summaryrefslogtreecommitdiff
path: root/SOURCES/tkg-BBRv2.patch
diff options
context:
space:
mode:
Diffstat (limited to 'SOURCES/tkg-BBRv2.patch')
-rw-r--r--SOURCES/tkg-BBRv2.patch3311
1 files changed, 3311 insertions, 0 deletions
diff --git a/SOURCES/tkg-BBRv2.patch b/SOURCES/tkg-BBRv2.patch
new file mode 100644
index 0000000..35640e3
--- /dev/null
+++ b/SOURCES/tkg-BBRv2.patch
@@ -0,0 +1,3311 @@
+From eff7e1edf2fec63bac1a81f8c86295dd3f48422a Mon Sep 17 00:00:00 2001
+From: Oleksandr Natalenko <oleksandr@natalenko.name>
+Date: Mon, 4 Apr 2022 08:23:19 +0200
+Subject: [PATCH] tcp_bbr2: introduce BBRv2
+
+Signed-off-by: Oleksandr Natalenko <oleksandr@natalenko.name>
+---
+ include/linux/tcp.h | 3 +-
+ include/net/inet_connection_sock.h | 3 +-
+ include/net/tcp.h | 41 +-
+ include/uapi/linux/inet_diag.h | 33 +
+ net/ipv4/Kconfig | 22 +
+ net/ipv4/Makefile | 1 +
+ net/ipv4/tcp.c | 1 +
+ net/ipv4/tcp_bbr.c | 38 +-
+ net/ipv4/tcp_bbr2.c | 2674 ++++++++++++++++++++++++++++
+ net/ipv4/tcp_cong.c | 1 +
+ net/ipv4/tcp_input.c | 27 +-
+ net/ipv4/tcp_output.c | 26 +-
+ net/ipv4/tcp_rate.c | 30 +-
+ net/ipv4/tcp_timer.c | 1 +
+ 14 files changed, 2867 insertions(+), 34 deletions(-)
+ create mode 100644 net/ipv4/tcp_bbr2.c
+
+diff --git a/include/linux/tcp.h b/include/linux/tcp.h
+index 41b1da621a45..d8f94ef1a297 100644
+--- a/include/linux/tcp.h
++++ b/include/linux/tcp.h
+@@ -255,7 +255,8 @@ struct tcp_sock {
+ u8 compressed_ack;
+ u8 dup_ack_counter:2,
+ tlp_retrans:1, /* TLP is a retransmission */
+- unused:5;
++ fast_ack_mode:2, /* which fast ack mode ? */
++ unused:3;
+ u32 chrono_start; /* Start time in jiffies of a TCP chrono */
+ u32 chrono_stat[3]; /* Time in jiffies for chrono_stat stats */
+ u8 chrono_type:2, /* current chronograph type */
+diff --git a/include/net/inet_connection_sock.h b/include/net/inet_connection_sock.h
+index c2b15f7e5516..d85858efa571 100644
+--- a/include/net/inet_connection_sock.h
++++ b/include/net/inet_connection_sock.h
+@@ -135,7 +135,8 @@ struct inet_connection_sock {
+ u32 icsk_probes_tstamp;
+ u32 icsk_user_timeout;
+
+- u64 icsk_ca_priv[104 / sizeof(u64)];
++/* XXX inflated by temporary internal debugging info */
++ u64 icsk_ca_priv[216 / sizeof(u64)];
+ #define ICSK_CA_PRIV_SIZE sizeof_field(struct inet_connection_sock, icsk_ca_priv)
+ };
+
+diff --git a/include/net/tcp.h b/include/net/tcp.h
+index 14d45661a84d..7261fae79403 100644
+--- a/include/net/tcp.h
++++ b/include/net/tcp.h
+@@ -375,6 +375,7 @@ static inline void tcp_dec_quickack_mode(struct sock *sk,
+ #define TCP_ECN_QUEUE_CWR 2
+ #define TCP_ECN_DEMAND_CWR 4
+ #define TCP_ECN_SEEN 8
++#define TCP_ECN_ECT_PERMANENT 16
+
+ enum tcp_tw_status {
+ TCP_TW_SUCCESS = 0,
+@@ -823,6 +824,11 @@ static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
+ return max_t(s64, t1 - t0, 0);
+ }
+
++static inline u32 tcp_stamp32_us_delta(u32 t1, u32 t0)
++{
++ return max_t(s32, t1 - t0, 0);
++}
++
+ static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
+ {
+ return tcp_ns_to_ts(skb->skb_mstamp_ns);
+@@ -898,9 +904,14 @@ struct tcp_skb_cb {
+ /* pkts S/ACKed so far upon tx of skb, incl retrans: */
+ __u32 delivered;
+ /* start of send pipeline phase */
+- u64 first_tx_mstamp;
++ u32 first_tx_mstamp;
+ /* when we reached the "delivered" count */
+- u64 delivered_mstamp;
++ u32 delivered_mstamp;
++#define TCPCB_IN_FLIGHT_BITS 20
++#define TCPCB_IN_FLIGHT_MAX ((1U << TCPCB_IN_FLIGHT_BITS) - 1)
++ u32 in_flight:20, /* packets in flight at transmit */
++ unused2:12;
++ u32 lost; /* packets lost so far upon tx of skb */
+ } tx; /* only used for outgoing skbs */
+ union {
+ struct inet_skb_parm h4;
+@@ -1026,7 +1037,11 @@ enum tcp_ca_ack_event_flags {
+ #define TCP_CONG_NON_RESTRICTED 0x1
+ /* Requires ECN/ECT set on all packets */
+ #define TCP_CONG_NEEDS_ECN 0x2
+-#define TCP_CONG_MASK (TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
++/* Wants notification of CE events (CA_EVENT_ECN_IS_CE, CA_EVENT_ECN_NO_CE). */
++#define TCP_CONG_WANTS_CE_EVENTS 0x4
++#define TCP_CONG_MASK (TCP_CONG_NON_RESTRICTED | \
++ TCP_CONG_NEEDS_ECN | \
++ TCP_CONG_WANTS_CE_EVENTS)
+
+ union tcp_cc_info;
+
+@@ -1046,8 +1061,11 @@ struct ack_sample {
+ */
+ struct rate_sample {
+ u64 prior_mstamp; /* starting timestamp for interval */
++ u32 prior_lost; /* tp->lost at "prior_mstamp" */
+ u32 prior_delivered; /* tp->delivered at "prior_mstamp" */
+ u32 prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
++ u32 tx_in_flight; /* packets in flight at starting timestamp */
++ s32 lost; /* number of packets lost over interval */
+ s32 delivered; /* number of packets delivered over interval */
+ s32 delivered_ce; /* number of packets delivered w/ CE marks*/
+ long interval_us; /* time for tp->delivered to incr "delivered" */
+@@ -1061,6 +1079,7 @@ struct rate_sample {
+ bool is_app_limited; /* is sample from packet with bubble in pipe? */
+ bool is_retrans; /* is sample from retransmission? */
+ bool is_ack_delayed; /* is this (likely) a delayed ACK? */
++ bool is_ece; /* did this ACK have ECN marked? */
+ };
+
+ struct tcp_congestion_ops {
+@@ -1084,8 +1103,11 @@ struct tcp_congestion_ops {
+ /* hook for packet ack accounting (optional) */
+ void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
+
+- /* override sysctl_tcp_min_tso_segs */
+- u32 (*min_tso_segs)(struct sock *sk);
++ /* pick target number of segments per TSO/GSO skb (optional): */
++ u32 (*tso_segs)(struct sock *sk, unsigned int mss_now);
++
++ /* react to a specific lost skb (optional) */
++ void (*skb_marked_lost)(struct sock *sk, const struct sk_buff *skb);
+
+ /* call when packets are delivered to update cwnd and pacing rate,
+ * after all the ca_state processing. (optional)
+@@ -1148,6 +1170,14 @@ static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
+ }
+ #endif
+
++static inline bool tcp_ca_wants_ce_events(const struct sock *sk)
++{
++ const struct inet_connection_sock *icsk = inet_csk(sk);
++
++ return icsk->icsk_ca_ops->flags & (TCP_CONG_NEEDS_ECN |
++ TCP_CONG_WANTS_CE_EVENTS);
++}
++
+ static inline bool tcp_ca_needs_ecn(const struct sock *sk)
+ {
+ const struct inet_connection_sock *icsk = inet_csk(sk);
+@@ -1167,6 +1197,7 @@ static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
+ void tcp_set_ca_state(struct sock *sk, const u8 ca_state);
+
+ /* From tcp_rate.c */
++void tcp_set_tx_in_flight(struct sock *sk, struct sk_buff *skb);
+ void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
+ void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
+ struct rate_sample *rs);
+diff --git a/include/uapi/linux/inet_diag.h b/include/uapi/linux/inet_diag.h
+index 50655de04c9b..0e24f11627d5 100644
+--- a/include/uapi/linux/inet_diag.h
++++ b/include/uapi/linux/inet_diag.h
+@@ -231,9 +231,42 @@ struct tcp_bbr_info {
+ __u32 bbr_cwnd_gain; /* cwnd gain shifted left 8 bits */
+ };
+
++/* Phase as reported in netlink/ss stats. */
++enum tcp_bbr2_phase {
++ BBR2_PHASE_INVALID = 0,
++ BBR2_PHASE_STARTUP = 1,
++ BBR2_PHASE_DRAIN = 2,
++ BBR2_PHASE_PROBE_RTT = 3,
++ BBR2_PHASE_PROBE_BW_UP = 4,
++ BBR2_PHASE_PROBE_BW_DOWN = 5,
++ BBR2_PHASE_PROBE_BW_CRUISE = 6,
++ BBR2_PHASE_PROBE_BW_REFILL = 7
++};
++
++struct tcp_bbr2_info {
++ /* u64 bw: bandwidth (app throughput) estimate in Byte per sec: */
++ __u32 bbr_bw_lsb; /* lower 32 bits of bw */
++ __u32 bbr_bw_msb; /* upper 32 bits of bw */
++ __u32 bbr_min_rtt; /* min-filtered RTT in uSec */
++ __u32 bbr_pacing_gain; /* pacing gain shifted left 8 bits */
++ __u32 bbr_cwnd_gain; /* cwnd gain shifted left 8 bits */
++ __u32 bbr_bw_hi_lsb; /* lower 32 bits of bw_hi */
++ __u32 bbr_bw_hi_msb; /* upper 32 bits of bw_hi */
++ __u32 bbr_bw_lo_lsb; /* lower 32 bits of bw_lo */
++ __u32 bbr_bw_lo_msb; /* upper 32 bits of bw_lo */
++ __u8 bbr_mode; /* current bbr_mode in state machine */
++ __u8 bbr_phase; /* current state machine phase */
++ __u8 unused1; /* alignment padding; not used yet */
++ __u8 bbr_version; /* MUST be at this offset in struct */
++ __u32 bbr_inflight_lo; /* lower/short-term data volume bound */
++ __u32 bbr_inflight_hi; /* higher/long-term data volume bound */
++ __u32 bbr_extra_acked; /* max excess packets ACKed in epoch */
++};
++
+ union tcp_cc_info {
+ struct tcpvegas_info vegas;
+ struct tcp_dctcp_info dctcp;
+ struct tcp_bbr_info bbr;
++ struct tcp_bbr2_info bbr2;
+ };
+ #endif /* _UAPI_INET_DIAG_H_ */
+diff --git a/net/ipv4/Kconfig b/net/ipv4/Kconfig
+index 2dfb12230f08..b6bec331a82e 100644
+--- a/net/ipv4/Kconfig
++++ b/net/ipv4/Kconfig
+@@ -678,6 +678,24 @@ config TCP_CONG_BBR
+ AQM schemes that do not provide a delay signal. It requires the fq
+ ("Fair Queue") pacing packet scheduler.
+
++config TCP_CONG_BBR2
++ tristate "BBR2 TCP"
++ default n
++ help
++
++ BBR2 TCP congestion control is a model-based congestion control
++ algorithm that aims to maximize network utilization, keep queues and
++ retransmit rates low, and to be able to coexist with Reno/CUBIC in
++ common scenarios. It builds an explicit model of the network path. It
++ tolerates a targeted degree of random packet loss and delay that are
++ unrelated to congestion. It can operate over LAN, WAN, cellular, wifi,
++ or cable modem links, and can use DCTCP-L4S-style ECN signals. It can
++ coexist with flows that use loss-based congestion control, and can
++ operate with shallow buffers, deep buffers, bufferbloat, policers, or
++ AQM schemes that do not provide a delay signal. It requires pacing,
++ using either TCP internal pacing or the fq ("Fair Queue") pacing packet
++ scheduler.
++
+ choice
+ prompt "Default TCP congestion control"
+ default DEFAULT_CUBIC
+@@ -715,6 +733,9 @@ choice
+ config DEFAULT_BBR
+ bool "BBR" if TCP_CONG_BBR=y
+
++ config DEFAULT_BBR2
++ bool "BBR2" if TCP_CONG_BBR2=y
++
+ config DEFAULT_RENO
+ bool "Reno"
+ endchoice
+@@ -739,6 +760,7 @@ config DEFAULT_TCP_CONG
+ default "dctcp" if DEFAULT_DCTCP
+ default "cdg" if DEFAULT_CDG
+ default "bbr" if DEFAULT_BBR
++ default "bbr2" if DEFAULT_BBR2
+ default "cubic"
+
+ config TCP_MD5SIG
+diff --git a/net/ipv4/Makefile b/net/ipv4/Makefile
+index bbdd9c44f14e..8dee1547d820 100644
+--- a/net/ipv4/Makefile
++++ b/net/ipv4/Makefile
+@@ -46,6 +46,7 @@ obj-$(CONFIG_INET_TCP_DIAG) += tcp_diag.o
+ obj-$(CONFIG_INET_UDP_DIAG) += udp_diag.o
+ obj-$(CONFIG_INET_RAW_DIAG) += raw_diag.o
+ obj-$(CONFIG_TCP_CONG_BBR) += tcp_bbr.o
++obj-$(CONFIG_TCP_CONG_BBR2) += tcp_bbr2.o
+ obj-$(CONFIG_TCP_CONG_BIC) += tcp_bic.o
+ obj-$(CONFIG_TCP_CONG_CDG) += tcp_cdg.o
+ obj-$(CONFIG_TCP_CONG_CUBIC) += tcp_cubic.o
+diff --git a/net/ipv4/tcp.c b/net/ipv4/tcp.c
+index 4f2205756cfe..c139747666dd 100644
+--- a/net/ipv4/tcp.c
++++ b/net/ipv4/tcp.c
+@@ -3188,6 +3188,7 @@ int tcp_disconnect(struct sock *sk, int flags)
+ tp->rx_opt.dsack = 0;
+ tp->rx_opt.num_sacks = 0;
+ tp->rcv_ooopack = 0;
++ tp->fast_ack_mode = 0;
+
+
+ /* Clean up fastopen related fields */
+diff --git a/net/ipv4/tcp_bbr.c b/net/ipv4/tcp_bbr.c
+index 54eec33c6e1c..bfbf158c71f4 100644
+--- a/net/ipv4/tcp_bbr.c
++++ b/net/ipv4/tcp_bbr.c
+@@ -294,26 +294,40 @@ static void bbr_set_pacing_rate(struct sock *sk, u32 bw, int gain)
+ sk->sk_pacing_rate = rate;
+ }
+
+-/* override sysctl_tcp_min_tso_segs */
+ __bpf_kfunc static u32 bbr_min_tso_segs(struct sock *sk)
+ {
+ return sk->sk_pacing_rate < (bbr_min_tso_rate >> 3) ? 1 : 2;
+ }
+
++/* Return the number of segments BBR would like in a TSO/GSO skb, given
++ * a particular max gso size as a constraint.
++ */
++static u32 bbr_tso_segs_generic(struct sock *sk, unsigned int mss_now,
++ u32 gso_max_size)
++{
++ u32 segs;
++ u64 bytes;
++
++ /* Budget a TSO/GSO burst size allowance based on bw (pacing_rate). */
++ bytes = sk->sk_pacing_rate >> sk->sk_pacing_shift;
++
++ bytes = min_t(u32, bytes, gso_max_size - 1 - MAX_TCP_HEADER);
++ segs = max_t(u32, div_u64(bytes, mss_now), bbr_min_tso_segs(sk));
++ return segs;
++}
++
++/* Custom tcp_tso_autosize() for BBR, used at transmit time to cap skb size. */
++static u32 bbr_tso_segs(struct sock *sk, unsigned int mss_now)
++{
++ return bbr_tso_segs_generic(sk, mss_now, sk->sk_gso_max_size);
++}
++
++/* Like bbr_tso_segs(), using mss_cache, ignoring driver's sk_gso_max_size. */
+ static u32 bbr_tso_segs_goal(struct sock *sk)
+ {
+ struct tcp_sock *tp = tcp_sk(sk);
+- u32 segs, bytes;
+-
+- /* Sort of tcp_tso_autosize() but ignoring
+- * driver provided sk_gso_max_size.
+- */
+- bytes = min_t(unsigned long,
+- sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift),
+- GSO_LEGACY_MAX_SIZE - 1 - MAX_TCP_HEADER);
+- segs = max_t(u32, bytes / tp->mss_cache, bbr_min_tso_segs(sk));
+
+- return min(segs, 0x7FU);
++ return bbr_tso_segs_generic(sk, tp->mss_cache, GSO_LEGACY_MAX_SIZE);
+ }
+
+ /* Save "last known good" cwnd so we can restore it after losses or PROBE_RTT */
+@@ -1149,7 +1163,7 @@ static struct tcp_congestion_ops tcp_bbr_cong_ops __read_mostly = {
+ .undo_cwnd = bbr_undo_cwnd,
+ .cwnd_event = bbr_cwnd_event,
+ .ssthresh = bbr_ssthresh,
+- .min_tso_segs = bbr_min_tso_segs,
++ .tso_segs = bbr_tso_segs,
+ .get_info = bbr_get_info,
+ .set_state = bbr_set_state,
+ };
+diff --git a/net/ipv4/tcp_bbr2.c b/net/ipv4/tcp_bbr2.c
+new file mode 100644
+index 000000000000..488429f0f3d0
+--- /dev/null
++++ b/net/ipv4/tcp_bbr2.c
+@@ -0,0 +1,2674 @@
++/* BBR (Bottleneck Bandwidth and RTT) congestion control, v2
++ *
++ * BBRv2 is a model-based congestion control algorithm that aims for low
++ * queues, low loss, and (bounded) Reno/CUBIC coexistence. To maintain a model
++ * of the network path, it uses measurements of bandwidth and RTT, as well as
++ * (if they occur) packet loss and/or DCTCP/L4S-style ECN signals. Note that
++ * although it can use ECN or loss signals explicitly, it does not require
++ * either; it can bound its in-flight data based on its estimate of the BDP.
++ *
++ * The model has both higher and lower bounds for the operating range:
++ * lo: bw_lo, inflight_lo: conservative short-term lower bound
++ * hi: bw_hi, inflight_hi: robust long-term upper bound
++ * The bandwidth-probing time scale is (a) extended dynamically based on
++ * estimated BDP to improve coexistence with Reno/CUBIC; (b) bounded by
++ * an interactive wall-clock time-scale to be more scalable and responsive
++ * than Reno and CUBIC.
++ *
++ * Here is a state transition diagram for BBR:
++ *
++ * |
++ * V
++ * +---> STARTUP ----+
++ * | | |
++ * | V |
++ * | DRAIN ----+
++ * | | |
++ * | V |
++ * +---> PROBE_BW ----+
++ * | ^ | |
++ * | | | |
++ * | +----+ |
++ * | |
++ * +---- PROBE_RTT <--+
++ *
++ * A BBR flow starts in STARTUP, and ramps up its sending rate quickly.
++ * When it estimates the pipe is full, it enters DRAIN to drain the queue.
++ * In steady state a BBR flow only uses PROBE_BW and PROBE_RTT.
++ * A long-lived BBR flow spends the vast majority of its time remaining
++ * (repeatedly) in PROBE_BW, fully probing and utilizing the pipe's bandwidth
++ * in a fair manner, with a small, bounded queue. *If* a flow has been
++ * continuously sending for the entire min_rtt window, and hasn't seen an RTT
++ * sample that matches or decreases its min_rtt estimate for 10 seconds, then
++ * it briefly enters PROBE_RTT to cut inflight to a minimum value to re-probe
++ * the path's two-way propagation delay (min_rtt). When exiting PROBE_RTT, if
++ * we estimated that we reached the full bw of the pipe then we enter PROBE_BW;
++ * otherwise we enter STARTUP to try to fill the pipe.
++ *
++ * BBR is described in detail in:
++ * "BBR: Congestion-Based Congestion Control",
++ * Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh,
++ * Van Jacobson. ACM Queue, Vol. 14 No. 5, September-October 2016.
++ *
++ * There is a public e-mail list for discussing BBR development and testing:
++ * https://groups.google.com/forum/#!forum/bbr-dev
++ *
++ * NOTE: BBR might be used with the fq qdisc ("man tc-fq") with pacing enabled,
++ * otherwise TCP stack falls back to an internal pacing using one high
++ * resolution timer per TCP socket and may use more resources.
++ */
++#include <linux/module.h>
++#include <net/tcp.h>
++#include <linux/inet_diag.h>
++#include <linux/inet.h>
++#include <linux/random.h>
++
++#include "tcp_dctcp.h"
++
++/* Scale factor for rate in pkt/uSec unit to avoid truncation in bandwidth
++ * estimation. The rate unit ~= (1500 bytes / 1 usec / 2^24) ~= 715 bps.
++ * This handles bandwidths from 0.06pps (715bps) to 256Mpps (3Tbps) in a u32.
++ * Since the minimum window is >=4 packets, the lower bound isn't
++ * an issue. The upper bound isn't an issue with existing technologies.
++ */
++#define BW_SCALE 24
++#define BW_UNIT (1 << BW_SCALE)
++
++#define BBR_SCALE 8 /* scaling factor for fractions in BBR (e.g. gains) */
++#define BBR_UNIT (1 << BBR_SCALE)
++
++#define FLAG_DEBUG_VERBOSE 0x1 /* Verbose debugging messages */
++#define FLAG_DEBUG_LOOPBACK 0x2 /* Do NOT skip loopback addr */
++
++#define CYCLE_LEN 8 /* number of phases in a pacing gain cycle */
++
++/* BBR has the following modes for deciding how fast to send: */
++enum bbr_mode {
++ BBR_STARTUP, /* ramp up sending rate rapidly to fill pipe */
++ BBR_DRAIN, /* drain any queue created during startup */
++ BBR_PROBE_BW, /* discover, share bw: pace around estimated bw */
++ BBR_PROBE_RTT, /* cut inflight to min to probe min_rtt */
++};
++
++/* How does the incoming ACK stream relate to our bandwidth probing? */
++enum bbr_ack_phase {
++ BBR_ACKS_INIT, /* not probing; not getting probe feedback */
++ BBR_ACKS_REFILLING, /* sending at est. bw to fill pipe */
++ BBR_ACKS_PROBE_STARTING, /* inflight rising to probe bw */
++ BBR_ACKS_PROBE_FEEDBACK, /* getting feedback from bw probing */
++ BBR_ACKS_PROBE_STOPPING, /* stopped probing; still getting feedback */
++};
++
++/* BBR congestion control block */
++struct bbr {
++ u32 min_rtt_us; /* min RTT in min_rtt_win_sec window */
++ u32 min_rtt_stamp; /* timestamp of min_rtt_us */
++ u32 probe_rtt_done_stamp; /* end time for BBR_PROBE_RTT mode */
++ u32 probe_rtt_min_us; /* min RTT in bbr_probe_rtt_win_ms window */
++ u32 probe_rtt_min_stamp; /* timestamp of probe_rtt_min_us*/
++ u32 next_rtt_delivered; /* scb->tx.delivered at end of round */
++ u32 prior_rcv_nxt; /* tp->rcv_nxt when CE state last changed */
++ u64 cycle_mstamp; /* time of this cycle phase start */
++ u32 mode:3, /* current bbr_mode in state machine */
++ prev_ca_state:3, /* CA state on previous ACK */
++ packet_conservation:1, /* use packet conservation? */
++ round_start:1, /* start of packet-timed tx->ack round? */
++ ce_state:1, /* If most recent data has CE bit set */
++ bw_probe_up_rounds:5, /* cwnd-limited rounds in PROBE_UP */
++ try_fast_path:1, /* can we take fast path? */
++ unused2:11,
++ idle_restart:1, /* restarting after idle? */
++ probe_rtt_round_done:1, /* a BBR_PROBE_RTT round at 4 pkts? */
++ cycle_idx:3, /* current index in pacing_gain cycle array */
++ has_seen_rtt:1; /* have we seen an RTT sample yet? */
++ u32 pacing_gain:11, /* current gain for setting pacing rate */
++ cwnd_gain:11, /* current gain for setting cwnd */
++ full_bw_reached:1, /* reached full bw in Startup? */
++ full_bw_cnt:2, /* number of rounds without large bw gains */
++ init_cwnd:7; /* initial cwnd */
++ u32 prior_cwnd; /* prior cwnd upon entering loss recovery */
++ u32 full_bw; /* recent bw, to estimate if pipe is full */
++
++ /* For tracking ACK aggregation: */
++ u64 ack_epoch_mstamp; /* start of ACK sampling epoch */
++ u16 extra_acked[2]; /* max excess data ACKed in epoch */
++ u32 ack_epoch_acked:20, /* packets (S)ACKed in sampling epoch */
++ extra_acked_win_rtts:5, /* age of extra_acked, in round trips */
++ extra_acked_win_idx:1, /* current index in extra_acked array */
++ /* BBR v2 state: */
++ unused1:2,
++ startup_ecn_rounds:2, /* consecutive hi ECN STARTUP rounds */
++ loss_in_cycle:1, /* packet loss in this cycle? */
++ ecn_in_cycle:1; /* ECN in this cycle? */
++ u32 loss_round_delivered; /* scb->tx.delivered ending loss round */
++ u32 undo_bw_lo; /* bw_lo before latest losses */
++ u32 undo_inflight_lo; /* inflight_lo before latest losses */
++ u32 undo_inflight_hi; /* inflight_hi before latest losses */
++ u32 bw_latest; /* max delivered bw in last round trip */
++ u32 bw_lo; /* lower bound on sending bandwidth */
++ u32 bw_hi[2]; /* upper bound of sending bandwidth range*/
++ u32 inflight_latest; /* max delivered data in last round trip */
++ u32 inflight_lo; /* lower bound of inflight data range */
++ u32 inflight_hi; /* upper bound of inflight data range */
++ u32 bw_probe_up_cnt; /* packets delivered per inflight_hi incr */
++ u32 bw_probe_up_acks; /* packets (S)ACKed since inflight_hi incr */
++ u32 probe_wait_us; /* PROBE_DOWN until next clock-driven probe */
++ u32 ecn_eligible:1, /* sender can use ECN (RTT, handshake)? */
++ ecn_alpha:9, /* EWMA delivered_ce/delivered; 0..256 */
++ bw_probe_samples:1, /* rate samples reflect bw probing? */
++ prev_probe_too_high:1, /* did last PROBE_UP go too high? */
++ stopped_risky_probe:1, /* last PROBE_UP stopped due to risk? */
++ rounds_since_probe:8, /* packet-timed rounds since probed bw */
++ loss_round_start:1, /* loss_round_delivered round trip? */
++ loss_in_round:1, /* loss marked in this round trip? */
++ ecn_in_round:1, /* ECN marked in this round trip? */
++ ack_phase:3, /* bbr_ack_phase: meaning of ACKs */
++ loss_events_in_round:4,/* losses in STARTUP round */
++ initialized:1; /* has bbr_init() been called? */
++ u32 alpha_last_delivered; /* tp->delivered at alpha update */
++ u32 alpha_last_delivered_ce; /* tp->delivered_ce at alpha update */
++
++ /* Params configurable using setsockopt. Refer to correspoding
++ * module param for detailed description of params.
++ */
++ struct bbr_params {
++ u32 high_gain:11, /* max allowed value: 2047 */
++ drain_gain:10, /* max allowed value: 1023 */
++ cwnd_gain:11; /* max allowed value: 2047 */
++ u32 cwnd_min_target:4, /* max allowed value: 15 */
++ min_rtt_win_sec:5, /* max allowed value: 31 */
++ probe_rtt_mode_ms:9, /* max allowed value: 511 */
++ full_bw_cnt:3, /* max allowed value: 7 */
++ cwnd_tso_budget:1, /* allowed values: {0, 1} */
++ unused3:6,
++ drain_to_target:1, /* boolean */
++ precise_ece_ack:1, /* boolean */
++ extra_acked_in_startup:1, /* allowed values: {0, 1} */
++ fast_path:1; /* boolean */
++ u32 full_bw_thresh:10, /* max allowed value: 1023 */
++ startup_cwnd_gain:11, /* max allowed value: 2047 */
++ bw_probe_pif_gain:9, /* max allowed value: 511 */
++ usage_based_cwnd:1, /* boolean */
++ unused2:1;
++ u16 probe_rtt_win_ms:14, /* max allowed value: 16383 */
++ refill_add_inc:2; /* max allowed value: 3 */
++ u16 extra_acked_gain:11, /* max allowed value: 2047 */
++ extra_acked_win_rtts:5; /* max allowed value: 31*/
++ u16 pacing_gain[CYCLE_LEN]; /* max allowed value: 1023 */
++ /* Mostly BBR v2 parameters below here: */
++ u32 ecn_alpha_gain:8, /* max allowed value: 255 */
++ ecn_factor:8, /* max allowed value: 255 */
++ ecn_thresh:8, /* max allowed value: 255 */
++ beta:8; /* max allowed value: 255 */
++ u32 ecn_max_rtt_us:19, /* max allowed value: 524287 */
++ bw_probe_reno_gain:9, /* max allowed value: 511 */
++ full_loss_cnt:4; /* max allowed value: 15 */
++ u32 probe_rtt_cwnd_gain:8, /* max allowed value: 255 */
++ inflight_headroom:8, /* max allowed value: 255 */
++ loss_thresh:8, /* max allowed value: 255 */
++ bw_probe_max_rounds:8; /* max allowed value: 255 */
++ u32 bw_probe_rand_rounds:4, /* max allowed value: 15 */
++ bw_probe_base_us:26, /* usecs: 0..2^26-1 (67 secs) */
++ full_ecn_cnt:2; /* max allowed value: 3 */
++ u32 bw_probe_rand_us:26, /* usecs: 0..2^26-1 (67 secs) */
++ undo:1, /* boolean */
++ tso_rtt_shift:4, /* max allowed value: 15 */
++ unused5:1;
++ u32 ecn_reprobe_gain:9, /* max allowed value: 511 */
++ unused1:14,
++ ecn_alpha_init:9; /* max allowed value: 256 */
++ } params;
++
++ struct {
++ u32 snd_isn; /* Initial sequence number */
++ u32 rs_bw; /* last valid rate sample bw */
++ u32 target_cwnd; /* target cwnd, based on BDP */
++ u8 undo:1, /* Undo even happened but not yet logged */
++ unused:7;
++ char event; /* single-letter event debug codes */
++ u16 unused2;
++ } debug;
++};
++
++struct bbr_context {
++ u32 sample_bw;
++ u32 target_cwnd;
++ u32 log:1;
++};
++
++/* Window length of min_rtt filter (in sec). Max allowed value is 31 (0x1F) */
++static u32 bbr_min_rtt_win_sec = 10;
++/* Minimum time (in ms) spent at bbr_cwnd_min_target in BBR_PROBE_RTT mode.
++ * Max allowed value is 511 (0x1FF).
++ */
++static u32 bbr_probe_rtt_mode_ms = 200;
++/* Window length of probe_rtt_min_us filter (in ms), and consequently the
++ * typical interval between PROBE_RTT mode entries.
++ * Note that bbr_probe_rtt_win_ms must be <= bbr_min_rtt_win_sec * MSEC_PER_SEC
++ */
++static u32 bbr_probe_rtt_win_ms = 5000;
++/* Skip TSO below the following bandwidth (bits/sec): */
++static int bbr_min_tso_rate = 1200000;
++
++/* Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting
++ * in bigger TSO bursts. By default we cut the RTT-based allowance in half
++ * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance
++ * is below 1500 bytes after 6 * ~500 usec = 3ms.
++ */
++static u32 bbr_tso_rtt_shift = 9; /* halve allowance per 2^9 usecs, 512us */
++
++/* Select cwnd TSO budget approach:
++ * 0: padding
++ * 1: flooring
++ */
++static uint bbr_cwnd_tso_budget = 1;
++
++/* Pace at ~1% below estimated bw, on average, to reduce queue at bottleneck.
++ * In order to help drive the network toward lower queues and low latency while
++ * maintaining high utilization, the average pacing rate aims to be slightly
++ * lower than the estimated bandwidth. This is an important aspect of the
++ * design.
++ */
++static const int bbr_pacing_margin_percent = 1;
++
++/* We use a high_gain value of 2/ln(2) because it's the smallest pacing gain
++ * that will allow a smoothly increasing pacing rate that will double each RTT
++ * and send the same number of packets per RTT that an un-paced, slow-starting
++ * Reno or CUBIC flow would. Max allowed value is 2047 (0x7FF).
++ */
++static int bbr_high_gain = BBR_UNIT * 2885 / 1000 + 1;
++/* The gain for deriving startup cwnd. Max allowed value is 2047 (0x7FF). */
++static int bbr_startup_cwnd_gain = BBR_UNIT * 2885 / 1000 + 1;
++/* The pacing gain of 1/high_gain in BBR_DRAIN is calculated to typically drain
++ * the queue created in BBR_STARTUP in a single round. Max allowed value
++ * is 1023 (0x3FF).
++ */
++static int bbr_drain_gain = BBR_UNIT * 1000 / 2885;
++/* The gain for deriving steady-state cwnd tolerates delayed/stretched ACKs.
++ * Max allowed value is 2047 (0x7FF).
++ */
++static int bbr_cwnd_gain = BBR_UNIT * 2;
++/* The pacing_gain values for the PROBE_BW gain cycle, to discover/share bw.
++ * Max allowed value for each element is 1023 (0x3FF).
++ */
++enum bbr_pacing_gain_phase {
++ BBR_BW_PROBE_UP = 0, /* push up inflight to probe for bw/vol */
++ BBR_BW_PROBE_DOWN = 1, /* drain excess inflight from the queue */
++ BBR_BW_PROBE_CRUISE = 2, /* use pipe, w/ headroom in queue/pipe */
++ BBR_BW_PROBE_REFILL = 3, /* v2: refill the pipe again to 100% */
++};
++static int bbr_pacing_gain[] = {
++ BBR_UNIT * 5 / 4, /* probe for more available bw */
++ BBR_UNIT * 3 / 4, /* drain queue and/or yield bw to other flows */
++ BBR_UNIT, BBR_UNIT, BBR_UNIT, /* cruise at 1.0*bw to utilize pipe, */
++ BBR_UNIT, BBR_UNIT, BBR_UNIT /* without creating excess queue... */
++};
++
++/* Try to keep at least this many packets in flight, if things go smoothly. For
++ * smooth functioning, a sliding window protocol ACKing every other packet
++ * needs at least 4 packets in flight. Max allowed value is 15 (0xF).
++ */
++static u32 bbr_cwnd_min_target = 4;
++
++/* Cwnd to BDP proportion in PROBE_RTT mode scaled by BBR_UNIT. Default: 50%.
++ * Use 0 to disable. Max allowed value is 255.
++ */
++static u32 bbr_probe_rtt_cwnd_gain = BBR_UNIT * 1 / 2;
++
++/* To estimate if BBR_STARTUP mode (i.e. high_gain) has filled pipe... */
++/* If bw has increased significantly (1.25x), there may be more bw available.
++ * Max allowed value is 1023 (0x3FF).
++ */
++static u32 bbr_full_bw_thresh = BBR_UNIT * 5 / 4;
++/* But after 3 rounds w/o significant bw growth, estimate pipe is full.
++ * Max allowed value is 7 (0x7).
++ */
++static u32 bbr_full_bw_cnt = 3;
++
++static u32 bbr_flags; /* Debugging related stuff */
++
++/* Whether to debug using printk.
++ */
++static bool bbr_debug_with_printk;
++
++/* Whether to debug using ftrace event tcp:tcp_bbr_event.
++ * Ignored when bbr_debug_with_printk is set.
++ */
++static bool bbr_debug_ftrace;
++
++/* Experiment: each cycle, try to hold sub-unity gain until inflight <= BDP. */
++static bool bbr_drain_to_target = true; /* default: enabled */
++
++/* Experiment: Flags to control BBR with ECN behavior.
++ */
++static bool bbr_precise_ece_ack = true; /* default: enabled */
++
++/* The max rwin scaling shift factor is 14 (RFC 1323), so the max sane rwin is
++ * (2^(16+14) B)/(1024 B/packet) = 1M packets.
++ */
++static u32 bbr_cwnd_warn_val = 1U << 20;
++
++static u16 bbr_debug_port_mask;
++
++/* BBR module parameters. These are module parameters only in Google prod.
++ * Upstream these are intentionally not module parameters.
++ */
++static int bbr_pacing_gain_size = CYCLE_LEN;
++
++/* Gain factor for adding extra_acked to target cwnd: */
++static int bbr_extra_acked_gain = 256;
++
++/* Window length of extra_acked window. Max allowed val is 31. */
++static u32 bbr_extra_acked_win_rtts = 5;
++
++/* Max allowed val for ack_epoch_acked, after which sampling epoch is reset */
++static u32 bbr_ack_epoch_acked_reset_thresh = 1U << 20;
++
++/* Time period for clamping cwnd increment due to ack aggregation */
++static u32 bbr_extra_acked_max_us = 100 * 1000;
++
++/* Use extra acked in startup ?
++ * 0: disabled
++ * 1: use latest extra_acked value from 1-2 rtt in startup
++ */
++static int bbr_extra_acked_in_startup = 1; /* default: enabled */
++
++/* Experiment: don't grow cwnd beyond twice of what we just probed. */
++static bool bbr_usage_based_cwnd; /* default: disabled */
++
++/* For lab testing, researchers can enable BBRv2 ECN support with this flag,
++ * when they know that any ECN marks that the connections experience will be
++ * DCTCP/L4S-style ECN marks, rather than RFC3168 ECN marks.
++ * TODO(ncardwell): Production use of the BBRv2 ECN functionality depends on
++ * negotiation or configuration that is outside the scope of the BBRv2
++ * alpha release.
++ */
++static bool bbr_ecn_enable = false;
++
++module_param_named(min_tso_rate, bbr_min_tso_rate, int, 0644);
++module_param_named(tso_rtt_shift, bbr_tso_rtt_shift, int, 0644);
++module_param_named(high_gain, bbr_high_gain, int, 0644);
++module_param_named(drain_gain, bbr_drain_gain, int, 0644);
++module_param_named(startup_cwnd_gain, bbr_startup_cwnd_gain, int, 0644);
++module_param_named(cwnd_gain, bbr_cwnd_gain, int, 0644);
++module_param_array_named(pacing_gain, bbr_pacing_gain, int,
++ &bbr_pacing_gain_size, 0644);
++module_param_named(cwnd_min_target, bbr_cwnd_min_target, uint, 0644);
++module_param_named(probe_rtt_cwnd_gain,
++ bbr_probe_rtt_cwnd_gain, uint, 0664);
++module_param_named(cwnd_warn_val, bbr_cwnd_warn_val, uint, 0664);
++module_param_named(debug_port_mask, bbr_debug_port_mask, ushort, 0644);
++module_param_named(flags, bbr_flags, uint, 0644);
++module_param_named(debug_ftrace, bbr_debug_ftrace, bool, 0644);
++module_param_named(debug_with_printk, bbr_debug_with_printk, bool, 0644);
++module_param_named(min_rtt_win_sec, bbr_min_rtt_win_sec, uint, 0644);
++module_param_named(probe_rtt_mode_ms, bbr_probe_rtt_mode_ms, uint, 0644);
++module_param_named(probe_rtt_win_ms, bbr_probe_rtt_win_ms, uint, 0644);
++module_param_named(full_bw_thresh, bbr_full_bw_thresh, uint, 0644);
++module_param_named(full_bw_cnt, bbr_full_bw_cnt, uint, 0644);
++module_param_named(cwnd_tso_bduget, bbr_cwnd_tso_budget, uint, 0664);
++module_param_named(extra_acked_gain, bbr_extra_acked_gain, int, 0664);
++module_param_named(extra_acked_win_rtts,
++ bbr_extra_acked_win_rtts, uint, 0664);
++module_param_named(extra_acked_max_us,
++ bbr_extra_acked_max_us, uint, 0664);
++module_param_named(ack_epoch_acked_reset_thresh,
++ bbr_ack_epoch_acked_reset_thresh, uint, 0664);
++module_param_named(drain_to_target, bbr_drain_to_target, bool, 0664);
++module_param_named(precise_ece_ack, bbr_precise_ece_ack, bool, 0664);
++module_param_named(extra_acked_in_startup,
++ bbr_extra_acked_in_startup, int, 0664);
++module_param_named(usage_based_cwnd, bbr_usage_based_cwnd, bool, 0664);
++module_param_named(ecn_enable, bbr_ecn_enable, bool, 0664);
++
++static void bbr2_exit_probe_rtt(struct sock *sk);
++static void bbr2_reset_congestion_signals(struct sock *sk);
++
++static void bbr_check_probe_rtt_done(struct sock *sk);
++
++/* Do we estimate that STARTUP filled the pipe? */
++static bool bbr_full_bw_reached(const struct sock *sk)
++{
++ const struct bbr *bbr = inet_csk_ca(sk);
++
++ return bbr->full_bw_reached;
++}
++
++/* Return the windowed max recent bandwidth sample, in pkts/uS << BW_SCALE. */
++static u32 bbr_max_bw(const struct sock *sk)
++{
++ struct bbr *bbr = inet_csk_ca(sk);
++
++ return max(bbr->bw_hi[0], bbr->bw_hi[1]);
++}
++
++/* Return the estimated bandwidth of the path, in pkts/uS << BW_SCALE. */
++static u32 bbr_bw(const struct sock *sk)
++{
++ struct bbr *bbr = inet_csk_ca(sk);
++
++ return min(bbr_max_bw(sk), bbr->bw_lo);
++}
++
++/* Return maximum extra acked in past k-2k round trips,
++ * where k = bbr_extra_acked_win_rtts.
++ */
++static u16 bbr_extra_acked(const struct sock *sk)
++{
++ struct bbr *bbr = inet_csk_ca(sk);
++
++ return max(bbr->extra_acked[0], bbr->extra_acked[1]);
++}
++
++/* Return rate in bytes per second, optionally with a gain.
++ * The order here is chosen carefully to avoid overflow of u64. This should
++ * work for input rates of up to 2.9Tbit/sec and gain of 2.89x.
++ */
++static u64 bbr_rate_bytes_per_sec(struct sock *sk, u64 rate, int gain,
++ int margin)
++{
++ unsigned int mss = tcp_sk(sk)->mss_cache;
++
++ rate *= mss;
++ rate *= gain;
++ rate >>= BBR_SCALE;
++ rate *= USEC_PER_SEC / 100 * (100 - margin);
++ rate >>= BW_SCALE;
++ rate = max(rate, 1ULL);
++ return rate;
++}
++
++static u64 bbr_bw_bytes_per_sec(struct sock *sk, u64 rate)
++{
++ return bbr_rate_bytes_per_sec(sk, rate, BBR_UNIT, 0);
++}
++
++static u64 bbr_rate_kbps(struct sock *sk, u64 rate)
++{
++ rate = bbr_bw_bytes_per_sec(sk, rate);
++ rate *= 8;
++ do_div(rate, 1000);
++ return rate;
++}
++
++static u32 bbr_tso_segs_goal(struct sock *sk);
++static void bbr_debug(struct sock *sk, u32 acked,
++ const struct rate_sample *rs, struct bbr_context *ctx)
++{
++ static const char ca_states[] = {
++ [TCP_CA_Open] = 'O',
++ [TCP_CA_Disorder] = 'D',
++ [TCP_CA_CWR] = 'C',
++ [TCP_CA_Recovery] = 'R',
++ [TCP_CA_Loss] = 'L',
++ };
++ static const char mode[] = {
++ 'G', /* Growing - BBR_STARTUP */
++ 'D', /* Drain - BBR_DRAIN */
++ 'W', /* Window - BBR_PROBE_BW */
++ 'M', /* Min RTT - BBR_PROBE_RTT */
++ };
++ static const char ack_phase[] = { /* bbr_ack_phase strings */
++ 'I', /* BBR_ACKS_INIT - 'Init' */
++ 'R', /* BBR_ACKS_REFILLING - 'Refilling' */
++ 'B', /* BBR_ACKS_PROBE_STARTING - 'Before' */
++ 'F', /* BBR_ACKS_PROBE_FEEDBACK - 'Feedback' */
++ 'A', /* BBR_ACKS_PROBE_STOPPING - 'After' */
++ };
++ struct tcp_sock *tp = tcp_sk(sk);
++ struct bbr *bbr = inet_csk_ca(sk);
++ const u32 una = tp->snd_una - bbr->debug.snd_isn;
++ const u32 fack = tcp_highest_sack_seq(tp);
++ const u16 dport = ntohs(inet_sk(sk)->inet_dport);
++ bool is_port_match = (bbr_debug_port_mask &&
++ ((dport & bbr_debug_port_mask) == 0));
++ char debugmsg[320];
++
++ if (sk->sk_state == TCP_SYN_SENT)
++ return; /* no bbr_init() yet if SYN retransmit -> CA_Loss */
++
++ if (!tp->snd_cwnd || tp->snd_cwnd > bbr_cwnd_warn_val) {
++ char addr[INET6_ADDRSTRLEN + 10] = { 0 };
++
++ if (sk->sk_family == AF_INET)
++ snprintf(addr, sizeof(addr), "%pI4:%u",
++ &inet_sk(sk)->inet_daddr, dport);
++ else if (sk->sk_family == AF_INET6)
++ snprintf(addr, sizeof(addr), "%pI6:%u",
++ &sk->sk_v6_daddr, dport);
++
++ WARN_ONCE(1,
++ "BBR %s cwnd alert: %u "
++ "snd_una: %u ca: %d pacing_gain: %u cwnd_gain: %u "
++ "bw: %u rtt: %u min_rtt: %u "
++ "acked: %u tso_segs: %u "
++ "bw: %d %ld %d pif: %u\n",
++ addr, tp->snd_cwnd,
++ una, inet_csk(sk)->icsk_ca_state,
++ bbr->pacing_gain, bbr->cwnd_gain,
++ bbr_max_bw(sk), (tp->srtt_us >> 3), bbr->min_rtt_us,
++ acked, bbr_tso_segs_goal(sk),
++ rs->delivered, rs->interval_us, rs->is_retrans,
++ tcp_packets_in_flight(tp));
++ }
++
++ if (likely(!bbr_debug_with_printk && !bbr_debug_ftrace))
++ return;
++
++ if (!sock_flag(sk, SOCK_DBG) && !is_port_match)
++ return;
++
++ if (!ctx->log && !tp->app_limited && !(bbr_flags & FLAG_DEBUG_VERBOSE))
++ return;
++
++ if (ipv4_is_loopback(inet_sk(sk)->inet_daddr) &&
++ !(bbr_flags & FLAG_DEBUG_LOOPBACK))
++ return;
++
++ snprintf(debugmsg, sizeof(debugmsg) - 1,
++ "BBR %pI4:%-5u %5u,%03u:%-7u %c "
++ "%c %2u br %2u cr %2d rtt %5ld d %2d i %5ld mrtt %d %cbw %llu "
++ "bw %llu lb %llu ib %llu qb %llu "
++ "a %u if %2u %c %c dl %u l %u al %u # %u t %u %c %c "
++ "lr %d er %d ea %d bwl %lld il %d ih %d c %d "
++ "v %d %c %u %c %s\n",
++ &inet_sk(sk)->inet_daddr, dport,
++ una / 1000, una % 1000, fack - tp->snd_una,
++ ca_states[inet_csk(sk)->icsk_ca_state],
++ bbr->debug.undo ? '@' : mode[bbr->mode],
++ tp->snd_cwnd,
++ bbr_extra_acked(sk), /* br (legacy): extra_acked */
++ rs->tx_in_flight, /* cr (legacy): tx_inflight */
++ rs->rtt_us,
++ rs->delivered,
++ rs->interval_us,
++ bbr->min_rtt_us,
++ rs->is_app_limited ? '_' : 'l',
++ bbr_rate_kbps(sk, ctx->sample_bw), /* lbw: latest sample bw */
++ bbr_rate_kbps(sk, bbr_max_bw(sk)), /* bw: max bw */
++ 0ULL, /* lb: [obsolete] */
++ 0ULL, /* ib: [obsolete] */
++ div_u64((u64)sk->sk_pacing_rate * 8, 1000),
++ acked,
++ tcp_packets_in_flight(tp),
++ rs->is_ack_delayed ? 'd' : '.',
++ bbr->round_start ? '*' : '.',
++ tp->delivered, tp->lost,
++ tp->app_limited,
++ 0, /* #: [obsolete] */
++ ctx->target_cwnd,
++ tp->reord_seen ? 'r' : '.', /* r: reordering seen? */
++ ca_states[bbr->prev_ca_state],
++ (rs->lost + rs->delivered) > 0 ?
++ (1000 * rs->lost /
++ (rs->lost + rs->delivered)) : 0, /* lr: loss rate x1000 */
++ (rs->delivered) > 0 ?
++ (1000 * rs->delivered_ce /
++ (rs->delivered)) : 0, /* er: ECN rate x1000 */
++ 1000 * bbr->ecn_alpha >> BBR_SCALE, /* ea: ECN alpha x1000 */
++ bbr->bw_lo == ~0U ?
++ -1 : (s64)bbr_rate_kbps(sk, bbr->bw_lo), /* bwl */
++ bbr->inflight_lo, /* il */
++ bbr->inflight_hi, /* ih */
++ bbr->bw_probe_up_cnt, /* c */
++ 2, /* v: version */
++ bbr->debug.event,
++ bbr->cycle_idx,
++ ack_phase[bbr->ack_phase],
++ bbr->bw_probe_samples ? "Y" : "N");
++ debugmsg[sizeof(debugmsg) - 1] = 0;
++
++ /* printk takes a higher precedence. */
++ if (bbr_debug_with_printk)
++ printk(KERN_DEBUG "%s", debugmsg);
++
++ if (unlikely(bbr->debug.undo))
++ bbr->debug.undo = 0;
++}
++
++/* Convert a BBR bw and gain factor to a pacing rate in bytes per second. */
++static unsigned long bbr_bw_to_pacing_rate(struct sock *sk, u32 bw, int gain)
++{
++ u64 rate = bw;
++
++ rate = bbr_rate_bytes_per_sec(sk, rate, gain,
++ bbr_pacing_margin_percent);
++ rate = min_t(u64, rate, sk->sk_max_pacing_rate);
++ return rate;
++}
++
++/* Initialize pacing rate to: high_gain * init_cwnd / RTT. */
++static void bbr_init_pacing_rate_from_rtt(struct sock *sk)
++{
++ struct tcp_sock *tp = tcp_sk(sk);
++ struct bbr *bbr = inet_csk_ca(sk);
++ u64 bw;
++ u32 rtt_us;
++
++ if (tp->srtt_us) { /* any RTT sample yet? */
++ rtt_us = max(tp->srtt_us >> 3, 1U);
++ bbr->has_seen_rtt = 1;
++ } else { /* no RTT sample yet */
++ rtt_us = USEC_PER_MSEC; /* use nominal default RTT */
++ }
++ bw = (u64)tp->snd_cwnd * BW_UNIT;
++ do_div(bw, rtt_us);
++ sk->sk_pacing_rate = bbr_bw_to_pacing_rate(sk, bw, bbr->params.high_gain);
++}
++
++/* Pace using current bw estimate and a gain factor. */
++static void bbr_set_pacing_rate(struct sock *sk, u32 bw, int gain)
++{
++ struct tcp_sock *tp = tcp_sk(sk);
++ struct bbr *bbr = inet_csk_ca(sk);
++ unsigned long rate = bbr_bw_to_pacing_rate(sk, bw, gain);
++
++ if (unlikely(!bbr->has_seen_rtt && tp->srtt_us))
++ bbr_init_pacing_rate_from_rtt(sk);
++ if (bbr_full_bw_reached(sk) || rate > sk->sk_pacing_rate)
++ sk->sk_pacing_rate = rate;
++}
++
++static u32 bbr_min_tso_segs(struct sock *sk)
++{
++ return sk->sk_pacing_rate < (bbr_min_tso_rate >> 3) ? 1 : 2;
++}
++
++/* Return the number of segments BBR would like in a TSO/GSO skb, given
++ * a particular max gso size as a constraint.
++ */
++static u32 bbr_tso_segs_generic(struct sock *sk, unsigned int mss_now,
++ u32 gso_max_size)
++{
++ struct bbr *bbr = inet_csk_ca(sk);
++ u32 segs, r;
++ u64 bytes;
++
++ /* Budget a TSO/GSO burst size allowance based on bw (pacing_rate). */
++ bytes = sk->sk_pacing_rate >> sk->sk_pacing_shift;
++
++ /* Budget a TSO/GSO burst size allowance based on min_rtt. For every
++ * K = 2^tso_rtt_shift microseconds of min_rtt, halve the burst.
++ * The min_rtt-based burst allowance is: 64 KBytes / 2^(min_rtt/K)
++ */
++ if (bbr->params.tso_rtt_shift) {
++ r = bbr->min_rtt_us >> bbr->params.tso_rtt_shift;
++ if (r < BITS_PER_TYPE(u32)) /* prevent undefined behavior */
++ bytes += GSO_MAX_SIZE >> r;
++ }
++
++ bytes = min_t(u32, bytes, gso_max_size - 1 - MAX_TCP_HEADER);
++ segs = max_t(u32, div_u64(bytes, mss_now), bbr_min_tso_segs(sk));
++ return segs;
++}
++
++/* Custom tcp_tso_autosize() for BBR, used at transmit time to cap skb size. */
++static u32 bbr_tso_segs(struct sock *sk, unsigned int mss_now)
++{
++ return bbr_tso_segs_generic(sk, mss_now, sk->sk_gso_max_size);
++}
++
++/* Like bbr_tso_segs(), using mss_cache, ignoring driver's sk_gso_max_size. */
++static u32 bbr_tso_segs_goal(struct sock *sk)
++{
++ struct tcp_sock *tp = tcp_sk(sk);
++
++ return bbr_tso_segs_generic(sk, tp->mss_cache, GSO_MAX_SIZE);
++}
++
++/* Save "last known good" cwnd so we can restore it after losses or PROBE_RTT */
++static void bbr_save_cwnd(struct sock *sk)
++{
++ struct tcp_sock *tp = tcp_sk(sk);
++ struct bbr *bbr = inet_csk_ca(sk);
++
++ if (bbr->prev_ca_state < TCP_CA_Recovery && bbr->mode != BBR_PROBE_RTT)
++ bbr->prior_cwnd = tp->snd_cwnd; /* this cwnd is good enough */
++ else /* loss recovery or BBR_PROBE_RTT have temporarily cut cwnd */
++ bbr->prior_cwnd = max(bbr->prior_cwnd, tp->snd_cwnd);
++}
++
++static void bbr_cwnd_event(struct sock *sk, enum tcp_ca_event event)
++{
++ struct tcp_sock *tp = tcp_sk(sk);
++ struct bbr *bbr = inet_csk_ca(sk);
++
++ if (event == CA_EVENT_TX_START && tp->app_limited) {
++ bbr->idle_restart = 1;
++ bbr->ack_epoch_mstamp = tp->tcp_mstamp;
++ bbr->ack_epoch_acked = 0;
++ /* Avoid pointless buffer overflows: pace at est. bw if we don't
++ * need more speed (we're restarting from idle and app-limited).
++ */
++ if (bbr->mode == BBR_PROBE_BW)
++ bbr_set_pacing_rate(sk, bbr_bw(sk), BBR_UNIT);
++ else if (bbr->mode == BBR_PROBE_RTT)
++ bbr_check_probe_rtt_done(sk);
++ } else if ((event == CA_EVENT_ECN_IS_CE ||
++ event == CA_EVENT_ECN_NO_CE) &&
++ bbr_ecn_enable &&
++ bbr->params.precise_ece_ack) {
++ u32 state = bbr->ce_state;
++ dctcp_ece_ack_update(sk, event, &bbr->prior_rcv_nxt, &state);
++ bbr->ce_state = state;
++ if (tp->fast_ack_mode == 2 && event == CA_EVENT_ECN_IS_CE)
++ tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
++ }
++}
++
++/* Calculate bdp based on min RTT and the estimated bottleneck bandwidth:
++ *
++ * bdp = ceil(bw * min_rtt * gain)
++ *
++ * The key factor, gain, controls the amount of queue. While a small gain
++ * builds a smaller queue, it becomes more vulnerable to noise in RTT
++ * measurements (e.g., delayed ACKs or other ACK compression effects). This
++ * noise may cause BBR to under-estimate the rate.
++ */
++static u32 bbr_bdp(struct sock *sk, u32 bw, int gain)
++{
++ struct bbr *bbr = inet_csk_ca(sk);
++ u32 bdp;
++ u64 w;
++
++ /* If we've never had a valid RTT sample, cap cwnd at the initial
++ * default. This should only happen when the connection is not using TCP
++ * timestamps and has retransmitted all of the SYN/SYNACK/data packets
++ * ACKed so far. In this case, an RTO can cut cwnd to 1, in which
++ * case we need to slow-start up toward something safe: initial cwnd.
++ */
++ if (unlikely(bbr->min_rtt_us == ~0U)) /* no valid RTT samples yet? */
++ return bbr->init_cwnd; /* be safe: cap at initial cwnd */
++
++ w = (u64)bw * bbr->min_rtt_us;
++
++ /* Apply a gain to the given value, remove the BW_SCALE shift, and
++ * round the value up to avoid a negative feedback loop.
++ */
++ bdp = (((w * gain) >> BBR_SCALE) + BW_UNIT - 1) / BW_UNIT;
++
++ return bdp;
++}
++
++/* To achieve full performance in high-speed paths, we budget enough cwnd to
++ * fit full-sized skbs in-flight on both end hosts to fully utilize the path:
++ * - one skb in sending host Qdisc,
++ * - one skb in sending host TSO/GSO engine
++ * - one skb being received by receiver host LRO/GRO/delayed-ACK engine
++ * Don't worry, at low rates (bbr_min_tso_rate) this won't bloat cwnd because
++ * in such cases tso_segs_goal is 1. The minimum cwnd is 4 packets,
++ * which allows 2 outstanding 2-packet sequences, to try to keep pipe
++ * full even with ACK-every-other-packet delayed ACKs.
++ */
++static u32 bbr_quantization_budget(struct sock *sk, u32 cwnd)
++{
++ struct bbr *bbr = inet_csk_ca(sk);
++ u32 tso_segs_goal;
++
++ tso_segs_goal = 3 * bbr_tso_segs_goal(sk);
++
++ /* Allow enough full-sized skbs in flight to utilize end systems. */
++ if (bbr->params.cwnd_tso_budget == 1) {
++ cwnd = max_t(u32, cwnd, tso_segs_goal);
++ cwnd = max_t(u32, cwnd, bbr->params.cwnd_min_target);
++ } else {
++ cwnd += tso_segs_goal;
++ cwnd = (cwnd + 1) & ~1U;
++ }
++ /* Ensure gain cycling gets inflight above BDP even for small BDPs. */
++ if (bbr->mode == BBR_PROBE_BW && bbr->cycle_idx == BBR_BW_PROBE_UP)
++ cwnd += 2;
++
++ return cwnd;
++}
++
++/* Find inflight based on min RTT and the estimated bottleneck bandwidth. */
++static u32 bbr_inflight(struct sock *sk, u32 bw, int gain)
++{
++ u32 inflight;
++
++ inflight = bbr_bdp(sk, bw, gain);
++ inflight = bbr_quantization_budget(sk, inflight);
++
++ return inflight;
++}
++
++/* With pacing at lower layers, there's often less data "in the network" than
++ * "in flight". With TSQ and departure time pacing at lower layers (e.g. fq),
++ * we often have several skbs queued in the pacing layer with a pre-scheduled
++ * earliest departure time (EDT). BBR adapts its pacing rate based on the
++ * inflight level that it estimates has already been "baked in" by previous
++ * departure time decisions. We calculate a rough estimate of the number of our
++ * packets that might be in the network at the earliest departure time for the
++ * next skb scheduled:
++ * in_network_at_edt = inflight_at_edt - (EDT - now) * bw
++ * If we're increasing inflight, then we want to know if the transmit of the
++ * EDT skb will push inflight above the target, so inflight_at_edt includes
++ * bbr_tso_segs_goal() from the skb departing at EDT. If decreasing inflight,
++ * then estimate if inflight will sink too low just before the EDT transmit.
++ */
++static u32 bbr_packets_in_net_at_edt(struct sock *sk, u32 inflight_now)
++{
++ struct tcp_sock *tp = tcp_sk(sk);
++ struct bbr *bbr = inet_csk_ca(sk);
++ u64 now_ns, edt_ns, interval_us;
++ u32 interval_delivered, inflight_at_edt;
++
++ now_ns = tp->tcp_clock_cache;
++ edt_ns = max(tp->tcp_wstamp_ns, now_ns);
++ interval_us = div_u64(edt_ns - now_ns, NSEC_PER_USEC);
++ interval_delivered = (u64)bbr_bw(sk) * interval_us >> BW_SCALE;
++ inflight_at_edt = inflight_now;
++ if (bbr->pacing_gain > BBR_UNIT) /* increasing inflight */
++ inflight_at_edt += bbr_tso_segs_goal(sk); /* include EDT skb */
++ if (interval_delivered >= inflight_at_edt)
++ return 0;
++ return inflight_at_edt - interval_delivered;
++}
++
++/* Find the cwnd increment based on estimate of ack aggregation */
++static u32 bbr_ack_aggregation_cwnd(struct sock *sk)
++{
++ struct bbr *bbr = inet_csk_ca(sk);
++ u32 max_aggr_cwnd, aggr_cwnd = 0;
++
++ if (bbr->params.extra_acked_gain &&
++ (bbr_full_bw_reached(sk) || bbr->params.extra_acked_in_startup)) {
++ max_aggr_cwnd = ((u64)bbr_bw(sk) * bbr_extra_acked_max_us)
++ / BW_UNIT;
++ aggr_cwnd = (bbr->params.extra_acked_gain * bbr_extra_acked(sk))
++ >> BBR_SCALE;
++ aggr_cwnd = min(aggr_cwnd, max_aggr_cwnd);
++ }
++
++ return aggr_cwnd;
++}
++
++/* Returns the cwnd for PROBE_RTT mode. */
++static u32 bbr_probe_rtt_cwnd(struct sock *sk)
++{
++ struct bbr *bbr = inet_csk_ca(sk);
++
++ if (bbr->params.probe_rtt_cwnd_gain == 0)
++ return bbr->params.cwnd_min_target;
++ return max_t(u32, bbr->params.cwnd_min_target,
++ bbr_bdp(sk, bbr_bw(sk), bbr->params.probe_rtt_cwnd_gain));
++}
++
++/* Slow-start up toward target cwnd (if bw estimate is growing, or packet loss
++ * has drawn us down below target), or snap down to target if we're above it.
++ */
++static void bbr_set_cwnd(struct sock *sk, const struct rate_sample *rs,
++ u32 acked, u32 bw, int gain, u32 cwnd,
++ struct bbr_context *ctx)
++{
++ struct tcp_sock *tp = tcp_sk(sk);
++ struct bbr *bbr = inet_csk_ca(sk);
++ u32 target_cwnd = 0, prev_cwnd = tp->snd_cwnd, max_probe;
++
++ if (!acked)
++ goto done; /* no packet fully ACKed; just apply caps */
++
++ target_cwnd = bbr_bdp(sk, bw, gain);
++
++ /* Increment the cwnd to account for excess ACKed data that seems
++ * due to aggregation (of data and/or ACKs) visible in the ACK stream.
++ */
++ target_cwnd += bbr_ack_aggregation_cwnd(sk);
++ target_cwnd = bbr_quantization_budget(sk, target_cwnd);
++
++ /* If we're below target cwnd, slow start cwnd toward target cwnd. */
++ bbr->debug.target_cwnd = target_cwnd;
++
++ /* Update cwnd and enable fast path if cwnd reaches target_cwnd. */
++ bbr->try_fast_path = 0;
++ if (bbr_full_bw_reached(sk)) { /* only cut cwnd if we filled the pipe */
++ cwnd += acked;
++ if (cwnd >= target_cwnd) {
++ cwnd = target_cwnd;
++ bbr->try_fast_path = 1;
++ }
++ } else if (cwnd < target_cwnd || cwnd < 2 * bbr->init_cwnd) {
++ cwnd += acked;
++ } else {
++ bbr->try_fast_path = 1;
++ }
++
++ /* When growing cwnd, don't grow beyond twice what we just probed. */
++ if (bbr->params.usage_based_cwnd) {
++ max_probe = max(2 * tp->max_packets_out, tp->snd_cwnd);
++ cwnd = min(cwnd, max_probe);
++ }
++
++ cwnd = max_t(u32, cwnd, bbr->params.cwnd_min_target);
++done:
++ tp->snd_cwnd = min(cwnd, tp->snd_cwnd_clamp); /* apply global cap */
++ if (bbr->mode == BBR_PROBE_RTT) /* drain queue, refresh min_rtt */
++ tp->snd_cwnd = min_t(u32, tp->snd_cwnd, bbr_probe_rtt_cwnd(sk));
++
++ ctx->target_cwnd = target_cwnd;
++ ctx->log = (tp->snd_cwnd != prev_cwnd);
++}
++
++/* See if we have reached next round trip */
++static void bbr_update_round_start(struct sock *sk,
++ const struct rate_sample *rs, struct bbr_context *ctx)
++{
++ struct tcp_sock *tp = tcp_sk(sk);
++ struct bbr *bbr = inet_csk_ca(sk);
++
++ bbr->round_start = 0;
++
++ /* See if we've reached the next RTT */
++ if (rs->interval_us > 0 &&
++ !before(rs->prior_delivered, bbr->next_rtt_delivered)) {
++ bbr->next_rtt_delivered = tp->delivered;
++ bbr->round_start = 1;
++ }
++}
++
++/* Calculate the bandwidth based on how fast packets are delivered */
++static void bbr_calculate_bw_sample(struct sock *sk,
++ const struct rate_sample *rs, struct bbr_context *ctx)
++{
++ struct bbr *bbr = inet_csk_ca(sk);
++ u64 bw = 0;
++
++ /* Divide delivered by the interval to find a (lower bound) bottleneck
++ * bandwidth sample. Delivered is in packets and interval_us in uS and
++ * ratio will be <<1 for most connections. So delivered is first scaled.
++ * Round up to allow growth at low rates, even with integer division.
++ */
++ if (rs->interval_us > 0) {
++ if (WARN_ONCE(rs->delivered < 0,
++ "negative delivered: %d interval_us: %ld\n",
++ rs->delivered, rs->interval_us))
++ return;
++
++ bw = DIV_ROUND_UP_ULL((u64)rs->delivered * BW_UNIT, rs->interval_us);
++ }
++
++ ctx->sample_bw = bw;
++ bbr->debug.rs_bw = bw;
++}
++
++/* Estimates the windowed max degree of ack aggregation.
++ * This is used to provision extra in-flight data to keep sending during
++ * inter-ACK silences.
++ *
++ * Degree of ack aggregation is estimated as extra data acked beyond expected.
++ *
++ * max_extra_acked = "maximum recent excess data ACKed beyond max_bw * interval"
++ * cwnd += max_extra_acked
++ *
++ * Max extra_acked is clamped by cwnd and bw * bbr_extra_acked_max_us (100 ms).
++ * Max filter is an approximate sliding window of 5-10 (packet timed) round
++ * trips for non-startup phase, and 1-2 round trips for startup.
++ */
++static void bbr_update_ack_aggregation(struct sock *sk,
++ const struct rate_sample *rs)
++{
++ u32 epoch_us, expected_acked, extra_acked;
++ struct bbr *bbr = inet_csk_ca(sk);
++ struct tcp_sock *tp = tcp_sk(sk);
++ u32 extra_acked_win_rtts_thresh = bbr->params.extra_acked_win_rtts;
++
++ if (!bbr->params.extra_acked_gain || rs->acked_sacked <= 0 ||
++ rs->delivered < 0 || rs->interval_us <= 0)
++ return;
++
++ if (bbr->round_start) {
++ bbr->extra_acked_win_rtts = min(0x1F,
++ bbr->extra_acked_win_rtts + 1);
++ if (bbr->params.extra_acked_in_startup &&
++ !bbr_full_bw_reached(sk))
++ extra_acked_win_rtts_thresh = 1;
++ if (bbr->extra_acked_win_rtts >=
++ extra_acked_win_rtts_thresh) {
++ bbr->extra_acked_win_rtts = 0;
++ bbr->extra_acked_win_idx = bbr->extra_acked_win_idx ?
++ 0 : 1;
++ bbr->extra_acked[bbr->extra_acked_win_idx] = 0;
++ }
++ }
++
++ /* Compute how many packets we expected to be delivered over epoch. */
++ epoch_us = tcp_stamp_us_delta(tp->delivered_mstamp,
++ bbr->ack_epoch_mstamp);
++ expected_acked = ((u64)bbr_bw(sk) * epoch_us) / BW_UNIT;
++
++ /* Reset the aggregation epoch if ACK rate is below expected rate or
++ * significantly large no. of ack received since epoch (potentially
++ * quite old epoch).
++ */
++ if (bbr->ack_epoch_acked <= expected_acked ||
++ (bbr->ack_epoch_acked + rs->acked_sacked >=
++ bbr_ack_epoch_acked_reset_thresh)) {
++ bbr->ack_epoch_acked = 0;
++ bbr->ack_epoch_mstamp = tp->delivered_mstamp;
++ expected_acked = 0;
++ }
++
++ /* Compute excess data delivered, beyond what was expected. */
++ bbr->ack_epoch_acked = min_t(u32, 0xFFFFF,
++ bbr->ack_epoch_acked + rs->acked_sacked);
++ extra_acked = bbr->ack_epoch_acked - expected_acked;
++ extra_acked = min(extra_acked, tp->snd_cwnd);
++ if (extra_acked > bbr->extra_acked[bbr->extra_acked_win_idx])
++ bbr->extra_acked[bbr->extra_acked_win_idx] = extra_acked;
++}
++
++/* Estimate when the pipe is full, using the change in delivery rate: BBR
++ * estimates that STARTUP filled the pipe if the estimated bw hasn't changed by
++ * at least bbr_full_bw_thresh (25%) after bbr_full_bw_cnt (3) non-app-limited
++ * rounds. Why 3 rounds: 1: rwin autotuning grows the rwin, 2: we fill the
++ * higher rwin, 3: we get higher delivery rate samples. Or transient
++ * cross-traffic or radio noise can go away. CUBIC Hystart shares a similar
++ * design goal, but uses delay and inter-ACK spacing instead of bandwidth.
++ */
++static void bbr_check_full_bw_reached(struct sock *sk,
++ const struct rate_sample *rs)
++{
++ struct bbr *bbr = inet_csk_ca(sk);
++ u32 bw_thresh;
++
++ if (bbr_full_bw_reached(sk) || !bbr->round_start || rs->is_app_limited)
++ return;
++
++ bw_thresh = (u64)bbr->full_bw * bbr->params.full_bw_thresh >> BBR_SCALE;
++ if (bbr_max_bw(sk) >= bw_thresh) {
++ bbr->full_bw = bbr_max_bw(sk);
++ bbr->full_bw_cnt = 0;
++ return;
++ }
++ ++bbr->full_bw_cnt;
++ bbr->full_bw_reached = bbr->full_bw_cnt >= bbr->params.full_bw_cnt;
++}
++
++/* If pipe is probably full, drain the queue and then enter steady-state. */
++static bool bbr_check_drain(struct sock *sk, const struct rate_sample *rs,
++ struct bbr_context *ctx)
++{
++ struct bbr *bbr = inet_csk_ca(sk);
++
++ if (bbr->mode == BBR_STARTUP && bbr_full_bw_reached(sk)) {
++ bbr->mode = BBR_DRAIN; /* drain queue we created */
++ tcp_sk(sk)->snd_ssthresh =
++ bbr_inflight(sk, bbr_max_bw(sk), BBR_UNIT);
++ bbr2_reset_congestion_signals(sk);
++ } /* fall through to check if in-flight is already small: */
++ if (bbr->mode == BBR_DRAIN &&
++ bbr_packets_in_net_at_edt(sk, tcp_packets_in_flight(tcp_sk(sk))) <=
++ bbr_inflight(sk, bbr_max_bw(sk), BBR_UNIT))
++ return true; /* exiting DRAIN now */
++ return false;
++}
++
++static void bbr_check_probe_rtt_done(struct sock *sk)
++{
++ struct tcp_sock *tp = tcp_sk(sk);
++ struct bbr *bbr = inet_csk_ca(sk);
++
++ if (!(bbr->probe_rtt_done_stamp &&
++ after(tcp_jiffies32, bbr->probe_rtt_done_stamp)))
++ return;
++
++ bbr->probe_rtt_min_stamp = tcp_jiffies32; /* schedule next PROBE_RTT */
++ tp->snd_cwnd = max(tp->snd_cwnd, bbr->prior_cwnd);
++ bbr2_exit_probe_rtt(sk);
++}
++
++/* The goal of PROBE_RTT mode is to have BBR flows cooperatively and
++ * periodically drain the bottleneck queue, to converge to measure the true
++ * min_rtt (unloaded propagation delay). This allows the flows to keep queues
++ * small (reducing queuing delay and packet loss) and achieve fairness among
++ * BBR flows.
++ *
++ * The min_rtt filter window is 10 seconds. When the min_rtt estimate expires,
++ * we enter PROBE_RTT mode and cap the cwnd at bbr_cwnd_min_target=4 packets.
++ * After at least bbr_probe_rtt_mode_ms=200ms and at least one packet-timed
++ * round trip elapsed with that flight size <= 4, we leave PROBE_RTT mode and
++ * re-enter the previous mode. BBR uses 200ms to approximately bound the
++ * performance penalty of PROBE_RTT's cwnd capping to roughly 2% (200ms/10s).
++ *
++ * Note that flows need only pay 2% if they are busy sending over the last 10
++ * seconds. Interactive applications (e.g., Web, RPCs, video chunks) often have
++ * natural silences or low-rate periods within 10 seconds where the rate is low
++ * enough for long enough to drain its queue in the bottleneck. We pick up
++ * these min RTT measurements opportunistically with our min_rtt filter. :-)
++ */
++static void bbr_update_min_rtt(struct sock *sk, const struct rate_sample *rs)
++{
++ struct tcp_sock *tp = tcp_sk(sk);
++ struct bbr *bbr = inet_csk_ca(sk);
++ bool probe_rtt_expired, min_rtt_expired;
++ u32 expire;
++
++ /* Track min RTT in probe_rtt_win_ms to time next PROBE_RTT state. */
++ expire = bbr->probe_rtt_min_stamp +
++ msecs_to_jiffies(bbr->params.probe_rtt_win_ms);
++ probe_rtt_expired = after(tcp_jiffies32, expire);
++ if (rs->rtt_us >= 0 &&
++ (rs->rtt_us <= bbr->probe_rtt_min_us ||
++ (probe_rtt_expired && !rs->is_ack_delayed))) {
++ bbr->probe_rtt_min_us = rs->rtt_us;
++ bbr->probe_rtt_min_stamp = tcp_jiffies32;
++ }
++ /* Track min RTT seen in the min_rtt_win_sec filter window: */
++ expire = bbr->min_rtt_stamp + bbr->params.min_rtt_win_sec * HZ;
++ min_rtt_expired = after(tcp_jiffies32, expire);
++ if (bbr->probe_rtt_min_us <= bbr->min_rtt_us ||
++ min_rtt_expired) {
++ bbr->min_rtt_us = bbr->probe_rtt_min_us;
++ bbr->min_rtt_stamp = bbr->probe_rtt_min_stamp;
++ }
++
++ if (bbr->params.probe_rtt_mode_ms > 0 && probe_rtt_expired &&
++ !bbr->idle_restart && bbr->mode != BBR_PROBE_RTT) {
++ bbr->mode = BBR_PROBE_RTT; /* dip, drain queue */
++ bbr_save_cwnd(sk); /* note cwnd so we can restore it */
++ bbr->probe_rtt_done_stamp = 0;
++ bbr->ack_phase = BBR_ACKS_PROBE_STOPPING;
++ bbr->next_rtt_delivered = tp->delivered;
++ }
++
++ if (bbr->mode == BBR_PROBE_RTT) {
++ /* Ignore low rate samples during this mode. */
++ tp->app_limited =
++ (tp->delivered + tcp_packets_in_flight(tp)) ? : 1;
++ /* Maintain min packets in flight for max(200 ms, 1 round). */
++ if (!bbr->probe_rtt_done_stamp &&
++ tcp_packets_in_flight(tp) <= bbr_probe_rtt_cwnd(sk)) {
++ bbr->probe_rtt_done_stamp = tcp_jiffies32 +
++ msecs_to_jiffies(bbr->params.probe_rtt_mode_ms);
++ bbr->probe_rtt_round_done = 0;
++ bbr->next_rtt_delivered = tp->delivered;
++ } else if (bbr->probe_rtt_done_stamp) {
++ if (bbr->round_start)
++ bbr->probe_rtt_round_done = 1;
++ if (bbr->probe_rtt_round_done)
++ bbr_check_probe_rtt_done(sk);
++ }
++ }
++ /* Restart after idle ends only once we process a new S/ACK for data */
++ if (rs->delivered > 0)
++ bbr->idle_restart = 0;
++}
++
++static void bbr_update_gains(struct sock *sk)
++{
++ struct bbr *bbr = inet_csk_ca(sk);
++
++ switch (bbr->mode) {
++ case BBR_STARTUP:
++ bbr->pacing_gain = bbr->params.high_gain;
++ bbr->cwnd_gain = bbr->params.startup_cwnd_gain;
++ break;
++ case BBR_DRAIN:
++ bbr->pacing_gain = bbr->params.drain_gain; /* slow, to drain */
++ bbr->cwnd_gain = bbr->params.startup_cwnd_gain; /* keep cwnd */
++ break;
++ case BBR_PROBE_BW:
++ bbr->pacing_gain = bbr->params.pacing_gain[bbr->cycle_idx];
++ bbr->cwnd_gain = bbr->params.cwnd_gain;
++ break;
++ case BBR_PROBE_RTT:
++ bbr->pacing_gain = BBR_UNIT;
++ bbr->cwnd_gain = BBR_UNIT;
++ break;
++ default:
++ WARN_ONCE(1, "BBR bad mode: %u\n", bbr->mode);
++ break;
++ }
++}
++
++static void bbr_init(struct sock *sk)
++{
++ struct tcp_sock *tp = tcp_sk(sk);
++ struct bbr *bbr = inet_csk_ca(sk);
++ int i;
++
++ WARN_ON_ONCE(tp->snd_cwnd >= bbr_cwnd_warn_val);
++
++ bbr->initialized = 1;
++ bbr->params.high_gain = min(0x7FF, bbr_high_gain);
++ bbr->params.drain_gain = min(0x3FF, bbr_drain_gain);
++ bbr->params.startup_cwnd_gain = min(0x7FF, bbr_startup_cwnd_gain);
++ bbr->params.cwnd_gain = min(0x7FF, bbr_cwnd_gain);
++ bbr->params.cwnd_tso_budget = min(0x1U, bbr_cwnd_tso_budget);
++ bbr->params.cwnd_min_target = min(0xFU, bbr_cwnd_min_target);
++ bbr->params.min_rtt_win_sec = min(0x1FU, bbr_min_rtt_win_sec);
++ bbr->params.probe_rtt_mode_ms = min(0x1FFU, bbr_probe_rtt_mode_ms);
++ bbr->params.full_bw_cnt = min(0x7U, bbr_full_bw_cnt);
++ bbr->params.full_bw_thresh = min(0x3FFU, bbr_full_bw_thresh);
++ bbr->params.extra_acked_gain = min(0x7FF, bbr_extra_acked_gain);
++ bbr->params.extra_acked_win_rtts = min(0x1FU, bbr_extra_acked_win_rtts);
++ bbr->params.drain_to_target = bbr_drain_to_target ? 1 : 0;
++ bbr->params.precise_ece_ack = bbr_precise_ece_ack ? 1 : 0;
++ bbr->params.extra_acked_in_startup = bbr_extra_acked_in_startup ? 1 : 0;
++ bbr->params.probe_rtt_cwnd_gain = min(0xFFU, bbr_probe_rtt_cwnd_gain);
++ bbr->params.probe_rtt_win_ms =
++ min(0x3FFFU,
++ min_t(u32, bbr_probe_rtt_win_ms,
++ bbr->params.min_rtt_win_sec * MSEC_PER_SEC));
++ for (i = 0; i < CYCLE_LEN; i++)
++ bbr->params.pacing_gain[i] = min(0x3FF, bbr_pacing_gain[i]);
++ bbr->params.usage_based_cwnd = bbr_usage_based_cwnd ? 1 : 0;
++ bbr->params.tso_rtt_shift = min(0xFU, bbr_tso_rtt_shift);
++
++ bbr->debug.snd_isn = tp->snd_una;
++ bbr->debug.target_cwnd = 0;
++ bbr->debug.undo = 0;
++
++ bbr->init_cwnd = min(0x7FU, tp->snd_cwnd);
++ bbr->prior_cwnd = tp->prior_cwnd;
++ tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
++ bbr->next_rtt_delivered = 0;
++ bbr->prev_ca_state = TCP_CA_Open;
++ bbr->packet_conservation = 0;
++
++ bbr->probe_rtt_done_stamp = 0;
++ bbr->probe_rtt_round_done = 0;
++ bbr->probe_rtt_min_us = tcp_min_rtt(tp);
++ bbr->probe_rtt_min_stamp = tcp_jiffies32;
++ bbr->min_rtt_us = tcp_min_rtt(tp);
++ bbr->min_rtt_stamp = tcp_jiffies32;
++
++ bbr->has_seen_rtt = 0;
++ bbr_init_pacing_rate_from_rtt(sk);
++
++ bbr->round_start = 0;
++ bbr->idle_restart = 0;
++ bbr->full_bw_reached = 0;
++ bbr->full_bw = 0;
++ bbr->full_bw_cnt = 0;
++ bbr->cycle_mstamp = 0;
++ bbr->cycle_idx = 0;
++ bbr->mode = BBR_STARTUP;
++ bbr->debug.rs_bw = 0;
++
++ bbr->ack_epoch_mstamp = tp->tcp_mstamp;
++ bbr->ack_epoch_acked = 0;
++ bbr->extra_acked_win_rtts = 0;
++ bbr->extra_acked_win_idx = 0;
++ bbr->extra_acked[0] = 0;
++ bbr->extra_acked[1] = 0;
++
++ bbr->ce_state = 0;
++ bbr->prior_rcv_nxt = tp->rcv_nxt;
++ bbr->try_fast_path = 0;
++
++ cmpxchg(&sk->sk_pacing_status, SK_PACING_NONE, SK_PACING_NEEDED);
++}
++
++static u32 bbr_sndbuf_expand(struct sock *sk)
++{
++ /* Provision 3 * cwnd since BBR may slow-start even during recovery. */
++ return 3;
++}
++
++/* __________________________________________________________________________
++ *
++ * Functions new to BBR v2 ("bbr") congestion control are below here.
++ * __________________________________________________________________________
++ */
++
++/* Incorporate a new bw sample into the current window of our max filter. */
++static void bbr2_take_bw_hi_sample(struct sock *sk, u32 bw)
++{
++ struct bbr *bbr = inet_csk_ca(sk);
++
++ bbr->bw_hi[1] = max(bw, bbr->bw_hi[1]);
++}
++
++/* Keep max of last 1-2 cycles. Each PROBE_BW cycle, flip filter window. */
++static void bbr2_advance_bw_hi_filter(struct sock *sk)
++{
++ struct bbr *bbr = inet_csk_ca(sk);
++
++ if (!bbr->bw_hi[1])
++ return; /* no samples in this window; remember old window */
++ bbr->bw_hi[0] = bbr->bw_hi[1];
++ bbr->bw_hi[1] = 0;
++}
++
++/* How much do we want in flight? Our BDP, unless congestion cut cwnd. */
++static u32 bbr2_target_inflight(struct sock *sk)
++{
++ u32 bdp = bbr_inflight(sk, bbr_bw(sk), BBR_UNIT);
++
++ return min(bdp, tcp_sk(sk)->snd_cwnd);
++}
++
++static bool bbr2_is_probing_bandwidth(struct sock *sk)
++{
++ struct bbr *bbr = inet_csk_ca(sk);
++
++ return (bbr->mode == BBR_STARTUP) ||
++ (bbr->mode == BBR_PROBE_BW &&
++ (bbr->cycle_idx == BBR_BW_PROBE_REFILL ||
++ bbr->cycle_idx == BBR_BW_PROBE_UP));
++}
++
++/* Has the given amount of time elapsed since we marked the phase start? */
++static bool bbr2_has_elapsed_in_phase(const struct sock *sk, u32 interval_us)
++{
++ const struct tcp_sock *tp = tcp_sk(sk);
++ const struct bbr *bbr = inet_csk_ca(sk);
++
++ return tcp_stamp_us_delta(tp->tcp_mstamp,
++ bbr->cycle_mstamp + interval_us) > 0;
++}
++
++static void bbr2_handle_queue_too_high_in_startup(struct sock *sk)
++{
++ struct bbr *bbr = inet_csk_ca(sk);
++
++ bbr->full_bw_reached = 1;
++ bbr->inflight_hi = bbr_inflight(sk, bbr_max_bw(sk), BBR_UNIT);
++}
++
++/* Exit STARTUP upon N consecutive rounds with ECN mark rate > ecn_thresh. */
++static void bbr2_check_ecn_too_high_in_startup(struct sock *sk, u32 ce_ratio)
++{
++ struct bbr *bbr = inet_csk_ca(sk);
++
++ if (bbr_full_bw_reached(sk) || !bbr->ecn_eligible ||
++ !bbr->params.full_ecn_cnt || !bbr->params.ecn_thresh)
++ return;
++
++ if (ce_ratio >= bbr->params.ecn_thresh)
++ bbr->startup_ecn_rounds++;
++ else
++ bbr->startup_ecn_rounds = 0;
++
++ if (bbr->startup_ecn_rounds >= bbr->params.full_ecn_cnt) {
++ bbr->debug.event = 'E'; /* ECN caused STARTUP exit */
++ bbr2_handle_queue_too_high_in_startup(sk);
++ return;
++ }
++}
++
++static void bbr2_update_ecn_alpha(struct sock *sk)
++{
++ struct tcp_sock *tp = tcp_sk(sk);
++ struct bbr *bbr = inet_csk_ca(sk);
++ s32 delivered, delivered_ce;
++ u64 alpha, ce_ratio;
++ u32 gain;
++
++ if (bbr->params.ecn_factor == 0)
++ return;
++
++ delivered = tp->delivered - bbr->alpha_last_delivered;
++ delivered_ce = tp->delivered_ce - bbr->alpha_last_delivered_ce;
++
++ if (delivered == 0 || /* avoid divide by zero */
++ WARN_ON_ONCE(delivered < 0 || delivered_ce < 0)) /* backwards? */
++ return;
++
++ /* See if we should use ECN sender logic for this connection. */
++ if (!bbr->ecn_eligible && bbr_ecn_enable &&
++ (bbr->min_rtt_us <= bbr->params.ecn_max_rtt_us ||
++ !bbr->params.ecn_max_rtt_us))
++ bbr->ecn_eligible = 1;
++
++ ce_ratio = (u64)delivered_ce << BBR_SCALE;
++ do_div(ce_ratio, delivered);
++ gain = bbr->params.ecn_alpha_gain;
++ alpha = ((BBR_UNIT - gain) * bbr->ecn_alpha) >> BBR_SCALE;
++ alpha += (gain * ce_ratio) >> BBR_SCALE;
++ bbr->ecn_alpha = min_t(u32, alpha, BBR_UNIT);
++
++ bbr->alpha_last_delivered = tp->delivered;
++ bbr->alpha_last_delivered_ce = tp->delivered_ce;
++
++ bbr2_check_ecn_too_high_in_startup(sk, ce_ratio);
++}
++
++/* Each round trip of BBR_BW_PROBE_UP, double volume of probing data. */
++static void bbr2_raise_inflight_hi_slope(struct sock *sk)
++{
++ struct tcp_sock *tp = tcp_sk(sk);
++ struct bbr *bbr = inet_csk_ca(sk);
++ u32 growth_this_round, cnt;
++
++ /* Calculate "slope": packets S/Acked per inflight_hi increment. */
++ growth_this_round = 1 << bbr->bw_probe_up_rounds;
++ bbr->bw_probe_up_rounds = min(bbr->bw_probe_up_rounds + 1, 30);
++ cnt = tp->snd_cwnd / growth_this_round;
++ cnt = max(cnt, 1U);
++ bbr->bw_probe_up_cnt = cnt;
++ bbr->debug.event = 'G'; /* Grow inflight_hi slope */
++}
++
++/* In BBR_BW_PROBE_UP, not seeing high loss/ECN/queue, so raise inflight_hi. */
++static void bbr2_probe_inflight_hi_upward(struct sock *sk,
++ const struct rate_sample *rs)
++{
++ struct tcp_sock *tp = tcp_sk(sk);
++ struct bbr *bbr = inet_csk_ca(sk);
++ u32 delta;
++
++ if (!tp->is_cwnd_limited || tp->snd_cwnd < bbr->inflight_hi) {
++ bbr->bw_probe_up_acks = 0; /* don't accmulate unused credits */
++ return; /* not fully using inflight_hi, so don't grow it */
++ }
++
++ /* For each bw_probe_up_cnt packets ACKed, increase inflight_hi by 1. */
++ bbr->bw_probe_up_acks += rs->acked_sacked;
++ if (bbr->bw_probe_up_acks >= bbr->bw_probe_up_cnt) {
++ delta = bbr->bw_probe_up_acks / bbr->bw_probe_up_cnt;
++ bbr->bw_probe_up_acks -= delta * bbr->bw_probe_up_cnt;
++ bbr->inflight_hi += delta;
++ bbr->debug.event = 'I'; /* Increment inflight_hi */
++ }
++
++ if (bbr->round_start)
++ bbr2_raise_inflight_hi_slope(sk);
++}
++
++/* Does loss/ECN rate for this sample say inflight is "too high"?
++ * This is used by both the bbr_check_loss_too_high_in_startup() function,
++ * which can be used in either v1 or v2, and the PROBE_UP phase of v2, which
++ * uses it to notice when loss/ECN rates suggest inflight is too high.
++ */
++static bool bbr2_is_inflight_too_high(const struct sock *sk,
++ const struct rate_sample *rs)
++{
++ const struct bbr *bbr = inet_csk_ca(sk);
++ u32 loss_thresh, ecn_thresh;
++
++ if (rs->lost > 0 && rs->tx_in_flight) {
++ loss_thresh = (u64)rs->tx_in_flight * bbr->params.loss_thresh >>
++ BBR_SCALE;
++ if (rs->lost > loss_thresh)
++ return true;
++ }
++
++ if (rs->delivered_ce > 0 && rs->delivered > 0 &&
++ bbr->ecn_eligible && bbr->params.ecn_thresh) {
++ ecn_thresh = (u64)rs->delivered * bbr->params.ecn_thresh >>
++ BBR_SCALE;
++ if (rs->delivered_ce >= ecn_thresh)
++ return true;
++ }
++
++ return false;
++}
++
++/* Calculate the tx_in_flight level that corresponded to excessive loss.
++ * We find "lost_prefix" segs of the skb where loss rate went too high,
++ * by solving for "lost_prefix" in the following equation:
++ * lost / inflight >= loss_thresh
++ * (lost_prev + lost_prefix) / (inflight_prev + lost_prefix) >= loss_thresh
++ * Then we take that equation, convert it to fixed point, and
++ * round up to the nearest packet.
++ */
++static u32 bbr2_inflight_hi_from_lost_skb(const struct sock *sk,
++ const struct rate_sample *rs,
++ const struct sk_buff *skb)
++{
++ const struct bbr *bbr = inet_csk_ca(sk);
++ u32 loss_thresh = bbr->params.loss_thresh;
++ u32 pcount, divisor, inflight_hi;
++ s32 inflight_prev, lost_prev;
++ u64 loss_budget, lost_prefix;
++
++ pcount = tcp_skb_pcount(skb);
++
++ /* How much data was in flight before this skb? */
++ inflight_prev = rs->tx_in_flight - pcount;
++ if (WARN_ONCE(inflight_prev < 0,
++ "tx_in_flight: %u pcount: %u reneg: %u",
++ rs->tx_in_flight, pcount, tcp_sk(sk)->is_sack_reneg))
++ return ~0U;
++
++ /* How much inflight data was marked lost before this skb? */
++ lost_prev = rs->lost - pcount;
++ if (WARN_ON_ONCE(lost_prev < 0))
++ return ~0U;
++
++ /* At what prefix of this lost skb did losss rate exceed loss_thresh? */
++ loss_budget = (u64)inflight_prev * loss_thresh + BBR_UNIT - 1;
++ loss_budget >>= BBR_SCALE;
++ if (lost_prev >= loss_budget) {
++ lost_prefix = 0; /* previous losses crossed loss_thresh */
++ } else {
++ lost_prefix = loss_budget - lost_prev;
++ lost_prefix <<= BBR_SCALE;
++ divisor = BBR_UNIT - loss_thresh;
++ if (WARN_ON_ONCE(!divisor)) /* loss_thresh is 8 bits */
++ return ~0U;
++ do_div(lost_prefix, divisor);
++ }
++
++ inflight_hi = inflight_prev + lost_prefix;
++ return inflight_hi;
++}
++
++/* If loss/ECN rates during probing indicated we may have overfilled a
++ * buffer, return an operating point that tries to leave unutilized headroom in
++ * the path for other flows, for fairness convergence and lower RTTs and loss.
++ */
++static u32 bbr2_inflight_with_headroom(const struct sock *sk)
++{
++ struct bbr *bbr = inet_csk_ca(sk);
++ u32 headroom, headroom_fraction;
++
++ if (bbr->inflight_hi == ~0U)
++ return ~0U;
++
++ headroom_fraction = bbr->params.inflight_headroom;
++ headroom = ((u64)bbr->inflight_hi * headroom_fraction) >> BBR_SCALE;
++ headroom = max(headroom, 1U);
++ return max_t(s32, bbr->inflight_hi - headroom,
++ bbr->params.cwnd_min_target);
++}
++
++/* Bound cwnd to a sensible level, based on our current probing state
++ * machine phase and model of a good inflight level (inflight_lo, inflight_hi).
++ */
++static void bbr2_bound_cwnd_for_inflight_model(struct sock *sk)
++{
++ struct tcp_sock *tp = tcp_sk(sk);
++ struct bbr *bbr = inet_csk_ca(sk);
++ u32 cap;
++
++ /* tcp_rcv_synsent_state_process() currently calls tcp_ack()
++ * and thus cong_control() without first initializing us(!).
++ */
++ if (!bbr->initialized)
++ return;
++
++ cap = ~0U;
++ if (bbr->mode == BBR_PROBE_BW &&
++ bbr->cycle_idx != BBR_BW_PROBE_CRUISE) {
++ /* Probe to see if more packets fit in the path. */
++ cap = bbr->inflight_hi;
++ } else {
++ if (bbr->mode == BBR_PROBE_RTT ||
++ (bbr->mode == BBR_PROBE_BW &&
++ bbr->cycle_idx == BBR_BW_PROBE_CRUISE))
++ cap = bbr2_inflight_with_headroom(sk);
++ }
++ /* Adapt to any loss/ECN since our last bw probe. */
++ cap = min(cap, bbr->inflight_lo);
++
++ cap = max_t(u32, cap, bbr->params.cwnd_min_target);
++ tp->snd_cwnd = min(cap, tp->snd_cwnd);
++}
++
++/* Estimate a short-term lower bound on the capacity available now, based
++ * on measurements of the current delivery process and recent history. When we
++ * are seeing loss/ECN at times when we are not probing bw, then conservatively
++ * move toward flow balance by multiplicatively cutting our short-term
++ * estimated safe rate and volume of data (bw_lo and inflight_lo). We use a
++ * multiplicative decrease in order to converge to a lower capacity in time
++ * logarithmic in the magnitude of the decrease.
++ *
++ * However, we do not cut our short-term estimates lower than the current rate
++ * and volume of delivered data from this round trip, since from the current
++ * delivery process we can estimate the measured capacity available now.
++ *
++ * Anything faster than that approach would knowingly risk high loss, which can
++ * cause low bw for Reno/CUBIC and high loss recovery latency for
++ * request/response flows using any congestion control.
++ */
++static void bbr2_adapt_lower_bounds(struct sock *sk)
++{
++ struct tcp_sock *tp = tcp_sk(sk);
++ struct bbr *bbr = inet_csk_ca(sk);
++ u32 ecn_cut, ecn_inflight_lo, beta;
++
++ /* We only use lower-bound estimates when not probing bw.
++ * When probing we need to push inflight higher to probe bw.
++ */
++ if (bbr2_is_probing_bandwidth(sk))
++ return;
++
++ /* ECN response. */
++ if (bbr->ecn_in_round && bbr->ecn_eligible && bbr->params.ecn_factor) {
++ /* Reduce inflight to (1 - alpha*ecn_factor). */
++ ecn_cut = (BBR_UNIT -
++ ((bbr->ecn_alpha * bbr->params.ecn_factor) >>
++ BBR_SCALE));
++ if (bbr->inflight_lo == ~0U)
++ bbr->inflight_lo = tp->snd_cwnd;
++ ecn_inflight_lo = (u64)bbr->inflight_lo * ecn_cut >> BBR_SCALE;
++ } else {
++ ecn_inflight_lo = ~0U;
++ }
++
++ /* Loss response. */
++ if (bbr->loss_in_round) {
++ /* Reduce bw and inflight to (1 - beta). */
++ if (bbr->bw_lo == ~0U)
++ bbr->bw_lo = bbr_max_bw(sk);
++ if (bbr->inflight_lo == ~0U)
++ bbr->inflight_lo = tp->snd_cwnd;
++ beta = bbr->params.beta;
++ bbr->bw_lo =
++ max_t(u32, bbr->bw_latest,
++ (u64)bbr->bw_lo *
++ (BBR_UNIT - beta) >> BBR_SCALE);
++ bbr->inflight_lo =
++ max_t(u32, bbr->inflight_latest,
++ (u64)bbr->inflight_lo *
++ (BBR_UNIT - beta) >> BBR_SCALE);
++ }
++
++ /* Adjust to the lower of the levels implied by loss or ECN. */
++ bbr->inflight_lo = min(bbr->inflight_lo, ecn_inflight_lo);
++}
++
++/* Reset any short-term lower-bound adaptation to congestion, so that we can
++ * push our inflight up.
++ */
++static void bbr2_reset_lower_bounds(struct sock *sk)
++{
++ struct bbr *bbr = inet_csk_ca(sk);
++
++ bbr->bw_lo = ~0U;
++ bbr->inflight_lo = ~0U;
++}
++
++/* After bw probing (STARTUP/PROBE_UP), reset signals before entering a state
++ * machine phase where we adapt our lower bound based on congestion signals.
++ */
++static void bbr2_reset_congestion_signals(struct sock *sk)
++{
++ struct bbr *bbr = inet_csk_ca(sk);
++
++ bbr->loss_in_round = 0;
++ bbr->ecn_in_round = 0;
++ bbr->loss_in_cycle = 0;
++ bbr->ecn_in_cycle = 0;
++ bbr->bw_latest = 0;
++ bbr->inflight_latest = 0;
++}
++
++/* Update (most of) our congestion signals: track the recent rate and volume of
++ * delivered data, presence of loss, and EWMA degree of ECN marking.
++ */
++static void bbr2_update_congestion_signals(
++ struct sock *sk, const struct rate_sample *rs, struct bbr_context *ctx)
++{
++ struct tcp_sock *tp = tcp_sk(sk);
++ struct bbr *bbr = inet_csk_ca(sk);
++ u64 bw;
++
++ bbr->loss_round_start = 0;
++ if (rs->interval_us <= 0 || !rs->acked_sacked)
++ return; /* Not a valid observation */
++ bw = ctx->sample_bw;
++
++ if (!rs->is_app_limited || bw >= bbr_max_bw(sk))
++ bbr2_take_bw_hi_sample(sk, bw);
++
++ bbr->loss_in_round |= (rs->losses > 0);
++
++ /* Update rate and volume of delivered data from latest round trip: */
++ bbr->bw_latest = max_t(u32, bbr->bw_latest, ctx->sample_bw);
++ bbr->inflight_latest = max_t(u32, bbr->inflight_latest, rs->delivered);
++
++ if (before(rs->prior_delivered, bbr->loss_round_delivered))
++ return; /* skip the per-round-trip updates */
++ /* Now do per-round-trip updates. */
++ bbr->loss_round_delivered = tp->delivered; /* mark round trip */
++ bbr->loss_round_start = 1;
++ bbr2_adapt_lower_bounds(sk);
++
++ /* Update windowed "latest" (single-round-trip) filters. */
++ bbr->loss_in_round = 0;
++ bbr->ecn_in_round = 0;
++ bbr->bw_latest = ctx->sample_bw;
++ bbr->inflight_latest = rs->delivered;
++}
++
++/* Bandwidth probing can cause loss. To help coexistence with loss-based
++ * congestion control we spread out our probing in a Reno-conscious way. Due to
++ * the shape of the Reno sawtooth, the time required between loss epochs for an
++ * idealized Reno flow is a number of round trips that is the BDP of that
++ * flow. We count packet-timed round trips directly, since measured RTT can
++ * vary widely, and Reno is driven by packet-timed round trips.
++ */
++static bool bbr2_is_reno_coexistence_probe_time(struct sock *sk)
++{
++ struct bbr *bbr = inet_csk_ca(sk);
++ u32 inflight, rounds, reno_gain, reno_rounds;
++
++ /* Random loss can shave some small percentage off of our inflight
++ * in each round. To survive this, flows need robust periodic probes.
++ */
++ rounds = bbr->params.bw_probe_max_rounds;
++
++ reno_gain = bbr->params.bw_probe_reno_gain;
++ if (reno_gain) {
++ inflight = bbr2_target_inflight(sk);
++ reno_rounds = ((u64)inflight * reno_gain) >> BBR_SCALE;
++ rounds = min(rounds, reno_rounds);
++ }
++ return bbr->rounds_since_probe >= rounds;
++}
++
++/* How long do we want to wait before probing for bandwidth (and risking
++ * loss)? We randomize the wait, for better mixing and fairness convergence.
++ *
++ * We bound the Reno-coexistence inter-bw-probe time to be 62-63 round trips.
++ * This is calculated to allow fairness with a 25Mbps, 30ms Reno flow,
++ * (eg 4K video to a broadband user):
++ * BDP = 25Mbps * .030sec /(1514bytes) = 61.9 packets
++ *
++ * We bound the BBR-native inter-bw-probe wall clock time to be:
++ * (a) higher than 2 sec: to try to avoid causing loss for a long enough time
++ * to allow Reno at 30ms to get 4K video bw, the inter-bw-probe time must
++ * be at least: 25Mbps * .030sec / (1514bytes) * 0.030sec = 1.9secs
++ * (b) lower than 3 sec: to ensure flows can start probing in a reasonable
++ * amount of time to discover unutilized bw on human-scale interactive
++ * time-scales (e.g. perhaps traffic from a web page download that we
++ * were competing with is now complete).
++ */
++static void bbr2_pick_probe_wait(struct sock *sk)
++{
++ struct bbr *bbr = inet_csk_ca(sk);
++
++ /* Decide the random round-trip bound for wait until probe: */
++ bbr->rounds_since_probe =
++ get_random_u32_below(bbr->params.bw_probe_rand_rounds);
++ /* Decide the random wall clock bound for wait until probe: */
++ bbr->probe_wait_us = bbr->params.bw_probe_base_us +
++ get_random_u32_below(bbr->params.bw_probe_rand_us);
++}
++
++static void bbr2_set_cycle_idx(struct sock *sk, int cycle_idx)
++{
++ struct bbr *bbr = inet_csk_ca(sk);
++
++ bbr->cycle_idx = cycle_idx;
++ /* New phase, so need to update cwnd and pacing rate. */
++ bbr->try_fast_path = 0;
++}
++
++/* Send at estimated bw to fill the pipe, but not queue. We need this phase
++ * before PROBE_UP, because as soon as we send faster than the available bw
++ * we will start building a queue, and if the buffer is shallow we can cause
++ * loss. If we do not fill the pipe before we cause this loss, our bw_hi and
++ * inflight_hi estimates will underestimate.
++ */
++static void bbr2_start_bw_probe_refill(struct sock *sk, u32 bw_probe_up_rounds)
++{
++ struct tcp_sock *tp = tcp_sk(sk);
++ struct bbr *bbr = inet_csk_ca(sk);
++
++ bbr2_reset_lower_bounds(sk);
++ if (bbr->inflight_hi != ~0U)
++ bbr->inflight_hi += bbr->params.refill_add_inc;
++ bbr->bw_probe_up_rounds = bw_probe_up_rounds;
++ bbr->bw_probe_up_acks = 0;
++ bbr->stopped_risky_probe = 0;
++ bbr->ack_phase = BBR_ACKS_REFILLING;
++ bbr->next_rtt_delivered = tp->delivered;
++ bbr2_set_cycle_idx(sk, BBR_BW_PROBE_REFILL);
++}
++
++/* Now probe max deliverable data rate and volume. */
++static void bbr2_start_bw_probe_up(struct sock *sk)
++{
++ struct tcp_sock *tp = tcp_sk(sk);
++ struct bbr *bbr = inet_csk_ca(sk);
++
++ bbr->ack_phase = BBR_ACKS_PROBE_STARTING;
++ bbr->next_rtt_delivered = tp->delivered;
++ bbr->cycle_mstamp = tp->tcp_mstamp;
++ bbr2_set_cycle_idx(sk, BBR_BW_PROBE_UP);
++ bbr2_raise_inflight_hi_slope(sk);
++}
++
++/* Start a new PROBE_BW probing cycle of some wall clock length. Pick a wall
++ * clock time at which to probe beyond an inflight that we think to be
++ * safe. This will knowingly risk packet loss, so we want to do this rarely, to
++ * keep packet loss rates low. Also start a round-trip counter, to probe faster
++ * if we estimate a Reno flow at our BDP would probe faster.
++ */
++static void bbr2_start_bw_probe_down(struct sock *sk)
++{
++ struct tcp_sock *tp = tcp_sk(sk);
++ struct bbr *bbr = inet_csk_ca(sk);
++
++ bbr2_reset_congestion_signals(sk);
++ bbr->bw_probe_up_cnt = ~0U; /* not growing inflight_hi any more */
++ bbr2_pick_probe_wait(sk);
++ bbr->cycle_mstamp = tp->tcp_mstamp; /* start wall clock */
++ bbr->ack_phase = BBR_ACKS_PROBE_STOPPING;
++ bbr->next_rtt_delivered = tp->delivered;
++ bbr2_set_cycle_idx(sk, BBR_BW_PROBE_DOWN);
++}
++
++/* Cruise: maintain what we estimate to be a neutral, conservative
++ * operating point, without attempting to probe up for bandwidth or down for
++ * RTT, and only reducing inflight in response to loss/ECN signals.
++ */
++static void bbr2_start_bw_probe_cruise(struct sock *sk)
++{
++ struct bbr *bbr = inet_csk_ca(sk);
++
++ if (bbr->inflight_lo != ~0U)
++ bbr->inflight_lo = min(bbr->inflight_lo, bbr->inflight_hi);
++
++ bbr2_set_cycle_idx(sk, BBR_BW_PROBE_CRUISE);
++}
++
++/* Loss and/or ECN rate is too high while probing.
++ * Adapt (once per bw probe) by cutting inflight_hi and then restarting cycle.
++ */
++static void bbr2_handle_inflight_too_high(struct sock *sk,
++ const struct rate_sample *rs)
++{
++ struct bbr *bbr = inet_csk_ca(sk);
++ const u32 beta = bbr->params.beta;
++
++ bbr->prev_probe_too_high = 1;
++ bbr->bw_probe_samples = 0; /* only react once per probe */
++ bbr->debug.event = 'L'; /* Loss/ECN too high */
++ /* If we are app-limited then we are not robustly
++ * probing the max volume of inflight data we think
++ * might be safe (analogous to how app-limited bw
++ * samples are not known to be robustly probing bw).
++ */
++ if (!rs->is_app_limited)
++ bbr->inflight_hi = max_t(u32, rs->tx_in_flight,
++ (u64)bbr2_target_inflight(sk) *
++ (BBR_UNIT - beta) >> BBR_SCALE);
++ if (bbr->mode == BBR_PROBE_BW && bbr->cycle_idx == BBR_BW_PROBE_UP)
++ bbr2_start_bw_probe_down(sk);
++}
++
++/* If we're seeing bw and loss samples reflecting our bw probing, adapt
++ * using the signals we see. If loss or ECN mark rate gets too high, then adapt
++ * inflight_hi downward. If we're able to push inflight higher without such
++ * signals, push higher: adapt inflight_hi upward.
++ */
++static bool bbr2_adapt_upper_bounds(struct sock *sk,
++ const struct rate_sample *rs)
++{
++ struct bbr *bbr = inet_csk_ca(sk);
++
++ /* Track when we'll see bw/loss samples resulting from our bw probes. */
++ if (bbr->ack_phase == BBR_ACKS_PROBE_STARTING && bbr->round_start)
++ bbr->ack_phase = BBR_ACKS_PROBE_FEEDBACK;
++ if (bbr->ack_phase == BBR_ACKS_PROBE_STOPPING && bbr->round_start) {
++ /* End of samples from bw probing phase. */
++ bbr->bw_probe_samples = 0;
++ bbr->ack_phase = BBR_ACKS_INIT;
++ /* At this point in the cycle, our current bw sample is also
++ * our best recent chance at finding the highest available bw
++ * for this flow. So now is the best time to forget the bw
++ * samples from the previous cycle, by advancing the window.
++ */
++ if (bbr->mode == BBR_PROBE_BW && !rs->is_app_limited)
++ bbr2_advance_bw_hi_filter(sk);
++ /* If we had an inflight_hi, then probed and pushed inflight all
++ * the way up to hit that inflight_hi without seeing any
++ * high loss/ECN in all the resulting ACKs from that probing,
++ * then probe up again, this time letting inflight persist at
++ * inflight_hi for a round trip, then accelerating beyond.
++ */
++ if (bbr->mode == BBR_PROBE_BW &&
++ bbr->stopped_risky_probe && !bbr->prev_probe_too_high) {
++ bbr->debug.event = 'R'; /* reprobe */
++ bbr2_start_bw_probe_refill(sk, 0);
++ return true; /* yes, decided state transition */
++ }
++ }
++
++ if (bbr2_is_inflight_too_high(sk, rs)) {
++ if (bbr->bw_probe_samples) /* sample is from bw probing? */
++ bbr2_handle_inflight_too_high(sk, rs);
++ } else {
++ /* Loss/ECN rate is declared safe. Adjust upper bound upward. */
++ if (bbr->inflight_hi == ~0U) /* no excess queue signals yet? */
++ return false;
++
++ /* To be resilient to random loss, we must raise inflight_hi
++ * if we observe in any phase that a higher level is safe.
++ */
++ if (rs->tx_in_flight > bbr->inflight_hi) {
++ bbr->inflight_hi = rs->tx_in_flight;
++ bbr->debug.event = 'U'; /* raise up inflight_hi */
++ }
++
++ if (bbr->mode == BBR_PROBE_BW &&
++ bbr->cycle_idx == BBR_BW_PROBE_UP)
++ bbr2_probe_inflight_hi_upward(sk, rs);
++ }
++
++ return false;
++}
++
++/* Check if it's time to probe for bandwidth now, and if so, kick it off. */
++static bool bbr2_check_time_to_probe_bw(struct sock *sk)
++{
++ struct bbr *bbr = inet_csk_ca(sk);
++ u32 n;
++
++ /* If we seem to be at an operating point where we are not seeing loss
++ * but we are seeing ECN marks, then when the ECN marks cease we reprobe
++ * quickly (in case a burst of cross-traffic has ceased and freed up bw,
++ * or in case we are sharing with multiplicatively probing traffic).
++ */
++ if (bbr->params.ecn_reprobe_gain && bbr->ecn_eligible &&
++ bbr->ecn_in_cycle && !bbr->loss_in_cycle &&
++ inet_csk(sk)->icsk_ca_state == TCP_CA_Open) {
++ bbr->debug.event = 'A'; /* *A*ll clear to probe *A*gain */
++ /* Calculate n so that when bbr2_raise_inflight_hi_slope()
++ * computes growth_this_round as 2^n it will be roughly the
++ * desired volume of data (inflight_hi*ecn_reprobe_gain).
++ */
++ n = ilog2((((u64)bbr->inflight_hi *
++ bbr->params.ecn_reprobe_gain) >> BBR_SCALE));
++ bbr2_start_bw_probe_refill(sk, n);
++ return true;
++ }
++
++ if (bbr2_has_elapsed_in_phase(sk, bbr->probe_wait_us) ||
++ bbr2_is_reno_coexistence_probe_time(sk)) {
++ bbr2_start_bw_probe_refill(sk, 0);
++ return true;
++ }
++ return false;
++}
++
++/* Is it time to transition from PROBE_DOWN to PROBE_CRUISE? */
++static bool bbr2_check_time_to_cruise(struct sock *sk, u32 inflight, u32 bw)
++{
++ struct bbr *bbr = inet_csk_ca(sk);
++ bool is_under_bdp, is_long_enough;
++
++ /* Always need to pull inflight down to leave headroom in queue. */
++ if (inflight > bbr2_inflight_with_headroom(sk))
++ return false;
++
++ is_under_bdp = inflight <= bbr_inflight(sk, bw, BBR_UNIT);
++ if (bbr->params.drain_to_target)
++ return is_under_bdp;
++
++ is_long_enough = bbr2_has_elapsed_in_phase(sk, bbr->min_rtt_us);
++ return is_under_bdp || is_long_enough;
++}
++
++/* PROBE_BW state machine: cruise, refill, probe for bw, or drain? */
++static void bbr2_update_cycle_phase(struct sock *sk,
++ const struct rate_sample *rs)
++{
++ struct bbr *bbr = inet_csk_ca(sk);
++ bool is_risky = false, is_queuing = false;
++ u32 inflight, bw;
++
++ if (!bbr_full_bw_reached(sk))
++ return;
++
++ /* In DRAIN, PROBE_BW, or PROBE_RTT, adjust upper bounds. */
++ if (bbr2_adapt_upper_bounds(sk, rs))
++ return; /* already decided state transition */
++
++ if (bbr->mode != BBR_PROBE_BW)
++ return;
++
++ inflight = bbr_packets_in_net_at_edt(sk, rs->prior_in_flight);
++ bw = bbr_max_bw(sk);
++
++ switch (bbr->cycle_idx) {
++ /* First we spend most of our time cruising with a pacing_gain of 1.0,
++ * which paces at the estimated bw, to try to fully use the pipe
++ * without building queue. If we encounter loss/ECN marks, we adapt
++ * by slowing down.
++ */
++ case BBR_BW_PROBE_CRUISE:
++ if (bbr2_check_time_to_probe_bw(sk))
++ return; /* already decided state transition */
++ break;
++
++ /* After cruising, when it's time to probe, we first "refill": we send
++ * at the estimated bw to fill the pipe, before probing higher and
++ * knowingly risking overflowing the bottleneck buffer (causing loss).
++ */
++ case BBR_BW_PROBE_REFILL:
++ if (bbr->round_start) {
++ /* After one full round trip of sending in REFILL, we
++ * start to see bw samples reflecting our REFILL, which
++ * may be putting too much data in flight.
++ */
++ bbr->bw_probe_samples = 1;
++ bbr2_start_bw_probe_up(sk);
++ }
++ break;
++
++ /* After we refill the pipe, we probe by using a pacing_gain > 1.0, to
++ * probe for bw. If we have not seen loss/ECN, we try to raise inflight
++ * to at least pacing_gain*BDP; note that this may take more than
++ * min_rtt if min_rtt is small (e.g. on a LAN).
++ *
++ * We terminate PROBE_UP bandwidth probing upon any of the following:
++ *
++ * (1) We've pushed inflight up to hit the inflight_hi target set in the
++ * most recent previous bw probe phase. Thus we want to start
++ * draining the queue immediately because it's very likely the most
++ * recently sent packets will fill the queue and cause drops.
++ * (checked here)
++ * (2) We have probed for at least 1*min_rtt_us, and the
++ * estimated queue is high enough (inflight > 1.25 * estimated_bdp).
++ * (checked here)
++ * (3) Loss filter says loss rate is "too high".
++ * (checked in bbr_is_inflight_too_high())
++ * (4) ECN filter says ECN mark rate is "too high".
++ * (checked in bbr_is_inflight_too_high())
++ */
++ case BBR_BW_PROBE_UP:
++ if (bbr->prev_probe_too_high &&
++ inflight >= bbr->inflight_hi) {
++ bbr->stopped_risky_probe = 1;
++ is_risky = true;
++ bbr->debug.event = 'D'; /* D for danger */
++ } else if (bbr2_has_elapsed_in_phase(sk, bbr->min_rtt_us) &&
++ inflight >=
++ bbr_inflight(sk, bw,
++ bbr->params.bw_probe_pif_gain)) {
++ is_queuing = true;
++ bbr->debug.event = 'Q'; /* building Queue */
++ }
++ if (is_risky || is_queuing) {
++ bbr->prev_probe_too_high = 0; /* no loss/ECN (yet) */
++ bbr2_start_bw_probe_down(sk); /* restart w/ down */
++ }
++ break;
++
++ /* After probing in PROBE_UP, we have usually accumulated some data in
++ * the bottleneck buffer (if bw probing didn't find more bw). We next
++ * enter PROBE_DOWN to try to drain any excess data from the queue. To
++ * do this, we use a pacing_gain < 1.0. We hold this pacing gain until
++ * our inflight is less then that target cruising point, which is the
++ * minimum of (a) the amount needed to leave headroom, and (b) the
++ * estimated BDP. Once inflight falls to match the target, we estimate
++ * the queue is drained; persisting would underutilize the pipe.
++ */
++ case BBR_BW_PROBE_DOWN:
++ if (bbr2_check_time_to_probe_bw(sk))
++ return; /* already decided state transition */
++ if (bbr2_check_time_to_cruise(sk, inflight, bw))
++ bbr2_start_bw_probe_cruise(sk);
++ break;
++
++ default:
++ WARN_ONCE(1, "BBR invalid cycle index %u\n", bbr->cycle_idx);
++ }
++}
++
++/* Exiting PROBE_RTT, so return to bandwidth probing in STARTUP or PROBE_BW. */
++static void bbr2_exit_probe_rtt(struct sock *sk)
++{
++ struct bbr *bbr = inet_csk_ca(sk);
++
++ bbr2_reset_lower_bounds(sk);
++ if (bbr_full_bw_reached(sk)) {
++ bbr->mode = BBR_PROBE_BW;
++ /* Raising inflight after PROBE_RTT may cause loss, so reset
++ * the PROBE_BW clock and schedule the next bandwidth probe for
++ * a friendly and randomized future point in time.
++ */
++ bbr2_start_bw_probe_down(sk);
++ /* Since we are exiting PROBE_RTT, we know inflight is
++ * below our estimated BDP, so it is reasonable to cruise.
++ */
++ bbr2_start_bw_probe_cruise(sk);
++ } else {
++ bbr->mode = BBR_STARTUP;
++ }
++}
++
++/* Exit STARTUP based on loss rate > 1% and loss gaps in round >= N. Wait until
++ * the end of the round in recovery to get a good estimate of how many packets
++ * have been lost, and how many we need to drain with a low pacing rate.
++ */
++static void bbr2_check_loss_too_high_in_startup(struct sock *sk,
++ const struct rate_sample *rs)
++{
++ struct bbr *bbr = inet_csk_ca(sk);
++
++ if (bbr_full_bw_reached(sk))
++ return;
++
++ /* For STARTUP exit, check the loss rate at the end of each round trip
++ * of Recovery episodes in STARTUP. We check the loss rate at the end
++ * of the round trip to filter out noisy/low loss and have a better
++ * sense of inflight (extent of loss), so we can drain more accurately.
++ */
++ if (rs->losses && bbr->loss_events_in_round < 0xf)
++ bbr->loss_events_in_round++; /* update saturating counter */
++ if (bbr->params.full_loss_cnt && bbr->loss_round_start &&
++ inet_csk(sk)->icsk_ca_state == TCP_CA_Recovery &&
++ bbr->loss_events_in_round >= bbr->params.full_loss_cnt &&
++ bbr2_is_inflight_too_high(sk, rs)) {
++ bbr->debug.event = 'P'; /* Packet loss caused STARTUP exit */
++ bbr2_handle_queue_too_high_in_startup(sk);
++ return;
++ }
++ if (bbr->loss_round_start)
++ bbr->loss_events_in_round = 0;
++}
++
++/* If we are done draining, advance into steady state operation in PROBE_BW. */
++static void bbr2_check_drain(struct sock *sk, const struct rate_sample *rs,
++ struct bbr_context *ctx)
++{
++ struct bbr *bbr = inet_csk_ca(sk);
++
++ if (bbr_check_drain(sk, rs, ctx)) {
++ bbr->mode = BBR_PROBE_BW;
++ bbr2_start_bw_probe_down(sk);
++ }
++}
++
++static void bbr2_update_model(struct sock *sk, const struct rate_sample *rs,
++ struct bbr_context *ctx)
++{
++ bbr2_update_congestion_signals(sk, rs, ctx);
++ bbr_update_ack_aggregation(sk, rs);
++ bbr2_check_loss_too_high_in_startup(sk, rs);
++ bbr_check_full_bw_reached(sk, rs);
++ bbr2_check_drain(sk, rs, ctx);
++ bbr2_update_cycle_phase(sk, rs);
++ bbr_update_min_rtt(sk, rs);
++}
++
++/* Fast path for app-limited case.
++ *
++ * On each ack, we execute bbr state machine, which primarily consists of:
++ * 1) update model based on new rate sample, and
++ * 2) update control based on updated model or state change.
++ *
++ * There are certain workload/scenarios, e.g. app-limited case, where
++ * either we can skip updating model or we can skip update of both model
++ * as well as control. This provides signifcant softirq cpu savings for
++ * processing incoming acks.
++ *
++ * In case of app-limited, if there is no congestion (loss/ecn) and
++ * if observed bw sample is less than current estimated bw, then we can
++ * skip some of the computation in bbr state processing:
++ *
++ * - if there is no rtt/mode/phase change: In this case, since all the
++ * parameters of the network model are constant, we can skip model
++ * as well control update.
++ *
++ * - else we can skip rest of the model update. But we still need to
++ * update the control to account for the new rtt/mode/phase.
++ *
++ * Returns whether we can take fast path or not.
++ */
++static bool bbr2_fast_path(struct sock *sk, bool *update_model,
++ const struct rate_sample *rs, struct bbr_context *ctx)
++{
++ struct bbr *bbr = inet_csk_ca(sk);
++ u32 prev_min_rtt_us, prev_mode;
++
++ if (bbr->params.fast_path && bbr->try_fast_path &&
++ rs->is_app_limited && ctx->sample_bw < bbr_max_bw(sk) &&
++ !bbr->loss_in_round && !bbr->ecn_in_round) {
++ prev_mode = bbr->mode;
++ prev_min_rtt_us = bbr->min_rtt_us;
++ bbr2_check_drain(sk, rs, ctx);
++ bbr2_update_cycle_phase(sk, rs);
++ bbr_update_min_rtt(sk, rs);
++
++ if (bbr->mode == prev_mode &&
++ bbr->min_rtt_us == prev_min_rtt_us &&
++ bbr->try_fast_path)
++ return true;
++
++ /* Skip model update, but control still needs to be updated */
++ *update_model = false;
++ }
++ return false;
++}
++
++static void bbr2_main(struct sock *sk, const struct rate_sample *rs)
++{
++ struct tcp_sock *tp = tcp_sk(sk);
++ struct bbr *bbr = inet_csk_ca(sk);
++ struct bbr_context ctx = { 0 };
++ bool update_model = true;
++ u32 bw;
++
++ bbr->debug.event = '.'; /* init to default NOP (no event yet) */
++
++ bbr_update_round_start(sk, rs, &ctx);
++ if (bbr->round_start) {
++ bbr->rounds_since_probe =
++ min_t(s32, bbr->rounds_since_probe + 1, 0xFF);
++ bbr2_update_ecn_alpha(sk);
++ }
++
++ bbr->ecn_in_round |= rs->is_ece;
++ bbr_calculate_bw_sample(sk, rs, &ctx);
++
++ if (bbr2_fast_path(sk, &update_model, rs, &ctx))
++ goto out;
++
++ if (update_model)
++ bbr2_update_model(sk, rs, &ctx);
++
++ bbr_update_gains(sk);
++ bw = bbr_bw(sk);
++ bbr_set_pacing_rate(sk, bw, bbr->pacing_gain);
++ bbr_set_cwnd(sk, rs, rs->acked_sacked, bw, bbr->cwnd_gain,
++ tp->snd_cwnd, &ctx);
++ bbr2_bound_cwnd_for_inflight_model(sk);
++
++out:
++ bbr->prev_ca_state = inet_csk(sk)->icsk_ca_state;
++ bbr->loss_in_cycle |= rs->lost > 0;
++ bbr->ecn_in_cycle |= rs->delivered_ce > 0;
++
++ bbr_debug(sk, rs->acked_sacked, rs, &ctx);
++}
++
++/* Module parameters that are settable by TCP_CONGESTION_PARAMS are declared
++ * down here, so that the algorithm functions that use the parameters must use
++ * the per-socket parameters; if they accidentally use the global version
++ * then there will be a compile error.
++ * TODO(ncardwell): move all per-socket parameters down to this section.
++ */
++
++/* On losses, scale down inflight and pacing rate by beta scaled by BBR_SCALE.
++ * No loss response when 0. Max allwed value is 255.
++ */
++static u32 bbr_beta = BBR_UNIT * 30 / 100;
++
++/* Gain factor for ECN mark ratio samples, scaled by BBR_SCALE.
++ * Max allowed value is 255.
++ */
++static u32 bbr_ecn_alpha_gain = BBR_UNIT * 1 / 16; /* 1/16 = 6.25% */
++
++/* The initial value for the ecn_alpha state variable. Default and max
++ * BBR_UNIT (256), representing 1.0. This allows a flow to respond quickly
++ * to congestion if the bottleneck is congested when the flow starts up.
++ */
++static u32 bbr_ecn_alpha_init = BBR_UNIT; /* 1.0, to respond quickly */
++
++/* On ECN, cut inflight_lo to (1 - ecn_factor * ecn_alpha) scaled by BBR_SCALE.
++ * No ECN based bounding when 0. Max allwed value is 255.
++ */
++static u32 bbr_ecn_factor = BBR_UNIT * 1 / 3; /* 1/3 = 33% */
++
++/* Estimate bw probing has gone too far if CE ratio exceeds this threshold.
++ * Scaled by BBR_SCALE. Disabled when 0. Max allowed is 255.
++ */
++static u32 bbr_ecn_thresh = BBR_UNIT * 1 / 2; /* 1/2 = 50% */
++
++/* Max RTT (in usec) at which to use sender-side ECN logic.
++ * Disabled when 0 (ECN allowed at any RTT).
++ * Max allowed for the parameter is 524287 (0x7ffff) us, ~524 ms.
++ */
++static u32 bbr_ecn_max_rtt_us = 5000;
++
++/* If non-zero, if in a cycle with no losses but some ECN marks, after ECN
++ * clears then use a multiplicative increase to quickly reprobe bw by
++ * starting inflight probing at the given multiple of inflight_hi.
++ * Default for this experimental knob is 0 (disabled).
++ * Planned value for experiments: BBR_UNIT * 1 / 2 = 128, representing 0.5.
++ */
++static u32 bbr_ecn_reprobe_gain;
++
++/* Estimate bw probing has gone too far if loss rate exceeds this level. */
++static u32 bbr_loss_thresh = BBR_UNIT * 2 / 100; /* 2% loss */
++
++/* Exit STARTUP if number of loss marking events in a Recovery round is >= N,
++ * and loss rate is higher than bbr_loss_thresh.
++ * Disabled if 0. Max allowed value is 15 (0xF).
++ */
++static u32 bbr_full_loss_cnt = 8;
++
++/* Exit STARTUP if number of round trips with ECN mark rate above ecn_thresh
++ * meets this count. Max allowed value is 3.
++ */
++static u32 bbr_full_ecn_cnt = 2;
++
++/* Fraction of unutilized headroom to try to leave in path upon high loss. */
++static u32 bbr_inflight_headroom = BBR_UNIT * 15 / 100;
++
++/* Multiplier to get target inflight (as multiple of BDP) for PROBE_UP phase.
++ * Default is 1.25x, as in BBR v1. Max allowed is 511.
++ */
++static u32 bbr_bw_probe_pif_gain = BBR_UNIT * 5 / 4;
++
++/* Multiplier to get Reno-style probe epoch duration as: k * BDP round trips.
++ * If zero, disables this BBR v2 Reno-style BDP-scaled coexistence mechanism.
++ * Max allowed is 511.
++ */
++static u32 bbr_bw_probe_reno_gain = BBR_UNIT;
++
++/* Max number of packet-timed rounds to wait before probing for bandwidth. If
++ * we want to tolerate 1% random loss per round, and not have this cut our
++ * inflight too much, we must probe for bw periodically on roughly this scale.
++ * If low, limits Reno/CUBIC coexistence; if high, limits loss tolerance.
++ * We aim to be fair with Reno/CUBIC up to a BDP of at least:
++ * BDP = 25Mbps * .030sec /(1514bytes) = 61.9 packets
++ */
++static u32 bbr_bw_probe_max_rounds = 63;
++
++/* Max amount of randomness to inject in round counting for Reno-coexistence.
++ * Max value is 15.
++ */
++static u32 bbr_bw_probe_rand_rounds = 2;
++
++/* Use BBR-native probe time scale starting at this many usec.
++ * We aim to be fair with Reno/CUBIC up to an inter-loss time epoch of at least:
++ * BDP*RTT = 25Mbps * .030sec /(1514bytes) * 0.030sec = 1.9 secs
++ */
++static u32 bbr_bw_probe_base_us = 2 * USEC_PER_SEC; /* 2 secs */
++
++/* Use BBR-native probes spread over this many usec: */
++static u32 bbr_bw_probe_rand_us = 1 * USEC_PER_SEC; /* 1 secs */
++
++/* Undo the model changes made in loss recovery if recovery was spurious? */
++static bool bbr_undo = true;
++
++/* Use fast path if app-limited, no loss/ECN, and target cwnd was reached? */
++static bool bbr_fast_path = true; /* default: enabled */
++
++/* Use fast ack mode ? */
++static int bbr_fast_ack_mode = 1; /* default: rwnd check off */
++
++/* How much to additively increase inflight_hi when entering REFILL? */
++static u32 bbr_refill_add_inc; /* default: disabled */
++
++module_param_named(beta, bbr_beta, uint, 0644);
++module_param_named(ecn_alpha_gain, bbr_ecn_alpha_gain, uint, 0644);
++module_param_named(ecn_alpha_init, bbr_ecn_alpha_init, uint, 0644);
++module_param_named(ecn_factor, bbr_ecn_factor, uint, 0644);
++module_param_named(ecn_thresh, bbr_ecn_thresh, uint, 0644);
++module_param_named(ecn_max_rtt_us, bbr_ecn_max_rtt_us, uint, 0644);
++module_param_named(ecn_reprobe_gain, bbr_ecn_reprobe_gain, uint, 0644);
++module_param_named(loss_thresh, bbr_loss_thresh, uint, 0664);
++module_param_named(full_loss_cnt, bbr_full_loss_cnt, uint, 0664);
++module_param_named(full_ecn_cnt, bbr_full_ecn_cnt, uint, 0664);
++module_param_named(inflight_headroom, bbr_inflight_headroom, uint, 0664);
++module_param_named(bw_probe_pif_gain, bbr_bw_probe_pif_gain, uint, 0664);
++module_param_named(bw_probe_reno_gain, bbr_bw_probe_reno_gain, uint, 0664);
++module_param_named(bw_probe_max_rounds, bbr_bw_probe_max_rounds, uint, 0664);
++module_param_named(bw_probe_rand_rounds, bbr_bw_probe_rand_rounds, uint, 0664);
++module_param_named(bw_probe_base_us, bbr_bw_probe_base_us, uint, 0664);
++module_param_named(bw_probe_rand_us, bbr_bw_probe_rand_us, uint, 0664);
++module_param_named(undo, bbr_undo, bool, 0664);
++module_param_named(fast_path, bbr_fast_path, bool, 0664);
++module_param_named(fast_ack_mode, bbr_fast_ack_mode, uint, 0664);
++module_param_named(refill_add_inc, bbr_refill_add_inc, uint, 0664);
++
++static void bbr2_init(struct sock *sk)
++{
++ struct tcp_sock *tp = tcp_sk(sk);
++ struct bbr *bbr = inet_csk_ca(sk);
++
++ bbr_init(sk); /* run shared init code for v1 and v2 */
++
++ /* BBR v2 parameters: */
++ bbr->params.beta = min_t(u32, 0xFFU, bbr_beta);
++ bbr->params.ecn_alpha_gain = min_t(u32, 0xFFU, bbr_ecn_alpha_gain);
++ bbr->params.ecn_alpha_init = min_t(u32, BBR_UNIT, bbr_ecn_alpha_init);
++ bbr->params.ecn_factor = min_t(u32, 0xFFU, bbr_ecn_factor);
++ bbr->params.ecn_thresh = min_t(u32, 0xFFU, bbr_ecn_thresh);
++ bbr->params.ecn_max_rtt_us = min_t(u32, 0x7ffffU, bbr_ecn_max_rtt_us);
++ bbr->params.ecn_reprobe_gain = min_t(u32, 0x1FF, bbr_ecn_reprobe_gain);
++ bbr->params.loss_thresh = min_t(u32, 0xFFU, bbr_loss_thresh);
++ bbr->params.full_loss_cnt = min_t(u32, 0xFU, bbr_full_loss_cnt);
++ bbr->params.full_ecn_cnt = min_t(u32, 0x3U, bbr_full_ecn_cnt);
++ bbr->params.inflight_headroom =
++ min_t(u32, 0xFFU, bbr_inflight_headroom);
++ bbr->params.bw_probe_pif_gain =
++ min_t(u32, 0x1FFU, bbr_bw_probe_pif_gain);
++ bbr->params.bw_probe_reno_gain =
++ min_t(u32, 0x1FFU, bbr_bw_probe_reno_gain);
++ bbr->params.bw_probe_max_rounds =
++ min_t(u32, 0xFFU, bbr_bw_probe_max_rounds);
++ bbr->params.bw_probe_rand_rounds =
++ min_t(u32, 0xFU, bbr_bw_probe_rand_rounds);
++ bbr->params.bw_probe_base_us =
++ min_t(u32, (1 << 26) - 1, bbr_bw_probe_base_us);
++ bbr->params.bw_probe_rand_us =
++ min_t(u32, (1 << 26) - 1, bbr_bw_probe_rand_us);
++ bbr->params.undo = bbr_undo;
++ bbr->params.fast_path = bbr_fast_path ? 1 : 0;
++ bbr->params.refill_add_inc = min_t(u32, 0x3U, bbr_refill_add_inc);
++
++ /* BBR v2 state: */
++ bbr->initialized = 1;
++ /* Start sampling ECN mark rate after first full flight is ACKed: */
++ bbr->loss_round_delivered = tp->delivered + 1;
++ bbr->loss_round_start = 0;
++ bbr->undo_bw_lo = 0;
++ bbr->undo_inflight_lo = 0;
++ bbr->undo_inflight_hi = 0;
++ bbr->loss_events_in_round = 0;
++ bbr->startup_ecn_rounds = 0;
++ bbr2_reset_congestion_signals(sk);
++ bbr->bw_lo = ~0U;
++ bbr->bw_hi[0] = 0;
++ bbr->bw_hi[1] = 0;
++ bbr->inflight_lo = ~0U;
++ bbr->inflight_hi = ~0U;
++ bbr->bw_probe_up_cnt = ~0U;
++ bbr->bw_probe_up_acks = 0;
++ bbr->bw_probe_up_rounds = 0;
++ bbr->probe_wait_us = 0;
++ bbr->stopped_risky_probe = 0;
++ bbr->ack_phase = BBR_ACKS_INIT;
++ bbr->rounds_since_probe = 0;
++ bbr->bw_probe_samples = 0;
++ bbr->prev_probe_too_high = 0;
++ bbr->ecn_eligible = 0;
++ bbr->ecn_alpha = bbr->params.ecn_alpha_init;
++ bbr->alpha_last_delivered = 0;
++ bbr->alpha_last_delivered_ce = 0;
++
++ tp->fast_ack_mode = min_t(u32, 0x2U, bbr_fast_ack_mode);
++
++ if ((tp->ecn_flags & TCP_ECN_OK) && bbr_ecn_enable)
++ tp->ecn_flags |= TCP_ECN_ECT_PERMANENT;
++}
++
++/* Core TCP stack informs us that the given skb was just marked lost. */
++static void bbr2_skb_marked_lost(struct sock *sk, const struct sk_buff *skb)
++{
++ struct tcp_sock *tp = tcp_sk(sk);
++ struct bbr *bbr = inet_csk_ca(sk);
++ struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
++ struct rate_sample rs;
++
++ /* Capture "current" data over the full round trip of loss,
++ * to have a better chance to see the full capacity of the path.
++ */
++ if (!bbr->loss_in_round) /* first loss in this round trip? */
++ bbr->loss_round_delivered = tp->delivered; /* set round trip */
++ bbr->loss_in_round = 1;
++ bbr->loss_in_cycle = 1;
++
++ if (!bbr->bw_probe_samples)
++ return; /* not an skb sent while probing for bandwidth */
++ if (unlikely(!scb->tx.delivered_mstamp))
++ return; /* skb was SACKed, reneged, marked lost; ignore it */
++ /* We are probing for bandwidth. Construct a rate sample that
++ * estimates what happened in the flight leading up to this lost skb,
++ * then see if the loss rate went too high, and if so at which packet.
++ */
++ memset(&rs, 0, sizeof(rs));
++ rs.tx_in_flight = scb->tx.in_flight;
++ rs.lost = tp->lost - scb->tx.lost;
++ rs.is_app_limited = scb->tx.is_app_limited;
++ if (bbr2_is_inflight_too_high(sk, &rs)) {
++ rs.tx_in_flight = bbr2_inflight_hi_from_lost_skb(sk, &rs, skb);
++ bbr2_handle_inflight_too_high(sk, &rs);
++ }
++}
++
++/* Revert short-term model if current loss recovery event was spurious. */
++static u32 bbr2_undo_cwnd(struct sock *sk)
++{
++ struct tcp_sock *tp = tcp_sk(sk);
++ struct bbr *bbr = inet_csk_ca(sk);
++
++ bbr->debug.undo = 1;
++ bbr->full_bw = 0; /* spurious slow-down; reset full pipe detection */
++ bbr->full_bw_cnt = 0;
++ bbr->loss_in_round = 0;
++
++ if (!bbr->params.undo)
++ return tp->snd_cwnd;
++
++ /* Revert to cwnd and other state saved before loss episode. */
++ bbr->bw_lo = max(bbr->bw_lo, bbr->undo_bw_lo);
++ bbr->inflight_lo = max(bbr->inflight_lo, bbr->undo_inflight_lo);
++ bbr->inflight_hi = max(bbr->inflight_hi, bbr->undo_inflight_hi);
++ return bbr->prior_cwnd;
++}
++
++/* Entering loss recovery, so save state for when we undo recovery. */
++static u32 bbr2_ssthresh(struct sock *sk)
++{
++ struct bbr *bbr = inet_csk_ca(sk);
++
++ bbr_save_cwnd(sk);
++ /* For undo, save state that adapts based on loss signal. */
++ bbr->undo_bw_lo = bbr->bw_lo;
++ bbr->undo_inflight_lo = bbr->inflight_lo;
++ bbr->undo_inflight_hi = bbr->inflight_hi;
++ return tcp_sk(sk)->snd_ssthresh;
++}
++
++static enum tcp_bbr2_phase bbr2_get_phase(struct bbr *bbr)
++{
++ switch (bbr->mode) {
++ case BBR_STARTUP:
++ return BBR2_PHASE_STARTUP;
++ case BBR_DRAIN:
++ return BBR2_PHASE_DRAIN;
++ case BBR_PROBE_BW:
++ break;
++ case BBR_PROBE_RTT:
++ return BBR2_PHASE_PROBE_RTT;
++ default:
++ return BBR2_PHASE_INVALID;
++ }
++ switch (bbr->cycle_idx) {
++ case BBR_BW_PROBE_UP:
++ return BBR2_PHASE_PROBE_BW_UP;
++ case BBR_BW_PROBE_DOWN:
++ return BBR2_PHASE_PROBE_BW_DOWN;
++ case BBR_BW_PROBE_CRUISE:
++ return BBR2_PHASE_PROBE_BW_CRUISE;
++ case BBR_BW_PROBE_REFILL:
++ return BBR2_PHASE_PROBE_BW_REFILL;
++ default:
++ return BBR2_PHASE_INVALID;
++ }
++}
++
++static size_t bbr2_get_info(struct sock *sk, u32 ext, int *attr,
++ union tcp_cc_info *info)
++{
++ if (ext & (1 << (INET_DIAG_BBRINFO - 1)) ||
++ ext & (1 << (INET_DIAG_VEGASINFO - 1))) {
++ struct bbr *bbr = inet_csk_ca(sk);
++ u64 bw = bbr_bw_bytes_per_sec(sk, bbr_bw(sk));
++ u64 bw_hi = bbr_bw_bytes_per_sec(sk, bbr_max_bw(sk));
++ u64 bw_lo = bbr->bw_lo == ~0U ?
++ ~0ULL : bbr_bw_bytes_per_sec(sk, bbr->bw_lo);
++
++ memset(&info->bbr2, 0, sizeof(info->bbr2));
++ info->bbr2.bbr_bw_lsb = (u32)bw;
++ info->bbr2.bbr_bw_msb = (u32)(bw >> 32);
++ info->bbr2.bbr_min_rtt = bbr->min_rtt_us;
++ info->bbr2.bbr_pacing_gain = bbr->pacing_gain;
++ info->bbr2.bbr_cwnd_gain = bbr->cwnd_gain;
++ info->bbr2.bbr_bw_hi_lsb = (u32)bw_hi;
++ info->bbr2.bbr_bw_hi_msb = (u32)(bw_hi >> 32);
++ info->bbr2.bbr_bw_lo_lsb = (u32)bw_lo;
++ info->bbr2.bbr_bw_lo_msb = (u32)(bw_lo >> 32);
++ info->bbr2.bbr_mode = bbr->mode;
++ info->bbr2.bbr_phase = (__u8)bbr2_get_phase(bbr);
++ info->bbr2.bbr_version = (__u8)2;
++ info->bbr2.bbr_inflight_lo = bbr->inflight_lo;
++ info->bbr2.bbr_inflight_hi = bbr->inflight_hi;
++ info->bbr2.bbr_extra_acked = bbr_extra_acked(sk);
++ *attr = INET_DIAG_BBRINFO;
++ return sizeof(info->bbr2);
++ }
++ return 0;
++}
++
++static void bbr2_set_state(struct sock *sk, u8 new_state)
++{
++ struct tcp_sock *tp = tcp_sk(sk);
++ struct bbr *bbr = inet_csk_ca(sk);
++
++ if (new_state == TCP_CA_Loss) {
++ struct rate_sample rs = { .losses = 1 };
++ struct bbr_context ctx = { 0 };
++
++ bbr->prev_ca_state = TCP_CA_Loss;
++ bbr->full_bw = 0;
++ if (!bbr2_is_probing_bandwidth(sk) && bbr->inflight_lo == ~0U) {
++ /* bbr_adapt_lower_bounds() needs cwnd before
++ * we suffered an RTO, to update inflight_lo:
++ */
++ bbr->inflight_lo =
++ max(tp->snd_cwnd, bbr->prior_cwnd);
++ }
++ bbr_debug(sk, 0, &rs, &ctx);
++ } else if (bbr->prev_ca_state == TCP_CA_Loss &&
++ new_state != TCP_CA_Loss) {
++ tp->snd_cwnd = max(tp->snd_cwnd, bbr->prior_cwnd);
++ bbr->try_fast_path = 0; /* bound cwnd using latest model */
++ }
++}
++
++static struct tcp_congestion_ops tcp_bbr2_cong_ops __read_mostly = {
++ .flags = TCP_CONG_NON_RESTRICTED | TCP_CONG_WANTS_CE_EVENTS,
++ .name = "bbr2",
++ .owner = THIS_MODULE,
++ .init = bbr2_init,
++ .cong_control = bbr2_main,
++ .sndbuf_expand = bbr_sndbuf_expand,
++ .skb_marked_lost = bbr2_skb_marked_lost,
++ .undo_cwnd = bbr2_undo_cwnd,
++ .cwnd_event = bbr_cwnd_event,
++ .ssthresh = bbr2_ssthresh,
++ .tso_segs = bbr_tso_segs,
++ .get_info = bbr2_get_info,
++ .set_state = bbr2_set_state,
++};
++
++static int __init bbr_register(void)
++{
++ BUILD_BUG_ON(sizeof(struct bbr) > ICSK_CA_PRIV_SIZE);
++ return tcp_register_congestion_control(&tcp_bbr2_cong_ops);
++}
++
++static void __exit bbr_unregister(void)
++{
++ tcp_unregister_congestion_control(&tcp_bbr2_cong_ops);
++}
++
++module_init(bbr_register);
++module_exit(bbr_unregister);
++
++MODULE_AUTHOR("Van Jacobson <vanj@google.com>");
++MODULE_AUTHOR("Neal Cardwell <ncardwell@google.com>");
++MODULE_AUTHOR("Yuchung Cheng <ycheng@google.com>");
++MODULE_AUTHOR("Soheil Hassas Yeganeh <soheil@google.com>");
++MODULE_AUTHOR("Priyaranjan Jha <priyarjha@google.com>");
++MODULE_AUTHOR("Yousuk Seung <ysseung@google.com>");
++MODULE_AUTHOR("Kevin Yang <yyd@google.com>");
++MODULE_AUTHOR("Arjun Roy <arjunroy@google.com>");
++
++MODULE_LICENSE("Dual BSD/GPL");
++MODULE_DESCRIPTION("TCP BBR (Bottleneck Bandwidth and RTT)");
+diff --git a/net/ipv4/tcp_cong.c b/net/ipv4/tcp_cong.c
+index d3cae40749e8..0f268f2ff2e9 100644
+--- a/net/ipv4/tcp_cong.c
++++ b/net/ipv4/tcp_cong.c
+@@ -189,6 +189,7 @@ void tcp_init_congestion_control(struct sock *sk)
+ struct inet_connection_sock *icsk = inet_csk(sk);
+
+ tcp_sk(sk)->prior_ssthresh = 0;
++ tcp_sk(sk)->fast_ack_mode = 0;
+ if (icsk->icsk_ca_ops->init)
+ icsk->icsk_ca_ops->init(sk);
+ if (tcp_ca_needs_ecn(sk))
+diff --git a/net/ipv4/tcp_input.c b/net/ipv4/tcp_input.c
+index 0640453fce54..8a455eb0c552 100644
+--- a/net/ipv4/tcp_input.c
++++ b/net/ipv4/tcp_input.c
+@@ -349,7 +349,7 @@ static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
+ tcp_enter_quickack_mode(sk, 2);
+ break;
+ case INET_ECN_CE:
+- if (tcp_ca_needs_ecn(sk))
++ if (tcp_ca_wants_ce_events(sk))
+ tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
+
+ if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
+@@ -360,7 +360,7 @@ static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
+ tp->ecn_flags |= TCP_ECN_SEEN;
+ break;
+ default:
+- if (tcp_ca_needs_ecn(sk))
++ if (tcp_ca_wants_ce_events(sk))
+ tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
+ tp->ecn_flags |= TCP_ECN_SEEN;
+ break;
+@@ -1079,7 +1079,12 @@ static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
+ */
+ static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
+ {
++ struct sock *sk = (struct sock *)tp;
++ const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
++
+ tp->lost += tcp_skb_pcount(skb);
++ if (ca_ops->skb_marked_lost)
++ ca_ops->skb_marked_lost(sk, skb);
+ }
+
+ void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
+@@ -1460,6 +1465,17 @@ static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
+ WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
+ tcp_skb_pcount_add(skb, -pcount);
+
++ /* Adjust tx.in_flight as pcount is shifted from skb to prev. */
++ if (WARN_ONCE(TCP_SKB_CB(skb)->tx.in_flight < pcount,
++ "prev in_flight: %u skb in_flight: %u pcount: %u",
++ TCP_SKB_CB(prev)->tx.in_flight,
++ TCP_SKB_CB(skb)->tx.in_flight,
++ pcount))
++ TCP_SKB_CB(skb)->tx.in_flight = 0;
++ else
++ TCP_SKB_CB(skb)->tx.in_flight -= pcount;
++ TCP_SKB_CB(prev)->tx.in_flight += pcount;
++
+ /* When we're adding to gso_segs == 1, gso_size will be zero,
+ * in theory this shouldn't be necessary but as long as DSACK
+ * code can come after this skb later on it's better to keep
+@@ -3812,6 +3828,7 @@ static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
+
+ prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
+ rs.prior_in_flight = tcp_packets_in_flight(tp);
++ tcp_rate_check_app_limited(sk);
+
+ /* ts_recent update must be made after we are sure that the packet
+ * is in window.
+@@ -3910,6 +3927,7 @@ static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
+ delivered = tcp_newly_delivered(sk, delivered, flag);
+ lost = tp->lost - lost; /* freshly marked lost */
+ rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
++ rs.is_ece = !!(flag & FLAG_ECE);
+ tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
+ tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
+ tcp_xmit_recovery(sk, rexmit);
+@@ -5509,13 +5527,14 @@ static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
+
+ /* More than one full frame received... */
+ if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
++ (tp->fast_ack_mode == 1 ||
+ /* ... and right edge of window advances far enough.
+ * (tcp_recvmsg() will send ACK otherwise).
+ * If application uses SO_RCVLOWAT, we want send ack now if
+ * we have not received enough bytes to satisfy the condition.
+ */
+- (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
+- __tcp_select_window(sk) >= tp->rcv_wnd)) ||
++ (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
++ __tcp_select_window(sk) >= tp->rcv_wnd))) ||
+ /* We ACK each frame or... */
+ tcp_in_quickack_mode(sk) ||
+ /* Protocol state mandates a one-time immediate ACK */
+diff --git a/net/ipv4/tcp_output.c b/net/ipv4/tcp_output.c
+index c69f4d966024..a9ceec2702b2 100644
+--- a/net/ipv4/tcp_output.c
++++ b/net/ipv4/tcp_output.c
+@@ -375,7 +375,8 @@ static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
+ th->cwr = 1;
+ skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
+ }
+- } else if (!tcp_ca_needs_ecn(sk)) {
++ } else if (!(tp->ecn_flags & TCP_ECN_ECT_PERMANENT) &&
++ !tcp_ca_needs_ecn(sk)) {
+ /* ACK or retransmitted segment: clear ECT|CE */
+ INET_ECN_dontxmit(sk);
+ }
+@@ -1533,7 +1533,7 @@
+ {
+ struct tcp_sock *tp = tcp_sk(sk);
+ struct sk_buff *buff;
+- int old_factor;
++ int old_factor, inflight_prev;
+ long limit;
+ int nlen;
+ u8 flags;
+@@ -1610,6 +1611,15 @@ int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
+
+ if (diff)
+ tcp_adjust_pcount(sk, skb, diff);
++
++ /* Set buff tx.in_flight as if buff were sent by itself. */
++ inflight_prev = TCP_SKB_CB(skb)->tx.in_flight - old_factor;
++ if (WARN_ONCE(inflight_prev < 0,
++ "inconsistent: tx.in_flight: %u old_factor: %d",
++ TCP_SKB_CB(skb)->tx.in_flight, old_factor))
++ inflight_prev = 0;
++ TCP_SKB_CB(buff)->tx.in_flight = inflight_prev +
++ tcp_skb_pcount(buff);
+ }
+
+ /* Link BUFF into the send queue. */
+@@ -1993,13 +2003,12 @@ static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
+ static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
+ {
+ const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
+- u32 min_tso, tso_segs;
+-
+- min_tso = ca_ops->min_tso_segs ?
+- ca_ops->min_tso_segs(sk) :
+- READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs);
++ u32 tso_segs;
+
+- tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
++ tso_segs = ca_ops->tso_segs ?
++ ca_ops->tso_segs(sk, mss_now) :
++ tcp_tso_autosize(sk, mss_now,
++ READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs));
+ return min_t(u32, tso_segs, sk->sk_gso_max_segs);
+ }
+
+@@ -2635,6 +2644,7 @@ static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
+ skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
+ list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
+ tcp_init_tso_segs(skb, mss_now);
++ tcp_set_tx_in_flight(sk, skb);
+ goto repair; /* Skip network transmission */
+ }
+
+diff --git a/net/ipv4/tcp_rate.c b/net/ipv4/tcp_rate.c
+index a8f6d9d06f2e..a8b4c9504570 100644
+--- a/net/ipv4/tcp_rate.c
++++ b/net/ipv4/tcp_rate.c
+@@ -34,6 +34,24 @@
+ * ready to send in the write queue.
+ */
+
++void tcp_set_tx_in_flight(struct sock *sk, struct sk_buff *skb)
++{
++ struct tcp_sock *tp = tcp_sk(sk);
++ u32 in_flight;
++
++ /* Check, sanitize, and record packets in flight after skb was sent. */
++ in_flight = tcp_packets_in_flight(tp) + tcp_skb_pcount(skb);
++ if (WARN_ONCE(in_flight > TCPCB_IN_FLIGHT_MAX,
++ "insane in_flight %u cc %s mss %u "
++ "cwnd %u pif %u %u %u %u\n",
++ in_flight, inet_csk(sk)->icsk_ca_ops->name,
++ tp->mss_cache, tp->snd_cwnd,
++ tp->packets_out, tp->retrans_out,
++ tp->sacked_out, tp->lost_out))
++ in_flight = TCPCB_IN_FLIGHT_MAX;
++ TCP_SKB_CB(skb)->tx.in_flight = in_flight;
++}
++
+ /* Snapshot the current delivery information in the skb, to generate
+ * a rate sample later when the skb is (s)acked in tcp_rate_skb_delivered().
+ */
+@@ -66,7 +84,9 @@ void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb)
+ TCP_SKB_CB(skb)->tx.delivered_mstamp = tp->delivered_mstamp;
+ TCP_SKB_CB(skb)->tx.delivered = tp->delivered;
+ TCP_SKB_CB(skb)->tx.delivered_ce = tp->delivered_ce;
++ TCP_SKB_CB(skb)->tx.lost = tp->lost;
+ TCP_SKB_CB(skb)->tx.is_app_limited = tp->app_limited ? 1 : 0;
++ tcp_set_tx_in_flight(sk, skb);
+ }
+
+ /* When an skb is sacked or acked, we fill in the rate sample with the (prior)
+@@ -91,18 +111,21 @@ void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
+ if (!rs->prior_delivered ||
+ tcp_skb_sent_after(tx_tstamp, tp->first_tx_mstamp,
+ scb->end_seq, rs->last_end_seq)) {
++ rs->prior_lost = scb->tx.lost;
+ rs->prior_delivered_ce = scb->tx.delivered_ce;
+ rs->prior_delivered = scb->tx.delivered;
+ rs->prior_mstamp = scb->tx.delivered_mstamp;
+ rs->is_app_limited = scb->tx.is_app_limited;
+ rs->is_retrans = scb->sacked & TCPCB_RETRANS;
+ rs->last_end_seq = scb->end_seq;
++ rs->tx_in_flight = scb->tx.in_flight;
+
+ /* Record send time of most recently ACKed packet: */
+ tp->first_tx_mstamp = tx_tstamp;
+ /* Find the duration of the "send phase" of this window: */
+- rs->interval_us = tcp_stamp_us_delta(tp->first_tx_mstamp,
+- scb->tx.first_tx_mstamp);
++ rs->interval_us = tcp_stamp32_us_delta(
++ tp->first_tx_mstamp,
++ scb->tx.first_tx_mstamp);
+
+ }
+ /* Mark off the skb delivered once it's sacked to avoid being
+@@ -144,6 +167,7 @@ void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
+ return;
+ }
+ rs->delivered = tp->delivered - rs->prior_delivered;
++ rs->lost = tp->lost - rs->prior_lost;
+
+ rs->delivered_ce = tp->delivered_ce - rs->prior_delivered_ce;
+ /* delivered_ce occupies less than 32 bits in the skb control block */
+@@ -155,7 +179,7 @@ void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
+ * longer phase.
+ */
+ snd_us = rs->interval_us; /* send phase */
+- ack_us = tcp_stamp_us_delta(tp->tcp_mstamp,
++ ack_us = tcp_stamp32_us_delta(tp->tcp_mstamp,
+ rs->prior_mstamp); /* ack phase */
+ rs->interval_us = max(snd_us, ack_us);
+
+diff --git a/net/ipv4/tcp_timer.c b/net/ipv4/tcp_timer.c
+index cb79127f45c3..70e4de876a7f 100644
+--- a/net/ipv4/tcp_timer.c
++++ b/net/ipv4/tcp_timer.c
+@@ -605,6 +605,7 @@ void tcp_write_timer_handler(struct sock *sk)
+ return;
+ }
+
++ tcp_rate_check_app_limited(sk);
+ tcp_mstamp_refresh(tcp_sk(sk));
+ event = icsk->icsk_pending;
+
+--- a/net/ipv4/tcp_input.c
++++ b/net/ipv4/tcp_input.c
+@@ -287,7 +287,7 @@
+ icsk->icsk_ack.quick = quickacks;
+ }
+
++void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
+-static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
+ {
+ struct inet_connection_sock *icsk = inet_csk(sk);
+
+@@ -295,6 +299,7 @@
+ inet_csk_exit_pingpong_mode(sk);
+ icsk->icsk_ack.ato = TCP_ATO_MIN;
+ }
++EXPORT_SYMBOL(tcp_enter_quickack_mode);
+
+ /* Send ACKs quickly, if "quick" count is not exhausted
+ * and the session is not interactive.
+--- a/include/net/tcp.h
++++ b/include/net/tcp.h
+@@ -350,6 +350,7 @@
+ struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
+ bool force_schedule);
+
++void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
+ static inline void tcp_dec_quickack_mode(struct sock *sk)
+ {
+ struct inet_connection_sock *icsk = inet_csk(sk);