ -92,6 +92,10 @@ EXPORT_SYMBOL_GPL(sysctl_long_vals);
-
- /* Constants used for minimum and maximum */
-
-+#ifdef CONFIG_SCHED_ALT
-+extern int sched_yield_type;
-+#endif
-+
- #ifdef CONFIG_PERF_EVENTS
- static const int six_hundred_forty_kb = 640 * 1024;
- #endif
-@@ -1912,6 +1916,17 @@ static struct ctl_table kern_table[] = {
- .proc_handler = proc_dointvec,
- },
- #endif
-+#ifdef CONFIG_SCHED_ALT
-+ {
-+ .procname = "yield_type",
-+ .data = &sched_yield_type,
-+ .maxlen = sizeof (int),
-+ .mode = 0644,
-+ .proc_handler = &proc_dointvec_minmax,
-+ .extra1 = SYSCTL_ZERO,
-+ .extra2 = SYSCTL_TWO,
-+ },
-+#endif
- #if defined(CONFIG_S390) && defined(CONFIG_SMP)
- {
- .procname = "spin_retry",
-diff --git a/kernel/time/hrtimer.c b/kernel/time/hrtimer.c
-index 760793998cdd..3198ed8ab40a 100644
---- a/kernel/time/hrtimer.c
-+++ b/kernel/time/hrtimer.c
-@@ -2091,8 +2091,10 @@ long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode,
- int ret = 0;
- u64 slack;
-
-+#ifndef CONFIG_SCHED_ALT
- slack = current->timer_slack_ns;
-- if (rt_task(current))
-+ if (dl_task(current) || rt_task(current))
-+#endif
- slack = 0;
-
- hrtimer_init_sleeper_on_stack(&t, clockid, mode);
-diff --git a/kernel/time/posix-cpu-timers.c b/kernel/time/posix-cpu-timers.c
-index e9c6f9d0e42c..43ee0a94abdd 100644
---- a/kernel/time/posix-cpu-timers.c
-+++ b/kernel/time/posix-cpu-timers.c
-@@ -223,7 +223,7 @@ static void task_sample_cputime(struct task_struct *p, u64 *samples)
- u64 stime, utime;
-
- task_cputime(p, &utime, &stime);
-- store_samples(samples, stime, utime, p->se.sum_exec_runtime);
-+ store_samples(samples, stime, utime, tsk_seruntime(p));
- }
-
- static void proc_sample_cputime_atomic(struct task_cputime_atomic *at,
-@@ -867,6 +867,7 @@ static void collect_posix_cputimers(struct posix_cputimers *pct, u64 *samples,
- }
- }
-
-+#ifndef CONFIG_SCHED_ALT
- static inline void check_dl_overrun(struct task_struct *tsk)
- {
- if (tsk->dl.dl_overrun) {
-@@ -874,6 +875,7 @@ static inline void check_dl_overrun(struct task_struct *tsk)
- send_signal_locked(SIGXCPU, SEND_SIG_PRIV, tsk, PIDTYPE_TGID);
- }
- }
-+#endif
-
- static bool check_rlimit(u64 time, u64 limit, int signo, bool rt, bool hard)
- {
-@@ -901,8 +903,10 @@ static void check_thread_timers(struct task_struct *tsk,
- u64 samples[CPUCLOCK_MAX];
- unsigned long soft;
-
-+#ifndef CONFIG_SCHED_ALT
- if (dl_task(tsk))
- check_dl_overrun(tsk);
-+#endif
-
- if (expiry_cache_is_inactive(pct))
- return;
-@@ -916,7 +920,7 @@ static void check_thread_timers(struct task_struct *tsk,
- soft = task_rlimit(tsk, RLIMIT_RTTIME);
- if (soft != RLIM_INFINITY) {
- /* Task RT timeout is accounted in jiffies. RTTIME is usec */
-- unsigned long rttime = tsk->rt.timeout * (USEC_PER_SEC / HZ);
-+ unsigned long rttime = tsk_rttimeout(tsk) * (USEC_PER_SEC / HZ);
- unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME);
-
- /* At the hard limit, send SIGKILL. No further action. */
-@@ -1152,8 +1156,10 @@ static inline bool fastpath_timer_check(struct task_struct *tsk)
- return true;
- }
-
-+#ifndef CONFIG_SCHED_ALT
- if (dl_task(tsk) && tsk->dl.dl_overrun)
- return true;
-+#endif
-
- return false;
- }
-diff --git a/kernel/trace/trace_selftest.c b/kernel/trace/trace_selftest.c
-index 529590499b1f..d04bb99b4f0e 100644
---- a/kernel/trace/trace_selftest.c
-+++ b/kernel/trace/trace_selftest.c
-@@ -1155,10 +1155,15 @@ static int trace_wakeup_test_thread(void *data)
- {
- /* Make this a -deadline thread */
- static const struct sched_attr attr = {
-+#ifdef CONFIG_SCHED_ALT
-+ /* No deadline on BMQ/PDS, use RR */
-+ .sched_policy = SCHED_RR,
-+#else
- .sched_policy = SCHED_DEADLINE,
- .sched_runtime = 100000ULL,
- .sched_deadline = 10000000ULL,
- .sched_period = 10000000ULL
-+#endif
- };
- struct wakeup_test_data *x = data;
-
-diff --git a/kernel/workqueue.c b/kernel/workqueue.c
-index 2989b57e154a..7313d9f5585f 100644
---- a/kernel/workqueue.c
-+++ b/kernel/workqueue.c
-@@ -1114,6 +1114,7 @@ static bool kick_pool(struct worker_pool *pool)
-
- p = worker->task;
-
-+#ifndef CONFIG_SCHED_ALT
- #ifdef CONFIG_SMP
- /*
- * Idle @worker is about to execute @work and waking up provides an
-@@ -1139,6 +1140,8 @@ static bool kick_pool(struct worker_pool *pool)
- get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++;
- }
- #endif
-+#endif /* !CONFIG_SCHED_ALT */
-+
- wake_up_process(p);
- return true;
- }
-@@ -1263,7 +1266,11 @@ void wq_worker_running(struct task_struct *task)
- * CPU intensive auto-detection cares about how long a work item hogged
- * CPU without sleeping. Reset the starting timestamp on wakeup.
- */
-+#ifdef CONFIG_SCHED_ALT
-+ worker->current_at = worker->task->sched_time;
-+#else
- worker->current_at = worker->task->se.sum_exec_runtime;
-+#endif
-
- WRITE_ONCE(worker->sleeping, 0);
- }
-@@ -1348,7 +1355,11 @@ void wq_worker_tick(struct task_struct *task)
- * We probably want to make this prettier in the future.
- */
- if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) ||
-+#ifdef CONFIG_SCHED_ALT
-+ worker->task->sched_time - worker->current_at <
-+#else
- worker->task->se.sum_exec_runtime - worker->current_at <
-+#endif
- wq_cpu_intensive_thresh_us * NSEC_PER_USEC)
- return;
-
-@@ -2559,7 +2570,11 @@ __acquires(&pool->lock)
- worker->current_work = work;
- worker->current_func = work->func;
- worker->current_pwq = pwq;
-+#ifdef CONFIG_SCHED_ALT
-+ worker->current_at = worker->task->sched_time;
-+#else
- worker->current_at = worker->task->se.sum_exec_runtime;
-+#endif
- work_data = *work_data_bits(work);
- worker->current_color = get_work_color(work_data);
-
-From 58a9cabf63a961c5fc501cf1ade12e1dc6029642 Mon Sep 17 00:00:00 2001
-From: Steven Barrett <steven@liquorix.net>
-Date: Sun, 28 Jan 2024 10:22:43 -0600
-Subject: [PATCH] sched/alt: [Sync] 9feae65845f7 sched/topology: Introduce
- sched_numa_hop_mask()
-
----
- kernel/sched/topology.c | 6 ++++++
- 1 file changed, 6 insertions(+)
-
-diff --git a/kernel/sched/topology.c b/kernel/sched/topology.c
-index 120933a5b206..dc717683342e 100644
---- a/kernel/sched/topology.c
-+++ b/kernel/sched/topology.c
-@@ -2813,5 +2813,11 @@ int sched_numa_find_nth_cpu(const struct cpumask *cpus, int cpu, int node)
- {
- return cpumask_nth(cpu, cpus);
- }
-+
-+const struct cpumask *sched_numa_hop_mask(unsigned int node, unsigned int hops)
-+{
-+ return ERR_PTR(-EOPNOTSUPP);
-+}
-+EXPORT_SYMBOL_GPL(sched_numa_hop_mask);
- #endif /* CONFIG_NUMA */
- #endif