diff options
Diffstat (limited to 'NorthstarDedicatedTest/include/protobuf/parse_context.h')
-rw-r--r-- | NorthstarDedicatedTest/include/protobuf/parse_context.h | 938 |
1 files changed, 938 insertions, 0 deletions
diff --git a/NorthstarDedicatedTest/include/protobuf/parse_context.h b/NorthstarDedicatedTest/include/protobuf/parse_context.h new file mode 100644 index 00000000..7bc9b8af --- /dev/null +++ b/NorthstarDedicatedTest/include/protobuf/parse_context.h @@ -0,0 +1,938 @@ +// Protocol Buffers - Google's data interchange format +// Copyright 2008 Google Inc. All rights reserved. +// https://developers.google.com/protocol-buffers/ +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#ifndef GOOGLE_PROTOBUF_PARSE_CONTEXT_H__ +#define GOOGLE_PROTOBUF_PARSE_CONTEXT_H__ + +#include <cstdint> +#include <cstring> +#include <string> + +#include <io/coded_stream.h> +#include <io/zero_copy_stream.h> +#include <arena.h> +#include <arenastring.h> +#include <implicit_weak_message.h> +#include <inlined_string_field.h> +#include <metadata_lite.h> +#include <port.h> +#include <repeated_field.h> +#include <wire_format_lite.h> +#include <stubs/strutil.h> + +#include <port_def.inc> + + +namespace google { +namespace protobuf { + +class UnknownFieldSet; +class DescriptorPool; +class MessageFactory; + +namespace internal { + +// Template code below needs to know about the existence of these functions. +PROTOBUF_EXPORT void WriteVarint(uint32_t num, uint64_t val, std::string* s); +PROTOBUF_EXPORT void WriteLengthDelimited(uint32_t num, StringPiece val, + std::string* s); +// Inline because it is just forwarding to s->WriteVarint +inline void WriteVarint(uint32_t num, uint64_t val, UnknownFieldSet* s); +inline void WriteLengthDelimited(uint32_t num, StringPiece val, + UnknownFieldSet* s); + + +// The basic abstraction the parser is designed for is a slight modification +// of the ZeroCopyInputStream (ZCIS) abstraction. A ZCIS presents a serialized +// stream as a series of buffers that concatenate to the full stream. +// Pictorially a ZCIS presents a stream in chunks like so +// [---------------------------------------------------------------] +// [---------------------] chunk 1 +// [----------------------------] chunk 2 +// chunk 3 [--------------] +// +// Where the '-' represent the bytes which are vertically lined up with the +// bytes of the stream. The proto parser requires its input to be presented +// similarly with the extra +// property that each chunk has kSlopBytes past its end that overlaps with the +// first kSlopBytes of the next chunk, or if there is no next chunk at least its +// still valid to read those bytes. Again, pictorially, we now have +// +// [---------------------------------------------------------------] +// [-------------------....] chunk 1 +// [------------------------....] chunk 2 +// chunk 3 [------------------..**] +// chunk 4 [--****] +// Here '-' mean the bytes of the stream or chunk and '.' means bytes past the +// chunk that match up with the start of the next chunk. Above each chunk has +// 4 '.' after the chunk. In the case these 'overflow' bytes represents bytes +// past the stream, indicated by '*' above, their values are unspecified. It is +// still legal to read them (ie. should not segfault). Reading past the +// end should be detected by the user and indicated as an error. +// +// The reason for this, admittedly, unconventional invariant is to ruthlessly +// optimize the protobuf parser. Having an overlap helps in two important ways. +// Firstly it alleviates having to performing bounds checks if a piece of code +// is guaranteed to not read more than kSlopBytes. Secondly, and more +// importantly, the protobuf wireformat is such that reading a key/value pair is +// always less than 16 bytes. This removes the need to change to next buffer in +// the middle of reading primitive values. Hence there is no need to store and +// load the current position. + +class PROTOBUF_EXPORT EpsCopyInputStream { + public: + enum { kSlopBytes = 16, kMaxCordBytesToCopy = 512 }; + + explicit EpsCopyInputStream(bool enable_aliasing) + : aliasing_(enable_aliasing ? kOnPatch : kNoAliasing) {} + + void BackUp(const char* ptr) { + GOOGLE_DCHECK(ptr <= buffer_end_ + kSlopBytes); + int count; + if (next_chunk_ == buffer_) { + count = static_cast<int>(buffer_end_ + kSlopBytes - ptr); + } else { + count = size_ + static_cast<int>(buffer_end_ - ptr); + } + if (count > 0) StreamBackUp(count); + } + + // If return value is negative it's an error + PROTOBUF_NODISCARD int PushLimit(const char* ptr, int limit) { + GOOGLE_DCHECK(limit >= 0 && limit <= INT_MAX - kSlopBytes); + // This add is safe due to the invariant above, because + // ptr - buffer_end_ <= kSlopBytes. + limit += static_cast<int>(ptr - buffer_end_); + limit_end_ = buffer_end_ + (std::min)(0, limit); + auto old_limit = limit_; + limit_ = limit; + return old_limit - limit; + } + + PROTOBUF_NODISCARD bool PopLimit(int delta) { + if (PROTOBUF_PREDICT_FALSE(!EndedAtLimit())) return false; + limit_ = limit_ + delta; + // TODO(gerbens) We could remove this line and hoist the code to + // DoneFallback. Study the perf/bin-size effects. + limit_end_ = buffer_end_ + (std::min)(0, limit_); + return true; + } + + PROTOBUF_NODISCARD const char* Skip(const char* ptr, int size) { + if (size <= buffer_end_ + kSlopBytes - ptr) { + return ptr + size; + } + return SkipFallback(ptr, size); + } + PROTOBUF_NODISCARD const char* ReadString(const char* ptr, int size, + std::string* s) { + if (size <= buffer_end_ + kSlopBytes - ptr) { + s->assign(ptr, size); + return ptr + size; + } + return ReadStringFallback(ptr, size, s); + } + PROTOBUF_NODISCARD const char* AppendString(const char* ptr, int size, + std::string* s) { + if (size <= buffer_end_ + kSlopBytes - ptr) { + s->append(ptr, size); + return ptr + size; + } + return AppendStringFallback(ptr, size, s); + } + // Implemented in arenastring.cc + PROTOBUF_NODISCARD const char* ReadArenaString(const char* ptr, + ArenaStringPtr* s, + Arena* arena); + + template <typename Tag, typename T> + PROTOBUF_NODISCARD const char* ReadRepeatedFixed(const char* ptr, + Tag expected_tag, + RepeatedField<T>* out); + + template <typename T> + PROTOBUF_NODISCARD const char* ReadPackedFixed(const char* ptr, int size, + RepeatedField<T>* out); + template <typename Add> + PROTOBUF_NODISCARD const char* ReadPackedVarint(const char* ptr, Add add); + + uint32_t LastTag() const { return last_tag_minus_1_ + 1; } + bool ConsumeEndGroup(uint32_t start_tag) { + bool res = last_tag_minus_1_ == start_tag; + last_tag_minus_1_ = 0; + return res; + } + bool EndedAtLimit() const { return last_tag_minus_1_ == 0; } + bool EndedAtEndOfStream() const { return last_tag_minus_1_ == 1; } + void SetLastTag(uint32_t tag) { last_tag_minus_1_ = tag - 1; } + void SetEndOfStream() { last_tag_minus_1_ = 1; } + bool IsExceedingLimit(const char* ptr) { + return ptr > limit_end_ && + (next_chunk_ == nullptr || ptr - buffer_end_ > limit_); + } + int BytesUntilLimit(const char* ptr) const { + return limit_ + static_cast<int>(buffer_end_ - ptr); + } + // Returns true if more data is available, if false is returned one has to + // call Done for further checks. + bool DataAvailable(const char* ptr) { return ptr < limit_end_; } + + protected: + // Returns true is limit (either an explicit limit or end of stream) is + // reached. It aligns *ptr across buffer seams. + // If limit is exceeded it returns true and ptr is set to null. + bool DoneWithCheck(const char** ptr, int d) { + GOOGLE_DCHECK(*ptr); + if (PROTOBUF_PREDICT_TRUE(*ptr < limit_end_)) return false; + int overrun = static_cast<int>(*ptr - buffer_end_); + GOOGLE_DCHECK_LE(overrun, kSlopBytes); // Guaranteed by parse loop. + if (overrun == + limit_) { // No need to flip buffers if we ended on a limit. + // If we actually overrun the buffer and next_chunk_ is null. It means + // the stream ended and we passed the stream end. + if (overrun > 0 && next_chunk_ == nullptr) *ptr = nullptr; + return true; + } + auto res = DoneFallback(overrun, d); + *ptr = res.first; + return res.second; + } + + const char* InitFrom(StringPiece flat) { + overall_limit_ = 0; + if (flat.size() > kSlopBytes) { + limit_ = kSlopBytes; + limit_end_ = buffer_end_ = flat.data() + flat.size() - kSlopBytes; + next_chunk_ = buffer_; + if (aliasing_ == kOnPatch) aliasing_ = kNoDelta; + return flat.data(); + } else { + std::memcpy(buffer_, flat.data(), flat.size()); + limit_ = 0; + limit_end_ = buffer_end_ = buffer_ + flat.size(); + next_chunk_ = nullptr; + if (aliasing_ == kOnPatch) { + aliasing_ = reinterpret_cast<std::uintptr_t>(flat.data()) - + reinterpret_cast<std::uintptr_t>(buffer_); + } + return buffer_; + } + } + + const char* InitFrom(io::ZeroCopyInputStream* zcis); + + const char* InitFrom(io::ZeroCopyInputStream* zcis, int limit) { + if (limit == -1) return InitFrom(zcis); + overall_limit_ = limit; + auto res = InitFrom(zcis); + limit_ = limit - static_cast<int>(buffer_end_ - res); + limit_end_ = buffer_end_ + (std::min)(0, limit_); + return res; + } + + private: + const char* limit_end_; // buffer_end_ + min(limit_, 0) + const char* buffer_end_; + const char* next_chunk_; + int size_; + int limit_; // relative to buffer_end_; + io::ZeroCopyInputStream* zcis_ = nullptr; + char buffer_[2 * kSlopBytes] = {}; + enum { kNoAliasing = 0, kOnPatch = 1, kNoDelta = 2 }; + std::uintptr_t aliasing_ = kNoAliasing; + // This variable is used to communicate how the parse ended, in order to + // completely verify the parsed data. A wire-format parse can end because of + // one of the following conditions: + // 1) A parse can end on a pushed limit. + // 2) A parse can end on End Of Stream (EOS). + // 3) A parse can end on 0 tag (only valid for toplevel message). + // 4) A parse can end on an end-group tag. + // This variable should always be set to 0, which indicates case 1. If the + // parse terminated due to EOS (case 2), it's set to 1. In case the parse + // ended due to a terminating tag (case 3 and 4) it's set to (tag - 1). + // This var doesn't really belong in EpsCopyInputStream and should be part of + // the ParseContext, but case 2 is most easily and optimally implemented in + // DoneFallback. + uint32_t last_tag_minus_1_ = 0; + int overall_limit_ = INT_MAX; // Overall limit independent of pushed limits. + // Pretty random large number that seems like a safe allocation on most + // systems. TODO(gerbens) do we need to set this as build flag? + enum { kSafeStringSize = 50000000 }; + + // Advances to next buffer chunk returns a pointer to the same logical place + // in the stream as set by overrun. Overrun indicates the position in the slop + // region the parse was left (0 <= overrun <= kSlopBytes). Returns true if at + // limit, at which point the returned pointer maybe null if there was an + // error. The invariant of this function is that it's guaranteed that + // kSlopBytes bytes can be accessed from the returned ptr. This function might + // advance more buffers than one in the underlying ZeroCopyInputStream. + std::pair<const char*, bool> DoneFallback(int overrun, int depth); + // Advances to the next buffer, at most one call to Next() on the underlying + // ZeroCopyInputStream is made. This function DOES NOT match the returned + // pointer to where in the slop region the parse ends, hence no overrun + // parameter. This is useful for string operations where you always copy + // to the end of the buffer (including the slop region). + const char* Next(); + // overrun is the location in the slop region the stream currently is + // (0 <= overrun <= kSlopBytes). To prevent flipping to the next buffer of + // the ZeroCopyInputStream in the case the parse will end in the last + // kSlopBytes of the current buffer. depth is the current depth of nested + // groups (or negative if the use case does not need careful tracking). + inline const char* NextBuffer(int overrun, int depth); + const char* SkipFallback(const char* ptr, int size); + const char* AppendStringFallback(const char* ptr, int size, std::string* str); + const char* ReadStringFallback(const char* ptr, int size, std::string* str); + bool StreamNext(const void** data) { + bool res = zcis_->Next(data, &size_); + if (res) overall_limit_ -= size_; + return res; + } + void StreamBackUp(int count) { + zcis_->BackUp(count); + overall_limit_ += count; + } + + template <typename A> + const char* AppendSize(const char* ptr, int size, const A& append) { + int chunk_size = buffer_end_ + kSlopBytes - ptr; + do { + GOOGLE_DCHECK(size > chunk_size); + if (next_chunk_ == nullptr) return nullptr; + append(ptr, chunk_size); + ptr += chunk_size; + size -= chunk_size; + // TODO(gerbens) Next calls NextBuffer which generates buffers with + // overlap and thus incurs cost of copying the slop regions. This is not + // necessary for reading strings. We should just call Next buffers. + if (limit_ <= kSlopBytes) return nullptr; + ptr = Next(); + if (ptr == nullptr) return nullptr; // passed the limit + ptr += kSlopBytes; + chunk_size = buffer_end_ + kSlopBytes - ptr; + } while (size > chunk_size); + append(ptr, size); + return ptr + size; + } + + // AppendUntilEnd appends data until a limit (either a PushLimit or end of + // stream. Normal payloads are from length delimited fields which have an + // explicit size. Reading until limit only comes when the string takes + // the place of a protobuf, ie RawMessage/StringRawMessage, lazy fields and + // implicit weak messages. We keep these methods private and friend them. + template <typename A> + const char* AppendUntilEnd(const char* ptr, const A& append) { + if (ptr - buffer_end_ > limit_) return nullptr; + while (limit_ > kSlopBytes) { + size_t chunk_size = buffer_end_ + kSlopBytes - ptr; + append(ptr, chunk_size); + ptr = Next(); + if (ptr == nullptr) return limit_end_; + ptr += kSlopBytes; + } + auto end = buffer_end_ + limit_; + GOOGLE_DCHECK(end >= ptr); + append(ptr, end - ptr); + return end; + } + + PROTOBUF_NODISCARD const char* AppendString(const char* ptr, + std::string* str) { + return AppendUntilEnd( + ptr, [str](const char* p, ptrdiff_t s) { str->append(p, s); }); + } + friend class ImplicitWeakMessage; +}; + +// ParseContext holds all data that is global to the entire parse. Most +// importantly it contains the input stream, but also recursion depth and also +// stores the end group tag, in case a parser ended on a endgroup, to verify +// matching start/end group tags. +class PROTOBUF_EXPORT ParseContext : public EpsCopyInputStream { + public: + struct Data { + const DescriptorPool* pool = nullptr; + MessageFactory* factory = nullptr; + Arena* arena = nullptr; + }; + + template <typename... T> + ParseContext(int depth, bool aliasing, const char** start, T&&... args) + : EpsCopyInputStream(aliasing), depth_(depth) { + *start = InitFrom(std::forward<T>(args)...); + } + + void TrackCorrectEnding() { group_depth_ = 0; } + + bool Done(const char** ptr) { return DoneWithCheck(ptr, group_depth_); } + + int depth() const { return depth_; } + + Data& data() { return data_; } + const Data& data() const { return data_; } + + const char* ParseMessage(MessageLite* msg, const char* ptr); + + // This overload supports those few cases where ParseMessage is called + // on a class that is not actually a proto message. + // TODO(jorg): Eliminate this use case. + template <typename T, + typename std::enable_if<!std::is_base_of<MessageLite, T>::value, + bool>::type = true> + PROTOBUF_NODISCARD const char* ParseMessage(T* msg, const char* ptr); + + template <typename T> + PROTOBUF_NODISCARD PROTOBUF_NDEBUG_INLINE const char* ParseGroup( + T* msg, const char* ptr, uint32_t tag) { + if (--depth_ < 0) return nullptr; + group_depth_++; + ptr = msg->_InternalParse(ptr, this); + group_depth_--; + depth_++; + if (PROTOBUF_PREDICT_FALSE(!ConsumeEndGroup(tag))) return nullptr; + return ptr; + } + + private: + // Out-of-line routine to save space in ParseContext::ParseMessage<T> + // int old; + // ptr = ReadSizeAndPushLimitAndDepth(ptr, &old) + // is equivalent to: + // int size = ReadSize(&ptr); + // if (!ptr) return nullptr; + // int old = PushLimit(ptr, size); + // if (--depth_ < 0) return nullptr; + PROTOBUF_NODISCARD const char* ReadSizeAndPushLimitAndDepth(const char* ptr, + int* old_limit); + + // The context keeps an internal stack to keep track of the recursive + // part of the parse state. + // Current depth of the active parser, depth counts down. + // This is used to limit recursion depth (to prevent overflow on malicious + // data), but is also used to index in stack_ to store the current state. + int depth_; + // Unfortunately necessary for the fringe case of ending on 0 or end-group tag + // in the last kSlopBytes of a ZeroCopyInputStream chunk. + int group_depth_ = INT_MIN; + Data data_; +}; + +template <uint32_t tag> +bool ExpectTag(const char* ptr) { + if (tag < 128) { + return *ptr == static_cast<char>(tag); + } else { + static_assert(tag < 128 * 128, "We only expect tags for 1 or 2 bytes"); + char buf[2] = {static_cast<char>(tag | 0x80), static_cast<char>(tag >> 7)}; + return std::memcmp(ptr, buf, 2) == 0; + } +} + +template <int> +struct EndianHelper; + +template <> +struct EndianHelper<1> { + static uint8_t Load(const void* p) { return *static_cast<const uint8_t*>(p); } +}; + +template <> +struct EndianHelper<2> { + static uint16_t Load(const void* p) { + uint16_t tmp; + std::memcpy(&tmp, p, 2); +#ifndef PROTOBUF_LITTLE_ENDIAN + tmp = bswap_16(tmp); +#endif + return tmp; + } +}; + +template <> +struct EndianHelper<4> { + static uint32_t Load(const void* p) { + uint32_t tmp; + std::memcpy(&tmp, p, 4); +#ifndef PROTOBUF_LITTLE_ENDIAN + tmp = bswap_32(tmp); +#endif + return tmp; + } +}; + +template <> +struct EndianHelper<8> { + static uint64_t Load(const void* p) { + uint64_t tmp; + std::memcpy(&tmp, p, 8); +#ifndef PROTOBUF_LITTLE_ENDIAN + tmp = bswap_64(tmp); +#endif + return tmp; + } +}; + +template <typename T> +T UnalignedLoad(const char* p) { + auto tmp = EndianHelper<sizeof(T)>::Load(p); + T res; + memcpy(&res, &tmp, sizeof(T)); + return res; +} + +PROTOBUF_EXPORT +std::pair<const char*, uint32_t> VarintParseSlow32(const char* p, uint32_t res); +PROTOBUF_EXPORT +std::pair<const char*, uint64_t> VarintParseSlow64(const char* p, uint32_t res); + +inline const char* VarintParseSlow(const char* p, uint32_t res, uint32_t* out) { + auto tmp = VarintParseSlow32(p, res); + *out = tmp.second; + return tmp.first; +} + +inline const char* VarintParseSlow(const char* p, uint32_t res, uint64_t* out) { + auto tmp = VarintParseSlow64(p, res); + *out = tmp.second; + return tmp.first; +} + +template <typename T> +PROTOBUF_NODISCARD const char* VarintParse(const char* p, T* out) { + auto ptr = reinterpret_cast<const uint8_t*>(p); + uint32_t res = ptr[0]; + if (!(res & 0x80)) { + *out = res; + return p + 1; + } + uint32_t byte = ptr[1]; + res += (byte - 1) << 7; + if (!(byte & 0x80)) { + *out = res; + return p + 2; + } + return VarintParseSlow(p, res, out); +} + +// Used for tags, could read up to 5 bytes which must be available. +// Caller must ensure its safe to call. + +PROTOBUF_EXPORT +std::pair<const char*, uint32_t> ReadTagFallback(const char* p, uint32_t res); + +// Same as ParseVarint but only accept 5 bytes at most. +inline const char* ReadTag(const char* p, uint32_t* out, + uint32_t /*max_tag*/ = 0) { + uint32_t res = static_cast<uint8_t>(p[0]); + if (res < 128) { + *out = res; + return p + 1; + } + uint32_t second = static_cast<uint8_t>(p[1]); + res += (second - 1) << 7; + if (second < 128) { + *out = res; + return p + 2; + } + auto tmp = ReadTagFallback(p, res); + *out = tmp.second; + return tmp.first; +} + +// Decode 2 consecutive bytes of a varint and returns the value, shifted left +// by 1. It simultaneous updates *ptr to *ptr + 1 or *ptr + 2 depending if the +// first byte's continuation bit is set. +// If bit 15 of return value is set (equivalent to the continuation bits of both +// bytes being set) the varint continues, otherwise the parse is done. On x86 +// movsx eax, dil +// add edi, eax +// adc [rsi], 1 +// add eax, eax +// and eax, edi +inline uint32_t DecodeTwoBytes(const char** ptr) { + uint32_t value = UnalignedLoad<uint16_t>(*ptr); + // Sign extend the low byte continuation bit + uint32_t x = static_cast<int8_t>(value); + // This add is an amazing operation, it cancels the low byte continuation bit + // from y transferring it to the carry. Simultaneously it also shifts the 7 + // LSB left by one tightly against high byte varint bits. Hence value now + // contains the unpacked value shifted left by 1. + value += x; + // Use the carry to update the ptr appropriately. + *ptr += value < x ? 2 : 1; + return value & (x + x); // Mask out the high byte iff no continuation +} + +// More efficient varint parsing for big varints +inline const char* ParseBigVarint(const char* p, uint64_t* out) { + auto pnew = p; + auto tmp = DecodeTwoBytes(&pnew); + uint64_t res = tmp >> 1; + if (PROTOBUF_PREDICT_TRUE(static_cast<std::int16_t>(tmp) >= 0)) { + *out = res; + return pnew; + } + for (std::uint32_t i = 1; i < 5; i++) { + pnew = p + 2 * i; + tmp = DecodeTwoBytes(&pnew); + res += (static_cast<std::uint64_t>(tmp) - 2) << (14 * i - 1); + if (PROTOBUF_PREDICT_TRUE(static_cast<std::int16_t>(tmp) >= 0)) { + *out = res; + return pnew; + } + } + return nullptr; +} + +PROTOBUF_EXPORT +std::pair<const char*, int32_t> ReadSizeFallback(const char* p, uint32_t first); +// Used for tags, could read up to 5 bytes which must be available. Additionally +// it makes sure the unsigned value fits a int32_t, otherwise returns nullptr. +// Caller must ensure its safe to call. +inline uint32_t ReadSize(const char** pp) { + auto p = *pp; + uint32_t res = static_cast<uint8_t>(p[0]); + if (res < 128) { + *pp = p + 1; + return res; + } + auto x = ReadSizeFallback(p, res); + *pp = x.first; + return x.second; +} + +// Some convenience functions to simplify the generated parse loop code. +// Returning the value and updating the buffer pointer allows for nicer +// function composition. We rely on the compiler to inline this. +// Also in debug compiles having local scoped variables tend to generated +// stack frames that scale as O(num fields). +inline uint64_t ReadVarint64(const char** p) { + uint64_t tmp; + *p = VarintParse(*p, &tmp); + return tmp; +} + +inline uint32_t ReadVarint32(const char** p) { + uint32_t tmp; + *p = VarintParse(*p, &tmp); + return tmp; +} + +inline int64_t ReadVarintZigZag64(const char** p) { + uint64_t tmp; + *p = VarintParse(*p, &tmp); + return WireFormatLite::ZigZagDecode64(tmp); +} + +inline int32_t ReadVarintZigZag32(const char** p) { + uint64_t tmp; + *p = VarintParse(*p, &tmp); + return WireFormatLite::ZigZagDecode32(static_cast<uint32_t>(tmp)); +} + +template <typename T, typename std::enable_if< + !std::is_base_of<MessageLite, T>::value, bool>::type> +PROTOBUF_NODISCARD const char* ParseContext::ParseMessage(T* msg, + const char* ptr) { + int old; + ptr = ReadSizeAndPushLimitAndDepth(ptr, &old); + ptr = ptr ? msg->_InternalParse(ptr, this) : nullptr; + depth_++; + if (!PopLimit(old)) return nullptr; + return ptr; +} + +template <typename Tag, typename T> +const char* EpsCopyInputStream::ReadRepeatedFixed(const char* ptr, + Tag expected_tag, + RepeatedField<T>* out) { + do { + out->Add(UnalignedLoad<T>(ptr)); + ptr += sizeof(T); + if (PROTOBUF_PREDICT_FALSE(ptr >= limit_end_)) return ptr; + } while (UnalignedLoad<Tag>(ptr) == expected_tag && (ptr += sizeof(Tag))); + return ptr; +} + +// Add any of the following lines to debug which parse function is failing. + +#define GOOGLE_PROTOBUF_ASSERT_RETURN(predicate, ret) \ + if (!(predicate)) { \ + /* ::raise(SIGINT); */ \ + /* GOOGLE_LOG(ERROR) << "Parse failure"; */ \ + return ret; \ + } + +#define GOOGLE_PROTOBUF_PARSER_ASSERT(predicate) \ + GOOGLE_PROTOBUF_ASSERT_RETURN(predicate, nullptr) + +template <typename T> +const char* EpsCopyInputStream::ReadPackedFixed(const char* ptr, int size, + RepeatedField<T>* out) { + GOOGLE_PROTOBUF_PARSER_ASSERT(ptr); + int nbytes = buffer_end_ + kSlopBytes - ptr; + while (size > nbytes) { + int num = nbytes / sizeof(T); + int old_entries = out->size(); + out->Reserve(old_entries + num); + int block_size = num * sizeof(T); + auto dst = out->AddNAlreadyReserved(num); +#ifdef PROTOBUF_LITTLE_ENDIAN + std::memcpy(dst, ptr, block_size); +#else + for (int i = 0; i < num; i++) + dst[i] = UnalignedLoad<T>(ptr + i * sizeof(T)); +#endif + size -= block_size; + if (limit_ <= kSlopBytes) return nullptr; + ptr = Next(); + if (ptr == nullptr) return nullptr; + ptr += kSlopBytes - (nbytes - block_size); + nbytes = buffer_end_ + kSlopBytes - ptr; + } + int num = size / sizeof(T); + int old_entries = out->size(); + out->Reserve(old_entries + num); + int block_size = num * sizeof(T); + auto dst = out->AddNAlreadyReserved(num); +#ifdef PROTOBUF_LITTLE_ENDIAN + std::memcpy(dst, ptr, block_size); +#else + for (int i = 0; i < num; i++) dst[i] = UnalignedLoad<T>(ptr + i * sizeof(T)); +#endif + ptr += block_size; + if (size != block_size) return nullptr; + return ptr; +} + +template <typename Add> +const char* ReadPackedVarintArray(const char* ptr, const char* end, Add add) { + while (ptr < end) { + uint64_t varint; + ptr = VarintParse(ptr, &varint); + if (ptr == nullptr) return nullptr; + add(varint); + } + return ptr; +} + +template <typename Add> +const char* EpsCopyInputStream::ReadPackedVarint(const char* ptr, Add add) { + int size = ReadSize(&ptr); + GOOGLE_PROTOBUF_PARSER_ASSERT(ptr); + int chunk_size = buffer_end_ - ptr; + while (size > chunk_size) { + ptr = ReadPackedVarintArray(ptr, buffer_end_, add); + if (ptr == nullptr) return nullptr; + int overrun = ptr - buffer_end_; + GOOGLE_DCHECK(overrun >= 0 && overrun <= kSlopBytes); + if (size - chunk_size <= kSlopBytes) { + // The current buffer contains all the information needed, we don't need + // to flip buffers. However we must parse from a buffer with enough space + // so we are not prone to a buffer overflow. + char buf[kSlopBytes + 10] = {}; + std::memcpy(buf, buffer_end_, kSlopBytes); + GOOGLE_CHECK_LE(size - chunk_size, kSlopBytes); + auto end = buf + (size - chunk_size); + auto res = ReadPackedVarintArray(buf + overrun, end, add); + if (res == nullptr || res != end) return nullptr; + return buffer_end_ + (res - buf); + } + size -= overrun + chunk_size; + GOOGLE_DCHECK_GT(size, 0); + // We must flip buffers + if (limit_ <= kSlopBytes) return nullptr; + ptr = Next(); + if (ptr == nullptr) return nullptr; + ptr += overrun; + chunk_size = buffer_end_ - ptr; + } + auto end = ptr + size; + ptr = ReadPackedVarintArray(ptr, end, add); + return end == ptr ? ptr : nullptr; +} + +// Helper for verification of utf8 +PROTOBUF_EXPORT +bool VerifyUTF8(StringPiece s, const char* field_name); + +inline bool VerifyUTF8(const std::string* s, const char* field_name) { + return VerifyUTF8(*s, field_name); +} + +// All the string parsers with or without UTF checking and for all CTypes. +PROTOBUF_EXPORT PROTOBUF_NODISCARD const char* InlineGreedyStringParser( + std::string* s, const char* ptr, ParseContext* ctx); + + +template <typename T> +PROTOBUF_NODISCARD const char* FieldParser(uint64_t tag, T& field_parser, + const char* ptr, ParseContext* ctx) { + uint32_t number = tag >> 3; + GOOGLE_PROTOBUF_PARSER_ASSERT(number != 0); + using WireType = internal::WireFormatLite::WireType; + switch (tag & 7) { + case WireType::WIRETYPE_VARINT: { + uint64_t value; + ptr = VarintParse(ptr, &value); + GOOGLE_PROTOBUF_PARSER_ASSERT(ptr); + field_parser.AddVarint(number, value); + break; + } + case WireType::WIRETYPE_FIXED64: { + uint64_t value = UnalignedLoad<uint64_t>(ptr); + ptr += 8; + field_parser.AddFixed64(number, value); + break; + } + case WireType::WIRETYPE_LENGTH_DELIMITED: { + ptr = field_parser.ParseLengthDelimited(number, ptr, ctx); + GOOGLE_PROTOBUF_PARSER_ASSERT(ptr); + break; + } + case WireType::WIRETYPE_START_GROUP: { + ptr = field_parser.ParseGroup(number, ptr, ctx); + GOOGLE_PROTOBUF_PARSER_ASSERT(ptr); + break; + } + case WireType::WIRETYPE_END_GROUP: { + GOOGLE_LOG(FATAL) << "Can't happen"; + break; + } + case WireType::WIRETYPE_FIXED32: { + uint32_t value = UnalignedLoad<uint32_t>(ptr); + ptr += 4; + field_parser.AddFixed32(number, value); + break; + } + default: + return nullptr; + } + return ptr; +} + +template <typename T> +PROTOBUF_NODISCARD const char* WireFormatParser(T& field_parser, + const char* ptr, + ParseContext* ctx) { + while (!ctx->Done(&ptr)) { + uint32_t tag; + ptr = ReadTag(ptr, &tag); + GOOGLE_PROTOBUF_PARSER_ASSERT(ptr != nullptr); + if (tag == 0 || (tag & 7) == 4) { + ctx->SetLastTag(tag); + return ptr; + } + ptr = FieldParser(tag, field_parser, ptr, ctx); + GOOGLE_PROTOBUF_PARSER_ASSERT(ptr != nullptr); + } + return ptr; +} + +// The packed parsers parse repeated numeric primitives directly into the +// corresponding field + +// These are packed varints +PROTOBUF_EXPORT PROTOBUF_NODISCARD const char* PackedInt32Parser( + void* object, const char* ptr, ParseContext* ctx); +PROTOBUF_EXPORT PROTOBUF_NODISCARD const char* PackedUInt32Parser( + void* object, const char* ptr, ParseContext* ctx); +PROTOBUF_EXPORT PROTOBUF_NODISCARD const char* PackedInt64Parser( + void* object, const char* ptr, ParseContext* ctx); +PROTOBUF_EXPORT PROTOBUF_NODISCARD const char* PackedUInt64Parser( + void* object, const char* ptr, ParseContext* ctx); +PROTOBUF_EXPORT PROTOBUF_NODISCARD const char* PackedSInt32Parser( + void* object, const char* ptr, ParseContext* ctx); +PROTOBUF_EXPORT PROTOBUF_NODISCARD const char* PackedSInt64Parser( + void* object, const char* ptr, ParseContext* ctx); +PROTOBUF_EXPORT PROTOBUF_NODISCARD const char* PackedEnumParser( + void* object, const char* ptr, ParseContext* ctx); + +template <typename T> +PROTOBUF_NODISCARD const char* PackedEnumParser(void* object, const char* ptr, + ParseContext* ctx, + bool (*is_valid)(int), + InternalMetadata* metadata, + int field_num) { + return ctx->ReadPackedVarint( + ptr, [object, is_valid, metadata, field_num](uint64_t val) { + if (is_valid(val)) { + static_cast<RepeatedField<int>*>(object)->Add(val); + } else { + WriteVarint(field_num, val, metadata->mutable_unknown_fields<T>()); + } + }); +} + +template <typename T> +PROTOBUF_NODISCARD const char* PackedEnumParserArg( + void* object, const char* ptr, ParseContext* ctx, + bool (*is_valid)(const void*, int), const void* data, + InternalMetadata* metadata, int field_num) { + return ctx->ReadPackedVarint( + ptr, [object, is_valid, data, metadata, field_num](uint64_t val) { + if (is_valid(data, val)) { + static_cast<RepeatedField<int>*>(object)->Add(val); + } else { + WriteVarint(field_num, val, metadata->mutable_unknown_fields<T>()); + } + }); +} + +PROTOBUF_EXPORT PROTOBUF_NODISCARD const char* PackedBoolParser( + void* object, const char* ptr, ParseContext* ctx); +PROTOBUF_EXPORT PROTOBUF_NODISCARD const char* PackedFixed32Parser( + void* object, const char* ptr, ParseContext* ctx); +PROTOBUF_EXPORT PROTOBUF_NODISCARD const char* PackedSFixed32Parser( + void* object, const char* ptr, ParseContext* ctx); +PROTOBUF_EXPORT PROTOBUF_NODISCARD const char* PackedFixed64Parser( + void* object, const char* ptr, ParseContext* ctx); +PROTOBUF_EXPORT PROTOBUF_NODISCARD const char* PackedSFixed64Parser( + void* object, const char* ptr, ParseContext* ctx); +PROTOBUF_EXPORT PROTOBUF_NODISCARD const char* PackedFloatParser( + void* object, const char* ptr, ParseContext* ctx); +PROTOBUF_EXPORT PROTOBUF_NODISCARD const char* PackedDoubleParser( + void* object, const char* ptr, ParseContext* ctx); + +// This is the only recursive parser. +PROTOBUF_EXPORT PROTOBUF_NODISCARD const char* UnknownGroupLiteParse( + std::string* unknown, const char* ptr, ParseContext* ctx); +// This is a helper to for the UnknownGroupLiteParse but is actually also +// useful in the generated code. It uses overload on std::string* vs +// UnknownFieldSet* to make the generated code isomorphic between full and lite. +PROTOBUF_EXPORT PROTOBUF_NODISCARD const char* UnknownFieldParse( + uint32_t tag, std::string* unknown, const char* ptr, ParseContext* ctx); + +} // namespace internal +} // namespace protobuf +} // namespace google + +#include <port_undef.inc> + +#endif // GOOGLE_PROTOBUF_PARSE_CONTEXT_H__ |