aboutsummaryrefslogtreecommitdiff
path: root/NorthstarDedicatedTest/include/protobuf/message.h
blob: 0ab3fe7724a55623726db93ea6eb9ad09c74277c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc.  All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// Author: kenton@google.com (Kenton Varda)
//  Based on original Protocol Buffers design by
//  Sanjay Ghemawat, Jeff Dean, and others.
//
// Defines Message, the abstract interface implemented by non-lite
// protocol message objects.  Although it's possible to implement this
// interface manually, most users will use the protocol compiler to
// generate implementations.
//
// Example usage:
//
// Say you have a message defined as:
//
//   message Foo {
//     optional string text = 1;
//     repeated int32 numbers = 2;
//   }
//
// Then, if you used the protocol compiler to generate a class from the above
// definition, you could use it like so:
//
//   std::string data;  // Will store a serialized version of the message.
//
//   {
//     // Create a message and serialize it.
//     Foo foo;
//     foo.set_text("Hello World!");
//     foo.add_numbers(1);
//     foo.add_numbers(5);
//     foo.add_numbers(42);
//
//     foo.SerializeToString(&data);
//   }
//
//   {
//     // Parse the serialized message and check that it contains the
//     // correct data.
//     Foo foo;
//     foo.ParseFromString(data);
//
//     assert(foo.text() == "Hello World!");
//     assert(foo.numbers_size() == 3);
//     assert(foo.numbers(0) == 1);
//     assert(foo.numbers(1) == 5);
//     assert(foo.numbers(2) == 42);
//   }
//
//   {
//     // Same as the last block, but do it dynamically via the Message
//     // reflection interface.
//     Message* foo = new Foo;
//     const Descriptor* descriptor = foo->GetDescriptor();
//
//     // Get the descriptors for the fields we're interested in and verify
//     // their types.
//     const FieldDescriptor* text_field = descriptor->FindFieldByName("text");
//     assert(text_field != nullptr);
//     assert(text_field->type() == FieldDescriptor::TYPE_STRING);
//     assert(text_field->label() == FieldDescriptor::LABEL_OPTIONAL);
//     const FieldDescriptor* numbers_field = descriptor->
//                                            FindFieldByName("numbers");
//     assert(numbers_field != nullptr);
//     assert(numbers_field->type() == FieldDescriptor::TYPE_INT32);
//     assert(numbers_field->label() == FieldDescriptor::LABEL_REPEATED);
//
//     // Parse the message.
//     foo->ParseFromString(data);
//
//     // Use the reflection interface to examine the contents.
//     const Reflection* reflection = foo->GetReflection();
//     assert(reflection->GetString(*foo, text_field) == "Hello World!");
//     assert(reflection->FieldSize(*foo, numbers_field) == 3);
//     assert(reflection->GetRepeatedInt32(*foo, numbers_field, 0) == 1);
//     assert(reflection->GetRepeatedInt32(*foo, numbers_field, 1) == 5);
//     assert(reflection->GetRepeatedInt32(*foo, numbers_field, 2) == 42);
//
//     delete foo;
//   }

#ifndef GOOGLE_PROTOBUF_MESSAGE_H__
#define GOOGLE_PROTOBUF_MESSAGE_H__

#include <iosfwd>
#include <string>
#include <type_traits>
#include <vector>

#include <stubs/casts.h>
#include <stubs/common.h>
#include <arena.h>
#include <descriptor.h>
#include <generated_message_reflection.h>
#include <generated_message_util.h>
#include <message_lite.h>
#include <port.h>


#define GOOGLE_PROTOBUF_HAS_ONEOF
#define GOOGLE_PROTOBUF_HAS_ARENAS

#include <port_def.inc>

#ifdef SWIG
#error "You cannot SWIG proto headers"
#endif

namespace google {
namespace protobuf {

// Defined in this file.
class Message;
class Reflection;
class MessageFactory;

// Defined in other files.
class AssignDescriptorsHelper;
class DynamicMessageFactory;
class DynamicMessageReflectionHelper;
class GeneratedMessageReflectionTestHelper;
class MapKey;
class MapValueConstRef;
class MapValueRef;
class MapIterator;
class MapReflectionTester;

namespace internal {
struct DescriptorTable;
class MapFieldBase;
class SwapFieldHelper;
class CachedSize;
}  // namespace internal
class UnknownFieldSet;  // unknown_field_set.h
namespace io {
class ZeroCopyInputStream;   // zero_copy_stream.h
class ZeroCopyOutputStream;  // zero_copy_stream.h
class CodedInputStream;      // coded_stream.h
class CodedOutputStream;     // coded_stream.h
}  // namespace io
namespace python {
class MapReflectionFriend;  // scalar_map_container.h
class MessageReflectionFriend;
}  // namespace python
namespace expr {
class CelMapReflectionFriend;  // field_backed_map_impl.cc
}

namespace internal {
class MapFieldPrinterHelper;  // text_format.cc
}
namespace util {
class MessageDifferencer;
}


namespace internal {
class ReflectionAccessor;      // message.cc
class ReflectionOps;           // reflection_ops.h
class MapKeySorter;            // wire_format.cc
class WireFormat;              // wire_format.h
class MapFieldReflectionTest;  // map_test.cc
}  // namespace internal

template <typename T>
class RepeatedField;  // repeated_field.h

template <typename T>
class RepeatedPtrField;  // repeated_field.h

// A container to hold message metadata.
struct Metadata {
  const Descriptor* descriptor;
  const Reflection* reflection;
};

namespace internal {
template <class To>
inline To* GetPointerAtOffset(Message* message, uint32_t offset) {
  return reinterpret_cast<To*>(reinterpret_cast<char*>(message) + offset);
}

template <class To>
const To* GetConstPointerAtOffset(const Message* message, uint32_t offset) {
  return reinterpret_cast<const To*>(reinterpret_cast<const char*>(message) +
                                     offset);
}

template <class To>
const To& GetConstRefAtOffset(const Message& message, uint32_t offset) {
  return *GetConstPointerAtOffset<To>(&message, offset);
}

bool CreateUnknownEnumValues(const FieldDescriptor* field);
}  // namespace internal

// Abstract interface for protocol messages.
//
// See also MessageLite, which contains most every-day operations.  Message
// adds descriptors and reflection on top of that.
//
// The methods of this class that are virtual but not pure-virtual have
// default implementations based on reflection.  Message classes which are
// optimized for speed will want to override these with faster implementations,
// but classes optimized for code size may be happy with keeping them.  See
// the optimize_for option in descriptor.proto.
//
// Users must not derive from this class. Only the protocol compiler and
// the internal library are allowed to create subclasses.
class PROTOBUF_EXPORT Message : public MessageLite {
 public:
  constexpr Message() {}

  // Basic Operations ------------------------------------------------

  // Construct a new instance of the same type.  Ownership is passed to the
  // caller.  (This is also defined in MessageLite, but is defined again here
  // for return-type covariance.)
  Message* New() const { return New(nullptr); }

  // Construct a new instance on the arena. Ownership is passed to the caller
  // if arena is a nullptr.
  Message* New(Arena* arena) const override = 0;

  // Make this message into a copy of the given message.  The given message
  // must have the same descriptor, but need not necessarily be the same class.
  // By default this is just implemented as "Clear(); MergeFrom(from);".
  virtual void CopyFrom(const Message& from);

  // Merge the fields from the given message into this message.  Singular
  // fields will be overwritten, if specified in from, except for embedded
  // messages which will be merged.  Repeated fields will be concatenated.
  // The given message must be of the same type as this message (i.e. the
  // exact same class).
  virtual void MergeFrom(const Message& from);

  // Verifies that IsInitialized() returns true.  GOOGLE_CHECK-fails otherwise, with
  // a nice error message.
  void CheckInitialized() const;

  // Slowly build a list of all required fields that are not set.
  // This is much, much slower than IsInitialized() as it is implemented
  // purely via reflection.  Generally, you should not call this unless you
  // have already determined that an error exists by calling IsInitialized().
  void FindInitializationErrors(std::vector<std::string>* errors) const;

  // Like FindInitializationErrors, but joins all the strings, delimited by
  // commas, and returns them.
  std::string InitializationErrorString() const override;

  // Clears all unknown fields from this message and all embedded messages.
  // Normally, if unknown tag numbers are encountered when parsing a message,
  // the tag and value are stored in the message's UnknownFieldSet and
  // then written back out when the message is serialized.  This allows servers
  // which simply route messages to other servers to pass through messages
  // that have new field definitions which they don't yet know about.  However,
  // this behavior can have security implications.  To avoid it, call this
  // method after parsing.
  //
  // See Reflection::GetUnknownFields() for more on unknown fields.
  void DiscardUnknownFields();

  // Computes (an estimate of) the total number of bytes currently used for
  // storing the message in memory.  The default implementation calls the
  // Reflection object's SpaceUsed() method.
  //
  // SpaceUsed() is noticeably slower than ByteSize(), as it is implemented
  // using reflection (rather than the generated code implementation for
  // ByteSize()). Like ByteSize(), its CPU time is linear in the number of
  // fields defined for the proto.
  virtual size_t SpaceUsedLong() const;

  PROTOBUF_DEPRECATED_MSG("Please use SpaceUsedLong() instead")
  int SpaceUsed() const { return internal::ToIntSize(SpaceUsedLong()); }

  // Debugging & Testing----------------------------------------------

  // Generates a human readable form of this message, useful for debugging
  // and other purposes.
  std::string DebugString() const;
  // Like DebugString(), but with less whitespace.
  std::string ShortDebugString() const;
  // Like DebugString(), but do not escape UTF-8 byte sequences.
  std::string Utf8DebugString() const;
  // Convenience function useful in GDB.  Prints DebugString() to stdout.
  void PrintDebugString() const;

  // Reflection-based methods ----------------------------------------
  // These methods are pure-virtual in MessageLite, but Message provides
  // reflection-based default implementations.

  std::string GetTypeName() const override;
  void Clear() override;

  // Returns whether all required fields have been set. Note that required
  // fields no longer exist starting in proto3.
  bool IsInitialized() const override;

  void CheckTypeAndMergeFrom(const MessageLite& other) override;
  // Reflective parser
  const char* _InternalParse(const char* ptr,
                             internal::ParseContext* ctx) override;
  size_t ByteSizeLong() const override;
  uint8_t* _InternalSerialize(uint8_t* target,
                              io::EpsCopyOutputStream* stream) const override;

 private:
  // This is called only by the default implementation of ByteSize(), to
  // update the cached size.  If you override ByteSize(), you do not need
  // to override this.  If you do not override ByteSize(), you MUST override
  // this; the default implementation will crash.
  //
  // The method is private because subclasses should never call it; only
  // override it.  Yes, C++ lets you do that.  Crazy, huh?
  virtual void SetCachedSize(int size) const;

 public:
  // Introspection ---------------------------------------------------


  // Get a non-owning pointer to a Descriptor for this message's type.  This
  // describes what fields the message contains, the types of those fields, etc.
  // This object remains property of the Message.
  const Descriptor* GetDescriptor() const { return GetMetadata().descriptor; }

  // Get a non-owning pointer to the Reflection interface for this Message,
  // which can be used to read and modify the fields of the Message dynamically
  // (in other words, without knowing the message type at compile time).  This
  // object remains property of the Message.
  const Reflection* GetReflection() const { return GetMetadata().reflection; }

 protected:
  // Get a struct containing the metadata for the Message, which is used in turn
  // to implement GetDescriptor() and GetReflection() above.
  virtual Metadata GetMetadata() const = 0;

  struct ClassData {
    // Note: The order of arguments (to, then from) is chosen so that the ABI
    // of this function is the same as the CopyFrom method.  That is, the
    // hidden "this" parameter comes first.
    void (*copy_to_from)(Message* to, const Message& from_msg);
    void (*merge_to_from)(Message* to, const Message& from_msg);
  };
  // GetClassData() returns a pointer to a ClassData struct which
  // exists in global memory and is unique to each subclass.  This uniqueness
  // property is used in order to quickly determine whether two messages are
  // of the same type.
  // TODO(jorg): change to pure virtual
  virtual const ClassData* GetClassData() const { return nullptr; }

  // CopyWithSizeCheck calls Clear() and then MergeFrom(), and in debug
  // builds, checks that calling Clear() on the destination message doesn't
  // alter the size of the source.  It assumes the messages are known to be
  // of the same type, and thus uses GetClassData().
  static void CopyWithSizeCheck(Message* to, const Message& from);

  inline explicit Message(Arena* arena, bool is_message_owned = false)
      : MessageLite(arena, is_message_owned) {}
  size_t ComputeUnknownFieldsSize(size_t total_size,
                                  internal::CachedSize* cached_size) const;
  size_t MaybeComputeUnknownFieldsSize(size_t total_size,
                                       internal::CachedSize* cached_size) const;


 protected:
  static uint64_t GetInvariantPerBuild(uint64_t salt);

 private:
  GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Message);
};

namespace internal {
// Forward-declare interfaces used to implement RepeatedFieldRef.
// These are protobuf internals that users shouldn't care about.
class RepeatedFieldAccessor;
}  // namespace internal

// Forward-declare RepeatedFieldRef templates. The second type parameter is
// used for SFINAE tricks. Users should ignore it.
template <typename T, typename Enable = void>
class RepeatedFieldRef;

template <typename T, typename Enable = void>
class MutableRepeatedFieldRef;

// This interface contains methods that can be used to dynamically access
// and modify the fields of a protocol message.  Their semantics are
// similar to the accessors the protocol compiler generates.
//
// To get the Reflection for a given Message, call Message::GetReflection().
//
// This interface is separate from Message only for efficiency reasons;
// the vast majority of implementations of Message will share the same
// implementation of Reflection (GeneratedMessageReflection,
// defined in generated_message.h), and all Messages of a particular class
// should share the same Reflection object (though you should not rely on
// the latter fact).
//
// There are several ways that these methods can be used incorrectly.  For
// example, any of the following conditions will lead to undefined
// results (probably assertion failures):
// - The FieldDescriptor is not a field of this message type.
// - The method called is not appropriate for the field's type.  For
//   each field type in FieldDescriptor::TYPE_*, there is only one
//   Get*() method, one Set*() method, and one Add*() method that is
//   valid for that type.  It should be obvious which (except maybe
//   for TYPE_BYTES, which are represented using strings in C++).
// - A Get*() or Set*() method for singular fields is called on a repeated
//   field.
// - GetRepeated*(), SetRepeated*(), or Add*() is called on a non-repeated
//   field.
// - The Message object passed to any method is not of the right type for
//   this Reflection object (i.e. message.GetReflection() != reflection).
//
// You might wonder why there is not any abstract representation for a field
// of arbitrary type.  E.g., why isn't there just a "GetField()" method that
// returns "const Field&", where "Field" is some class with accessors like
// "GetInt32Value()".  The problem is that someone would have to deal with
// allocating these Field objects.  For generated message classes, having to
// allocate space for an additional object to wrap every field would at least
// double the message's memory footprint, probably worse.  Allocating the
// objects on-demand, on the other hand, would be expensive and prone to
// memory leaks.  So, instead we ended up with this flat interface.
class PROTOBUF_EXPORT Reflection final {
 public:
  // Get the UnknownFieldSet for the message.  This contains fields which
  // were seen when the Message was parsed but were not recognized according
  // to the Message's definition.
  const UnknownFieldSet& GetUnknownFields(const Message& message) const;
  // Get a mutable pointer to the UnknownFieldSet for the message.  This
  // contains fields which were seen when the Message was parsed but were not
  // recognized according to the Message's definition.
  UnknownFieldSet* MutableUnknownFields(Message* message) const;

  // Estimate the amount of memory used by the message object.
  size_t SpaceUsedLong(const Message& message) const;

  PROTOBUF_DEPRECATED_MSG("Please use SpaceUsedLong() instead")
  int SpaceUsed(const Message& message) const {
    return internal::ToIntSize(SpaceUsedLong(message));
  }

  // Check if the given non-repeated field is set.
  bool HasField(const Message& message, const FieldDescriptor* field) const;

  // Get the number of elements of a repeated field.
  int FieldSize(const Message& message, const FieldDescriptor* field) const;

  // Clear the value of a field, so that HasField() returns false or
  // FieldSize() returns zero.
  void ClearField(Message* message, const FieldDescriptor* field) const;

  // Check if the oneof is set. Returns true if any field in oneof
  // is set, false otherwise.
  bool HasOneof(const Message& message,
                const OneofDescriptor* oneof_descriptor) const;

  void ClearOneof(Message* message,
                  const OneofDescriptor* oneof_descriptor) const;

  // Returns the field descriptor if the oneof is set. nullptr otherwise.
  const FieldDescriptor* GetOneofFieldDescriptor(
      const Message& message, const OneofDescriptor* oneof_descriptor) const;

  // Removes the last element of a repeated field.
  // We don't provide a way to remove any element other than the last
  // because it invites inefficient use, such as O(n^2) filtering loops
  // that should have been O(n).  If you want to remove an element other
  // than the last, the best way to do it is to re-arrange the elements
  // (using Swap()) so that the one you want removed is at the end, then
  // call RemoveLast().
  void RemoveLast(Message* message, const FieldDescriptor* field) const;
  // Removes the last element of a repeated message field, and returns the
  // pointer to the caller.  Caller takes ownership of the returned pointer.
  PROTOBUF_NODISCARD Message* ReleaseLast(Message* message,
                                          const FieldDescriptor* field) const;

  // Similar to ReleaseLast() without internal safety and ownershp checks. This
  // method should only be used when the objects are on the same arena or paired
  // with a call to `UnsafeArenaAddAllocatedMessage`.
  Message* UnsafeArenaReleaseLast(Message* message,
                                  const FieldDescriptor* field) const;

  // Swap the complete contents of two messages.
  void Swap(Message* message1, Message* message2) const;

  // Swap fields listed in fields vector of two messages.
  void SwapFields(Message* message1, Message* message2,
                  const std::vector<const FieldDescriptor*>& fields) const;

  // Swap two elements of a repeated field.
  void SwapElements(Message* message, const FieldDescriptor* field, int index1,
                    int index2) const;

  // Swap without internal safety and ownership checks. This method should only
  // be used when the objects are on the same arena.
  void UnsafeArenaSwap(Message* lhs, Message* rhs) const;

  // SwapFields without internal safety and ownership checks. This method should
  // only be used when the objects are on the same arena.
  void UnsafeArenaSwapFields(
      Message* lhs, Message* rhs,
      const std::vector<const FieldDescriptor*>& fields) const;

  // List all fields of the message which are currently set, except for unknown
  // fields, but including extension known to the parser (i.e. compiled in).
  // Singular fields will only be listed if HasField(field) would return true
  // and repeated fields will only be listed if FieldSize(field) would return
  // non-zero.  Fields (both normal fields and extension fields) will be listed
  // ordered by field number.
  // Use Reflection::GetUnknownFields() or message.unknown_fields() to also get
  // access to fields/extensions unknown to the parser.
  void ListFields(const Message& message,
                  std::vector<const FieldDescriptor*>* output) const;

  // Singular field getters ------------------------------------------
  // These get the value of a non-repeated field.  They return the default
  // value for fields that aren't set.

  int32_t GetInt32(const Message& message, const FieldDescriptor* field) const;
  int64_t GetInt64(const Message& message, const FieldDescriptor* field) const;
  uint32_t GetUInt32(const Message& message,
                     const FieldDescriptor* field) const;
  uint64_t GetUInt64(const Message& message,
                     const FieldDescriptor* field) const;
  float GetFloat(const Message& message, const FieldDescriptor* field) const;
  double GetDouble(const Message& message, const FieldDescriptor* field) const;
  bool GetBool(const Message& message, const FieldDescriptor* field) const;
  std::string GetString(const Message& message,
                        const FieldDescriptor* field) const;
  const EnumValueDescriptor* GetEnum(const Message& message,
                                     const FieldDescriptor* field) const;

  // GetEnumValue() returns an enum field's value as an integer rather than
  // an EnumValueDescriptor*. If the integer value does not correspond to a
  // known value descriptor, a new value descriptor is created. (Such a value
  // will only be present when the new unknown-enum-value semantics are enabled
  // for a message.)
  int GetEnumValue(const Message& message, const FieldDescriptor* field) const;

  // See MutableMessage() for the meaning of the "factory" parameter.
  const Message& GetMessage(const Message& message,
                            const FieldDescriptor* field,
                            MessageFactory* factory = nullptr) const;

  // Get a string value without copying, if possible.
  //
  // GetString() necessarily returns a copy of the string.  This can be
  // inefficient when the std::string is already stored in a std::string object
  // in the underlying message.  GetStringReference() will return a reference to
  // the underlying std::string in this case.  Otherwise, it will copy the
  // string into *scratch and return that.
  //
  // Note:  It is perfectly reasonable and useful to write code like:
  //     str = reflection->GetStringReference(message, field, &str);
  //   This line would ensure that only one copy of the string is made
  //   regardless of the field's underlying representation.  When initializing
  //   a newly-constructed string, though, it's just as fast and more
  //   readable to use code like:
  //     std::string str = reflection->GetString(message, field);
  const std::string& GetStringReference(const Message& message,
                                        const FieldDescriptor* field,
                                        std::string* scratch) const;


  // Singular field mutators -----------------------------------------
  // These mutate the value of a non-repeated field.

  void SetInt32(Message* message, const FieldDescriptor* field,
                int32_t value) const;
  void SetInt64(Message* message, const FieldDescriptor* field,
                int64_t value) const;
  void SetUInt32(Message* message, const FieldDescriptor* field,
                 uint32_t value) const;
  void SetUInt64(Message* message, const FieldDescriptor* field,
                 uint64_t value) const;
  void SetFloat(Message* message, const FieldDescriptor* field,
                float value) const;
  void SetDouble(Message* message, const FieldDescriptor* field,
                 double value) const;
  void SetBool(Message* message, const FieldDescriptor* field,
               bool value) const;
  void SetString(Message* message, const FieldDescriptor* field,
                 std::string value) const;
  void SetEnum(Message* message, const FieldDescriptor* field,
               const EnumValueDescriptor* value) const;
  // Set an enum field's value with an integer rather than EnumValueDescriptor.
  // For proto3 this is just setting the enum field to the value specified, for
  // proto2 it's more complicated. If value is a known enum value the field is
  // set as usual. If the value is unknown then it is added to the unknown field
  // set. Note this matches the behavior of parsing unknown enum values.
  // If multiple calls with unknown values happen than they are all added to the
  // unknown field set in order of the calls.
  void SetEnumValue(Message* message, const FieldDescriptor* field,
                    int value) const;

  // Get a mutable pointer to a field with a message type.  If a MessageFactory
  // is provided, it will be used to construct instances of the sub-message;
  // otherwise, the default factory is used.  If the field is an extension that
  // does not live in the same pool as the containing message's descriptor (e.g.
  // it lives in an overlay pool), then a MessageFactory must be provided.
  // If you have no idea what that meant, then you probably don't need to worry
  // about it (don't provide a MessageFactory).  WARNING:  If the
  // FieldDescriptor is for a compiled-in extension, then
  // factory->GetPrototype(field->message_type()) MUST return an instance of
  // the compiled-in class for this type, NOT DynamicMessage.
  Message* MutableMessage(Message* message, const FieldDescriptor* field,
                          MessageFactory* factory = nullptr) const;

  // Replaces the message specified by 'field' with the already-allocated object
  // sub_message, passing ownership to the message.  If the field contained a
  // message, that message is deleted.  If sub_message is nullptr, the field is
  // cleared.
  void SetAllocatedMessage(Message* message, Message* sub_message,
                           const FieldDescriptor* field) const;

  // Similar to `SetAllocatedMessage`, but omits all internal safety and
  // ownership checks.  This method should only be used when the objects are on
  // the same arena or paired with a call to `UnsafeArenaReleaseMessage`.
  void UnsafeArenaSetAllocatedMessage(Message* message, Message* sub_message,
                                      const FieldDescriptor* field) const;

  // Releases the message specified by 'field' and returns the pointer,
  // ReleaseMessage() will return the message the message object if it exists.
  // Otherwise, it may or may not return nullptr.  In any case, if the return
  // value is non-null, the caller takes ownership of the pointer.
  // If the field existed (HasField() is true), then the returned pointer will
  // be the same as the pointer returned by MutableMessage().
  // This function has the same effect as ClearField().
  PROTOBUF_NODISCARD Message* ReleaseMessage(
      Message* message, const FieldDescriptor* field,
      MessageFactory* factory = nullptr) const;

  // Similar to `ReleaseMessage`, but omits all internal safety and ownership
  // checks.  This method should only be used when the objects are on the same
  // arena or paired with a call to `UnsafeArenaSetAllocatedMessage`.
  Message* UnsafeArenaReleaseMessage(Message* message,
                                     const FieldDescriptor* field,
                                     MessageFactory* factory = nullptr) const;


  // Repeated field getters ------------------------------------------
  // These get the value of one element of a repeated field.

  int32_t GetRepeatedInt32(const Message& message, const FieldDescriptor* field,
                           int index) const;
  int64_t GetRepeatedInt64(const Message& message, const FieldDescriptor* field,
                           int index) const;
  uint32_t GetRepeatedUInt32(const Message& message,
                             const FieldDescriptor* field, int index) const;
  uint64_t GetRepeatedUInt64(const Message& message,
                             const FieldDescriptor* field, int index) const;
  float GetRepeatedFloat(const Message& message, const FieldDescriptor* field,
                         int index) const;
  double GetRepeatedDouble(const Message& message, const FieldDescriptor* field,
                           int index) const;
  bool GetRepeatedBool(const Message& message, const FieldDescriptor* field,
                       int index) const;
  std::string GetRepeatedString(const Message& message,
                                const FieldDescriptor* field, int index) const;
  const EnumValueDescriptor* GetRepeatedEnum(const Message& message,
                                             const FieldDescriptor* field,
                                             int index) const;
  // GetRepeatedEnumValue() returns an enum field's value as an integer rather
  // than an EnumValueDescriptor*. If the integer value does not correspond to a
  // known value descriptor, a new value descriptor is created. (Such a value
  // will only be present when the new unknown-enum-value semantics are enabled
  // for a message.)
  int GetRepeatedEnumValue(const Message& message, const FieldDescriptor* field,
                           int index) const;
  const Message& GetRepeatedMessage(const Message& message,
                                    const FieldDescriptor* field,
                                    int index) const;

  // See GetStringReference(), above.
  const std::string& GetRepeatedStringReference(const Message& message,
                                                const FieldDescriptor* field,
                                                int index,
                                                std::string* scratch) const;


  // Repeated field mutators -----------------------------------------
  // These mutate the value of one element of a repeated field.

  void SetRepeatedInt32(Message* message, const FieldDescriptor* field,
                        int index, int32_t value) const;
  void SetRepeatedInt64(Message* message, const FieldDescriptor* field,
                        int index, int64_t value) const;
  void SetRepeatedUInt32(Message* message, const FieldDescriptor* field,
                         int index, uint32_t value) const;
  void SetRepeatedUInt64(Message* message, const FieldDescriptor* field,
                         int index, uint64_t value) const;
  void SetRepeatedFloat(Message* message, const FieldDescriptor* field,
                        int index, float value) const;
  void SetRepeatedDouble(Message* message, const FieldDescriptor* field,
                         int index, double value) const;
  void SetRepeatedBool(Message* message, const FieldDescriptor* field,
                       int index, bool value) const;
  void SetRepeatedString(Message* message, const FieldDescriptor* field,
                         int index, std::string value) const;
  void SetRepeatedEnum(Message* message, const FieldDescriptor* field,
                       int index, const EnumValueDescriptor* value) const;
  // Set an enum field's value with an integer rather than EnumValueDescriptor.
  // For proto3 this is just setting the enum field to the value specified, for
  // proto2 it's more complicated. If value is a known enum value the field is
  // set as usual. If the value is unknown then it is added to the unknown field
  // set. Note this matches the behavior of parsing unknown enum values.
  // If multiple calls with unknown values happen than they are all added to the
  // unknown field set in order of the calls.
  void SetRepeatedEnumValue(Message* message, const FieldDescriptor* field,
                            int index, int value) const;
  // Get a mutable pointer to an element of a repeated field with a message
  // type.
  Message* MutableRepeatedMessage(Message* message,
                                  const FieldDescriptor* field,
                                  int index) const;


  // Repeated field adders -------------------------------------------
  // These add an element to a repeated field.

  void AddInt32(Message* message, const FieldDescriptor* field,
                int32_t value) const;
  void AddInt64(Message* message, const FieldDescriptor* field,
                int64_t value) const;
  void AddUInt32(Message* message, const FieldDescriptor* field,
                 uint32_t value) const;
  void AddUInt64(Message* message, const FieldDescriptor* field,
                 uint64_t value) const;
  void AddFloat(Message* message, const FieldDescriptor* field,
                float value) const;
  void AddDouble(Message* message, const FieldDescriptor* field,
                 double value) const;
  void AddBool(Message* message, const FieldDescriptor* field,
               bool value) const;
  void AddString(Message* message, const FieldDescriptor* field,
                 std::string value) const;
  void AddEnum(Message* message, const FieldDescriptor* field,
               const EnumValueDescriptor* value) const;
  // Add an integer value to a repeated enum field rather than
  // EnumValueDescriptor. For proto3 this is just setting the enum field to the
  // value specified, for proto2 it's more complicated. If value is a known enum
  // value the field is set as usual. If the value is unknown then it is added
  // to the unknown field set. Note this matches the behavior of parsing unknown
  // enum values. If multiple calls with unknown values happen than they are all
  // added to the unknown field set in order of the calls.
  void AddEnumValue(Message* message, const FieldDescriptor* field,
                    int value) const;
  // See MutableMessage() for comments on the "factory" parameter.
  Message* AddMessage(Message* message, const FieldDescriptor* field,
                      MessageFactory* factory = nullptr) const;

  // Appends an already-allocated object 'new_entry' to the repeated field
  // specified by 'field' passing ownership to the message.
  void AddAllocatedMessage(Message* message, const FieldDescriptor* field,
                           Message* new_entry) const;

  // Similar to AddAllocatedMessage() without internal safety and ownership
  // checks. This method should only be used when the objects are on the same
  // arena or paired with a call to `UnsafeArenaReleaseLast`.
  void UnsafeArenaAddAllocatedMessage(Message* message,
                                      const FieldDescriptor* field,
                                      Message* new_entry) const;


  // Get a RepeatedFieldRef object that can be used to read the underlying
  // repeated field. The type parameter T must be set according to the
  // field's cpp type. The following table shows the mapping from cpp type
  // to acceptable T.
  //
  //   field->cpp_type()      T
  //   CPPTYPE_INT32        int32_t
  //   CPPTYPE_UINT32       uint32_t
  //   CPPTYPE_INT64        int64_t
  //   CPPTYPE_UINT64       uint64_t
  //   CPPTYPE_DOUBLE       double
  //   CPPTYPE_FLOAT        float
  //   CPPTYPE_BOOL         bool
  //   CPPTYPE_ENUM         generated enum type or int32_t
  //   CPPTYPE_STRING       std::string
  //   CPPTYPE_MESSAGE      generated message type or google::protobuf::Message
  //
  // A RepeatedFieldRef object can be copied and the resulted object will point
  // to the same repeated field in the same message. The object can be used as
  // long as the message is not destroyed.
  //
  // Note that to use this method users need to include the header file
  // "reflection.h" (which defines the RepeatedFieldRef class templates).
  template <typename T>
  RepeatedFieldRef<T> GetRepeatedFieldRef(const Message& message,
                                          const FieldDescriptor* field) const;

  // Like GetRepeatedFieldRef() but return an object that can also be used
  // manipulate the underlying repeated field.
  template <typename T>
  MutableRepeatedFieldRef<T> GetMutableRepeatedFieldRef(
      Message* message, const FieldDescriptor* field) const;

  // DEPRECATED. Please use Get(Mutable)RepeatedFieldRef() for repeated field
  // access. The following repeated field accessors will be removed in the
  // future.
  //
  // Repeated field accessors  -------------------------------------------------
  // The methods above, e.g. GetRepeatedInt32(msg, fd, index), provide singular
  // access to the data in a RepeatedField.  The methods below provide aggregate
  // access by exposing the RepeatedField object itself with the Message.
  // Applying these templates to inappropriate types will lead to an undefined
  // reference at link time (e.g. GetRepeatedField<***double>), or possibly a
  // template matching error at compile time (e.g. GetRepeatedPtrField<File>).
  //
  // Usage example: my_doubs = refl->GetRepeatedField<double>(msg, fd);

  // DEPRECATED. Please use GetRepeatedFieldRef().
  //
  // for T = Cord and all protobuf scalar types except enums.
  template <typename T>
  PROTOBUF_DEPRECATED_MSG("Please use GetRepeatedFieldRef() instead")
  const RepeatedField<T>& GetRepeatedField(const Message& msg,
                                           const FieldDescriptor* d) const {
    return GetRepeatedFieldInternal<T>(msg, d);
  }

  // DEPRECATED. Please use GetMutableRepeatedFieldRef().
  //
  // for T = Cord and all protobuf scalar types except enums.
  template <typename T>
  PROTOBUF_DEPRECATED_MSG("Please use GetMutableRepeatedFieldRef() instead")
  RepeatedField<T>* MutableRepeatedField(Message* msg,
                                         const FieldDescriptor* d) const {
    return MutableRepeatedFieldInternal<T>(msg, d);
  }

  // DEPRECATED. Please use GetRepeatedFieldRef().
  //
  // for T = std::string, google::protobuf::internal::StringPieceField
  //         google::protobuf::Message & descendants.
  template <typename T>
  PROTOBUF_DEPRECATED_MSG("Please use GetRepeatedFieldRef() instead")
  const RepeatedPtrField<T>& GetRepeatedPtrField(
      const Message& msg, const FieldDescriptor* d) const {
    return GetRepeatedPtrFieldInternal<T>(msg, d);
  }

  // DEPRECATED. Please use GetMutableRepeatedFieldRef().
  //
  // for T = std::string, google::protobuf::internal::StringPieceField
  //         google::protobuf::Message & descendants.
  template <typename T>
  PROTOBUF_DEPRECATED_MSG("Please use GetMutableRepeatedFieldRef() instead")
  RepeatedPtrField<T>* MutableRepeatedPtrField(Message* msg,
                                               const FieldDescriptor* d) const {
    return MutableRepeatedPtrFieldInternal<T>(msg, d);
  }

  // Extensions ----------------------------------------------------------------

  // Try to find an extension of this message type by fully-qualified field
  // name.  Returns nullptr if no extension is known for this name or number.
  const FieldDescriptor* FindKnownExtensionByName(
      const std::string& name) const;

  // Try to find an extension of this message type by field number.
  // Returns nullptr if no extension is known for this name or number.
  const FieldDescriptor* FindKnownExtensionByNumber(int number) const;

  // Feature Flags -------------------------------------------------------------

  // Does this message support storing arbitrary integer values in enum fields?
  // If |true|, GetEnumValue/SetEnumValue and associated repeated-field versions
  // take arbitrary integer values, and the legacy GetEnum() getter will
  // dynamically create an EnumValueDescriptor for any integer value without
  // one. If |false|, setting an unknown enum value via the integer-based
  // setters results in undefined behavior (in practice, GOOGLE_DCHECK-fails).
  //
  // Generic code that uses reflection to handle messages with enum fields
  // should check this flag before using the integer-based setter, and either
  // downgrade to a compatible value or use the UnknownFieldSet if not. For
  // example:
  //
  //   int new_value = GetValueFromApplicationLogic();
  //   if (reflection->SupportsUnknownEnumValues()) {
  //     reflection->SetEnumValue(message, field, new_value);
  //   } else {
  //     if (field_descriptor->enum_type()->
  //             FindValueByNumber(new_value) != nullptr) {
  //       reflection->SetEnumValue(message, field, new_value);
  //     } else if (emit_unknown_enum_values) {
  //       reflection->MutableUnknownFields(message)->AddVarint(
  //           field->number(), new_value);
  //     } else {
  //       // convert value to a compatible/default value.
  //       new_value = CompatibleDowngrade(new_value);
  //       reflection->SetEnumValue(message, field, new_value);
  //     }
  //   }
  bool SupportsUnknownEnumValues() const;

  // Returns the MessageFactory associated with this message.  This can be
  // useful for determining if a message is a generated message or not, for
  // example:
  //   if (message->GetReflection()->GetMessageFactory() ==
  //       google::protobuf::MessageFactory::generated_factory()) {
  //     // This is a generated message.
  //   }
  // It can also be used to create more messages of this type, though
  // Message::New() is an easier way to accomplish this.
  MessageFactory* GetMessageFactory() const;

 private:
  template <typename T>
  const RepeatedField<T>& GetRepeatedFieldInternal(
      const Message& message, const FieldDescriptor* field) const;
  template <typename T>
  RepeatedField<T>* MutableRepeatedFieldInternal(
      Message* message, const FieldDescriptor* field) const;
  template <typename T>
  const RepeatedPtrField<T>& GetRepeatedPtrFieldInternal(
      const Message& message, const FieldDescriptor* field) const;
  template <typename T>
  RepeatedPtrField<T>* MutableRepeatedPtrFieldInternal(
      Message* message, const FieldDescriptor* field) const;
  // Obtain a pointer to a Repeated Field Structure and do some type checking:
  //   on field->cpp_type(),
  //   on field->field_option().ctype() (if ctype >= 0)
  //   of field->message_type() (if message_type != nullptr).
  // We use 2 routine rather than 4 (const vs mutable) x (scalar vs pointer).
  void* MutableRawRepeatedField(Message* message, const FieldDescriptor* field,
                                FieldDescriptor::CppType, int ctype,
                                const Descriptor* message_type) const;

  const void* GetRawRepeatedField(const Message& message,
                                  const FieldDescriptor* field,
                                  FieldDescriptor::CppType cpptype, int ctype,
                                  const Descriptor* message_type) const;

  // The following methods are used to implement (Mutable)RepeatedFieldRef.
  // A Ref object will store a raw pointer to the repeated field data (obtained
  // from RepeatedFieldData()) and a pointer to a Accessor (obtained from
  // RepeatedFieldAccessor) which will be used to access the raw data.

  // Returns a raw pointer to the repeated field
  //
  // "cpp_type" and "message_type" are deduced from the type parameter T passed
  // to Get(Mutable)RepeatedFieldRef. If T is a generated message type,
  // "message_type" should be set to its descriptor. Otherwise "message_type"
  // should be set to nullptr. Implementations of this method should check
  // whether "cpp_type"/"message_type" is consistent with the actual type of the
  // field. We use 1 routine rather than 2 (const vs mutable) because it is
  // protected and it doesn't change the message.
  void* RepeatedFieldData(Message* message, const FieldDescriptor* field,
                          FieldDescriptor::CppType cpp_type,
                          const Descriptor* message_type) const;

  // The returned pointer should point to a singleton instance which implements
  // the RepeatedFieldAccessor interface.
  const internal::RepeatedFieldAccessor* RepeatedFieldAccessor(
      const FieldDescriptor* field) const;

  // Lists all fields of the message which are currently set, except for unknown
  // fields and stripped fields. See ListFields for details.
  void ListFieldsOmitStripped(
      const Message& message,
      std::vector<const FieldDescriptor*>* output) const;

  bool IsMessageStripped(const Descriptor* descriptor) const {
    return schema_.IsMessageStripped(descriptor);
  }

  friend class TextFormat;

  void ListFieldsMayFailOnStripped(
      const Message& message, bool should_fail,
      std::vector<const FieldDescriptor*>* output) const;

  // Returns true if the message field is backed by a LazyField.
  //
  // A message field may be backed by a LazyField without the user annotation
  // ([lazy = true]). While the user-annotated LazyField is lazily verified on
  // first touch (i.e. failure on access rather than parsing if the LazyField is
  // not initialized), the inferred LazyField is eagerly verified to avoid lazy
  // parsing error at the cost of lower efficiency. When reflecting a message
  // field, use this API instead of checking field->options().lazy().
  bool IsLazyField(const FieldDescriptor* field) const {
    return IsLazilyVerifiedLazyField(field) ||
           IsEagerlyVerifiedLazyField(field);
  }

  // Returns true if the field is lazy extension. It is meant to allow python
  // reparse lazy field until b/157559327 is fixed.
  bool IsLazyExtension(const Message& message,
                       const FieldDescriptor* field) const;

  bool IsLazilyVerifiedLazyField(const FieldDescriptor* field) const;
  bool IsEagerlyVerifiedLazyField(const FieldDescriptor* field) const;

  friend class FastReflectionMessageMutator;

  const Descriptor* const descriptor_;
  const internal::ReflectionSchema schema_;
  const DescriptorPool* const descriptor_pool_;
  MessageFactory* const message_factory_;

  // Last non weak field index. This is an optimization when most weak fields
  // are at the end of the containing message. If a message proto doesn't
  // contain weak fields, then this field equals descriptor_->field_count().
  int last_non_weak_field_index_;

  template <typename T, typename Enable>
  friend class RepeatedFieldRef;
  template <typename T, typename Enable>
  friend class MutableRepeatedFieldRef;
  friend class ::PROTOBUF_NAMESPACE_ID::MessageLayoutInspector;
  friend class ::PROTOBUF_NAMESPACE_ID::AssignDescriptorsHelper;
  friend class DynamicMessageFactory;
  friend class DynamicMessageReflectionHelper;
  friend class GeneratedMessageReflectionTestHelper;
  friend class python::MapReflectionFriend;
  friend class python::MessageReflectionFriend;
  friend class util::MessageDifferencer;
#define GOOGLE_PROTOBUF_HAS_CEL_MAP_REFLECTION_FRIEND
  friend class expr::CelMapReflectionFriend;
  friend class internal::MapFieldReflectionTest;
  friend class internal::MapKeySorter;
  friend class internal::WireFormat;
  friend class internal::ReflectionOps;
  friend class internal::SwapFieldHelper;
  // Needed for implementing text format for map.
  friend class internal::MapFieldPrinterHelper;

  Reflection(const Descriptor* descriptor,
             const internal::ReflectionSchema& schema,
             const DescriptorPool* pool, MessageFactory* factory);

  // Special version for specialized implementations of string.  We can't
  // call MutableRawRepeatedField directly here because we don't have access to
  // FieldOptions::* which are defined in descriptor.pb.h.  Including that
  // file here is not possible because it would cause a circular include cycle.
  // We use 1 routine rather than 2 (const vs mutable) because it is private
  // and mutable a repeated string field doesn't change the message.
  void* MutableRawRepeatedString(Message* message, const FieldDescriptor* field,
                                 bool is_string) const;

  friend class MapReflectionTester;
  // Returns true if key is in map. Returns false if key is not in map field.
  bool ContainsMapKey(const Message& message, const FieldDescriptor* field,
                      const MapKey& key) const;

  // If key is in map field: Saves the value pointer to val and returns
  // false. If key in not in map field: Insert the key into map, saves
  // value pointer to val and returns true. Users are able to modify the
  // map value by MapValueRef.
  bool InsertOrLookupMapValue(Message* message, const FieldDescriptor* field,
                              const MapKey& key, MapValueRef* val) const;

  // If key is in map field: Saves the value pointer to val and returns true.
  // Returns false if key is not in map field. Users are NOT able to modify
  // the value by MapValueConstRef.
  bool LookupMapValue(const Message& message, const FieldDescriptor* field,
                      const MapKey& key, MapValueConstRef* val) const;
  bool LookupMapValue(const Message&, const FieldDescriptor*, const MapKey&,
                      MapValueRef*) const = delete;

  // Delete and returns true if key is in the map field. Returns false
  // otherwise.
  bool DeleteMapValue(Message* message, const FieldDescriptor* field,
                      const MapKey& key) const;

  // Returns a MapIterator referring to the first element in the map field.
  // If the map field is empty, this function returns the same as
  // reflection::MapEnd. Mutation to the field may invalidate the iterator.
  MapIterator MapBegin(Message* message, const FieldDescriptor* field) const;

  // Returns a MapIterator referring to the theoretical element that would
  // follow the last element in the map field. It does not point to any
  // real element. Mutation to the field may invalidate the iterator.
  MapIterator MapEnd(Message* message, const FieldDescriptor* field) const;

  // Get the number of <key, value> pair of a map field. The result may be
  // different from FieldSize which can have duplicate keys.
  int MapSize(const Message& message, const FieldDescriptor* field) const;

  // Help method for MapIterator.
  friend class MapIterator;
  friend class WireFormatForMapFieldTest;
  internal::MapFieldBase* MutableMapData(Message* message,
                                         const FieldDescriptor* field) const;

  const internal::MapFieldBase* GetMapData(const Message& message,
                                           const FieldDescriptor* field) const;

  template <class T>
  const T& GetRawNonOneof(const Message& message,
                          const FieldDescriptor* field) const;
  template <class T>
  T* MutableRawNonOneof(Message* message, const FieldDescriptor* field) const;

  template <typename Type>
  const Type& GetRaw(const Message& message,
                     const FieldDescriptor* field) const;
  template <typename Type>
  inline Type* MutableRaw(Message* message, const FieldDescriptor* field) const;
  template <typename Type>
  const Type& DefaultRaw(const FieldDescriptor* field) const;

  const Message* GetDefaultMessageInstance(const FieldDescriptor* field) const;

  inline const uint32_t* GetHasBits(const Message& message) const;
  inline uint32_t* MutableHasBits(Message* message) const;
  inline uint32_t GetOneofCase(const Message& message,
                               const OneofDescriptor* oneof_descriptor) const;
  inline uint32_t* MutableOneofCase(
      Message* message, const OneofDescriptor* oneof_descriptor) const;
  inline bool HasExtensionSet(const Message& /* message */) const {
    return schema_.HasExtensionSet();
  }
  const internal::ExtensionSet& GetExtensionSet(const Message& message) const;
  internal::ExtensionSet* MutableExtensionSet(Message* message) const;

  inline const internal::InternalMetadata& GetInternalMetadata(
      const Message& message) const;

  internal::InternalMetadata* MutableInternalMetadata(Message* message) const;

  inline bool IsInlined(const FieldDescriptor* field) const;

  inline bool HasBit(const Message& message,
                     const FieldDescriptor* field) const;
  inline void SetBit(Message* message, const FieldDescriptor* field) const;
  inline void ClearBit(Message* message, const FieldDescriptor* field) const;
  inline void SwapBit(Message* message1, Message* message2,
                      const FieldDescriptor* field) const;

  inline const uint32_t* GetInlinedStringDonatedArray(
      const Message& message) const;
  inline uint32_t* MutableInlinedStringDonatedArray(Message* message) const;
  inline bool IsInlinedStringDonated(const Message& message,
                                     const FieldDescriptor* field) const;

  // Shallow-swap fields listed in fields vector of two messages. It is the
  // caller's responsibility to make sure shallow swap is safe.
  void UnsafeShallowSwapFields(
      Message* message1, Message* message2,
      const std::vector<const FieldDescriptor*>& fields) const;

  // This function only swaps the field. Should swap corresponding has_bit
  // before or after using this function.
  void SwapField(Message* message1, Message* message2,
                 const FieldDescriptor* field) const;

  // Unsafe but shallow version of SwapField.
  void UnsafeShallowSwapField(Message* message1, Message* message2,
                              const FieldDescriptor* field) const;

  template <bool unsafe_shallow_swap>
  void SwapFieldsImpl(Message* message1, Message* message2,
                      const std::vector<const FieldDescriptor*>& fields) const;

  template <bool unsafe_shallow_swap>
  void SwapOneofField(Message* lhs, Message* rhs,
                      const OneofDescriptor* oneof_descriptor) const;

  inline bool HasOneofField(const Message& message,
                            const FieldDescriptor* field) const;
  inline void SetOneofCase(Message* message,
                           const FieldDescriptor* field) const;
  inline void ClearOneofField(Message* message,
                              const FieldDescriptor* field) const;

  template <typename Type>
  inline const Type& GetField(const Message& message,
                              const FieldDescriptor* field) const;
  template <typename Type>
  inline void SetField(Message* message, const FieldDescriptor* field,
                       const Type& value) const;
  template <typename Type>
  inline Type* MutableField(Message* message,
                            const FieldDescriptor* field) const;
  template <typename Type>
  inline const Type& GetRepeatedField(const Message& message,
                                      const FieldDescriptor* field,
                                      int index) const;
  template <typename Type>
  inline const Type& GetRepeatedPtrField(const Message& message,
                                         const FieldDescriptor* field,
                                         int index) const;
  template <typename Type>
  inline void SetRepeatedField(Message* message, const FieldDescriptor* field,
                               int index, Type value) const;
  template <typename Type>
  inline Type* MutableRepeatedField(Message* message,
                                    const FieldDescriptor* field,
                                    int index) const;
  template <typename Type>
  inline void AddField(Message* message, const FieldDescriptor* field,
                       const Type& value) const;
  template <typename Type>
  inline Type* AddField(Message* message, const FieldDescriptor* field) const;

  int GetExtensionNumberOrDie(const Descriptor* type) const;

  // Internal versions of EnumValue API perform no checking. Called after checks
  // by public methods.
  void SetEnumValueInternal(Message* message, const FieldDescriptor* field,
                            int value) const;
  void SetRepeatedEnumValueInternal(Message* message,
                                    const FieldDescriptor* field, int index,
                                    int value) const;
  void AddEnumValueInternal(Message* message, const FieldDescriptor* field,
                            int value) const;

  friend inline  // inline so nobody can call this function.
      void
      RegisterAllTypesInternal(const Metadata* file_level_metadata, int size);
  friend inline const char* ParseLenDelim(int field_number,
                                          const FieldDescriptor* field,
                                          Message* msg,
                                          const Reflection* reflection,
                                          const char* ptr,
                                          internal::ParseContext* ctx);
  friend inline const char* ParsePackedField(const FieldDescriptor* field,
                                             Message* msg,
                                             const Reflection* reflection,
                                             const char* ptr,
                                             internal::ParseContext* ctx);

  GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Reflection);
};

// Abstract interface for a factory for message objects.
class PROTOBUF_EXPORT MessageFactory {
 public:
  inline MessageFactory() {}
  virtual ~MessageFactory();

  // Given a Descriptor, gets or constructs the default (prototype) Message
  // of that type.  You can then call that message's New() method to construct
  // a mutable message of that type.
  //
  // Calling this method twice with the same Descriptor returns the same
  // object.  The returned object remains property of the factory.  Also, any
  // objects created by calling the prototype's New() method share some data
  // with the prototype, so these must be destroyed before the MessageFactory
  // is destroyed.
  //
  // The given descriptor must outlive the returned message, and hence must
  // outlive the MessageFactory.
  //
  // Some implementations do not support all types.  GetPrototype() will
  // return nullptr if the descriptor passed in is not supported.
  //
  // This method may or may not be thread-safe depending on the implementation.
  // Each implementation should document its own degree thread-safety.
  virtual const Message* GetPrototype(const Descriptor* type) = 0;

  // Gets a MessageFactory which supports all generated, compiled-in messages.
  // In other words, for any compiled-in type FooMessage, the following is true:
  //   MessageFactory::generated_factory()->GetPrototype(
  //     FooMessage::descriptor()) == FooMessage::default_instance()
  // This factory supports all types which are found in
  // DescriptorPool::generated_pool().  If given a descriptor from any other
  // pool, GetPrototype() will return nullptr.  (You can also check if a
  // descriptor is for a generated message by checking if
  // descriptor->file()->pool() == DescriptorPool::generated_pool().)
  //
  // This factory is 100% thread-safe; calling GetPrototype() does not modify
  // any shared data.
  //
  // This factory is a singleton.  The caller must not delete the object.
  static MessageFactory* generated_factory();

  // For internal use only:  Registers a .proto file at static initialization
  // time, to be placed in generated_factory.  The first time GetPrototype()
  // is called with a descriptor from this file, |register_messages| will be
  // called, with the file name as the parameter.  It must call
  // InternalRegisterGeneratedMessage() (below) to register each message type
  // in the file.  This strange mechanism is necessary because descriptors are
  // built lazily, so we can't register types by their descriptor until we
  // know that the descriptor exists.  |filename| must be a permanent string.
  static void InternalRegisterGeneratedFile(
      const google::protobuf::internal::DescriptorTable* table);

  // For internal use only:  Registers a message type.  Called only by the
  // functions which are registered with InternalRegisterGeneratedFile(),
  // above.
  static void InternalRegisterGeneratedMessage(const Descriptor* descriptor,
                                               const Message* prototype);


 private:
  GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MessageFactory);
};

#define DECLARE_GET_REPEATED_FIELD(TYPE)                           \
  template <>                                                      \
  PROTOBUF_EXPORT const RepeatedField<TYPE>&                       \
  Reflection::GetRepeatedFieldInternal<TYPE>(                      \
      const Message& message, const FieldDescriptor* field) const; \
                                                                   \
  template <>                                                      \
  PROTOBUF_EXPORT RepeatedField<TYPE>*                             \
  Reflection::MutableRepeatedFieldInternal<TYPE>(                  \
      Message * message, const FieldDescriptor* field) const;

DECLARE_GET_REPEATED_FIELD(int32_t)
DECLARE_GET_REPEATED_FIELD(int64_t)
DECLARE_GET_REPEATED_FIELD(uint32_t)
DECLARE_GET_REPEATED_FIELD(uint64_t)
DECLARE_GET_REPEATED_FIELD(float)
DECLARE_GET_REPEATED_FIELD(double)
DECLARE_GET_REPEATED_FIELD(bool)

#undef DECLARE_GET_REPEATED_FIELD

// Tries to downcast this message to a generated message type.  Returns nullptr
// if this class is not an instance of T.  This works even if RTTI is disabled.
//
// This also has the effect of creating a strong reference to T that will
// prevent the linker from stripping it out at link time.  This can be important
// if you are using a DynamicMessageFactory that delegates to the generated
// factory.
template <typename T>
const T* DynamicCastToGenerated(const Message* from) {
  // Compile-time assert that T is a generated type that has a
  // default_instance() accessor, but avoid actually calling it.
  const T& (*get_default_instance)() = &T::default_instance;
  (void)get_default_instance;

  // Compile-time assert that T is a subclass of google::protobuf::Message.
  const Message* unused = static_cast<T*>(nullptr);
  (void)unused;

#if PROTOBUF_RTTI
  return dynamic_cast<const T*>(from);
#else
  bool ok = from != nullptr &&
            T::default_instance().GetReflection() == from->GetReflection();
  return ok ? down_cast<const T*>(from) : nullptr;
#endif
}

template <typename T>
T* DynamicCastToGenerated(Message* from) {
  const Message* message_const = from;
  return const_cast<T*>(DynamicCastToGenerated<T>(message_const));
}

// Call this function to ensure that this message's reflection is linked into
// the binary:
//
//   google::protobuf::LinkMessageReflection<FooMessage>();
//
// This will ensure that the following lookup will succeed:
//
//   DescriptorPool::generated_pool()->FindMessageTypeByName("FooMessage");
//
// As a side-effect, it will also guarantee that anything else from the same
// .proto file will also be available for lookup in the generated pool.
//
// This function does not actually register the message, so it does not need
// to be called before the lookup.  However it does need to occur in a function
// that cannot be stripped from the binary (ie. it must be reachable from main).
//
// Best practice is to call this function as close as possible to where the
// reflection is actually needed.  This function is very cheap to call, so you
// should not need to worry about its runtime overhead except in the tightest
// of loops (on x86-64 it compiles into two "mov" instructions).
template <typename T>
void LinkMessageReflection() {
  internal::StrongReference(T::default_instance);
}

// =============================================================================
// Implementation details for {Get,Mutable}RawRepeatedPtrField.  We provide
// specializations for <std::string>, <StringPieceField> and <Message> and
// handle everything else with the default template which will match any type
// having a method with signature "static const google::protobuf::Descriptor*
// descriptor()". Such a type presumably is a descendant of google::protobuf::Message.

template <>
inline const RepeatedPtrField<std::string>&
Reflection::GetRepeatedPtrFieldInternal<std::string>(
    const Message& message, const FieldDescriptor* field) const {
  return *static_cast<RepeatedPtrField<std::string>*>(
      MutableRawRepeatedString(const_cast<Message*>(&message), field, true));
}

template <>
inline RepeatedPtrField<std::string>*
Reflection::MutableRepeatedPtrFieldInternal<std::string>(
    Message* message, const FieldDescriptor* field) const {
  return static_cast<RepeatedPtrField<std::string>*>(
      MutableRawRepeatedString(message, field, true));
}


// -----

template <>
inline const RepeatedPtrField<Message>& Reflection::GetRepeatedPtrFieldInternal(
    const Message& message, const FieldDescriptor* field) const {
  return *static_cast<const RepeatedPtrField<Message>*>(GetRawRepeatedField(
      message, field, FieldDescriptor::CPPTYPE_MESSAGE, -1, nullptr));
}

template <>
inline RepeatedPtrField<Message>* Reflection::MutableRepeatedPtrFieldInternal(
    Message* message, const FieldDescriptor* field) const {
  return static_cast<RepeatedPtrField<Message>*>(MutableRawRepeatedField(
      message, field, FieldDescriptor::CPPTYPE_MESSAGE, -1, nullptr));
}

template <typename PB>
inline const RepeatedPtrField<PB>& Reflection::GetRepeatedPtrFieldInternal(
    const Message& message, const FieldDescriptor* field) const {
  return *static_cast<const RepeatedPtrField<PB>*>(
      GetRawRepeatedField(message, field, FieldDescriptor::CPPTYPE_MESSAGE, -1,
                          PB::default_instance().GetDescriptor()));
}

template <typename PB>
inline RepeatedPtrField<PB>* Reflection::MutableRepeatedPtrFieldInternal(
    Message* message, const FieldDescriptor* field) const {
  return static_cast<RepeatedPtrField<PB>*>(
      MutableRawRepeatedField(message, field, FieldDescriptor::CPPTYPE_MESSAGE,
                              -1, PB::default_instance().GetDescriptor()));
}

template <typename Type>
const Type& Reflection::DefaultRaw(const FieldDescriptor* field) const {
  return *reinterpret_cast<const Type*>(schema_.GetFieldDefault(field));
}

uint32_t Reflection::GetOneofCase(
    const Message& message, const OneofDescriptor* oneof_descriptor) const {
  GOOGLE_DCHECK(!oneof_descriptor->is_synthetic());
  return internal::GetConstRefAtOffset<uint32_t>(
      message, schema_.GetOneofCaseOffset(oneof_descriptor));
}

bool Reflection::HasOneofField(const Message& message,
                               const FieldDescriptor* field) const {
  return (GetOneofCase(message, field->containing_oneof()) ==
          static_cast<uint32_t>(field->number()));
}

template <typename Type>
const Type& Reflection::GetRaw(const Message& message,
                               const FieldDescriptor* field) const {
  GOOGLE_DCHECK(!schema_.InRealOneof(field) || HasOneofField(message, field))
      << "Field = " << field->full_name();
  return internal::GetConstRefAtOffset<Type>(message,
                                             schema_.GetFieldOffset(field));
}
}  // namespace protobuf
}  // namespace google

#include <port_undef.inc>

#endif  // GOOGLE_PROTOBUF_MESSAGE_H__