aboutsummaryrefslogtreecommitdiff
path: root/NorthstarDedicatedTest/include/protobuf/dynamic_message.cc
diff options
context:
space:
mode:
Diffstat (limited to 'NorthstarDedicatedTest/include/protobuf/dynamic_message.cc')
-rw-r--r--NorthstarDedicatedTest/include/protobuf/dynamic_message.cc859
1 files changed, 859 insertions, 0 deletions
diff --git a/NorthstarDedicatedTest/include/protobuf/dynamic_message.cc b/NorthstarDedicatedTest/include/protobuf/dynamic_message.cc
new file mode 100644
index 00000000..3cdc004e
--- /dev/null
+++ b/NorthstarDedicatedTest/include/protobuf/dynamic_message.cc
@@ -0,0 +1,859 @@
+// Protocol Buffers - Google's data interchange format
+// Copyright 2008 Google Inc. All rights reserved.
+// https://developers.google.com/protocol-buffers/
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+// Author: kenton@google.com (Kenton Varda)
+// Based on original Protocol Buffers design by
+// Sanjay Ghemawat, Jeff Dean, and others.
+//
+// DynamicMessage is implemented by constructing a data structure which
+// has roughly the same memory layout as a generated message would have.
+// Then, we use Reflection to implement our reflection interface. All
+// the other operations we need to implement (e.g. parsing, copying,
+// etc.) are already implemented in terms of Reflection, so the rest is
+// easy.
+//
+// The up side of this strategy is that it's very efficient. We don't
+// need to use hash_maps or generic representations of fields. The
+// down side is that this is a low-level memory management hack which
+// can be tricky to get right.
+//
+// As mentioned in the header, we only expose a DynamicMessageFactory
+// publicly, not the DynamicMessage class itself. This is because
+// GenericMessageReflection wants to have a pointer to a "default"
+// copy of the class, with all fields initialized to their default
+// values. We only want to construct one of these per message type,
+// so DynamicMessageFactory stores a cache of default messages for
+// each type it sees (each unique Descriptor pointer). The code
+// refers to the "default" copy of the class as the "prototype".
+//
+// Note on memory allocation: This module often calls "operator new()"
+// to allocate untyped memory, rather than calling something like
+// "new uint8_t[]". This is because "operator new()" means "Give me some
+// space which I can use as I please." while "new uint8_t[]" means "Give
+// me an array of 8-bit integers.". In practice, the later may return
+// a pointer that is not aligned correctly for general use. I believe
+// Item 8 of "More Effective C++" discusses this in more detail, though
+// I don't have the book on me right now so I'm not sure.
+
+#include <dynamic_message.h>
+
+#include <algorithm>
+#include <cstddef>
+#include <memory>
+#include <new>
+#include <unordered_map>
+
+#include <descriptor.pb.h>
+#include <descriptor.h>
+#include <generated_message_reflection.h>
+#include <generated_message_util.h>
+#include <unknown_field_set.h>
+#include <stubs/hash.h>
+#include <arenastring.h>
+#include <extension_set.h>
+#include <map_field.h>
+#include <map_field_inl.h>
+#include <map_type_handler.h>
+#include <reflection_ops.h>
+#include <repeated_field.h>
+#include <wire_format.h>
+
+#include <port_def.inc> // NOLINT
+
+namespace google {
+namespace protobuf {
+
+using internal::DynamicMapField;
+using internal::ExtensionSet;
+using internal::MapField;
+
+
+using internal::ArenaStringPtr;
+
+// ===================================================================
+// Some helper tables and functions...
+
+class DynamicMessageReflectionHelper {
+ public:
+ static bool IsLazyField(const Reflection* reflection,
+ const FieldDescriptor* field) {
+ return reflection->IsLazyField(field);
+ }
+};
+
+namespace {
+
+bool IsMapFieldInApi(const FieldDescriptor* field) { return field->is_map(); }
+
+// Sync with helpers.h.
+inline bool HasHasbit(const FieldDescriptor* field) {
+ // This predicate includes proto3 message fields only if they have "optional".
+ // Foo submsg1 = 1; // HasHasbit() == false
+ // optional Foo submsg2 = 2; // HasHasbit() == true
+ // This is slightly odd, as adding "optional" to a singular proto3 field does
+ // not change the semantics or API. However whenever any field in a message
+ // has a hasbit, it forces reflection to include hasbit offsets for *all*
+ // fields, even if almost all of them are set to -1 (no hasbit). So to avoid
+ // causing a sudden size regression for ~all proto3 messages, we give proto3
+ // message fields a hasbit only if "optional" is present. If the user is
+ // explicitly writing "optional", it is likely they are writing it on
+ // primitive fields also.
+ return (field->has_optional_keyword() || field->is_required()) &&
+ !field->options().weak();
+}
+
+inline bool InRealOneof(const FieldDescriptor* field) {
+ return field->containing_oneof() &&
+ !field->containing_oneof()->is_synthetic();
+}
+
+// Compute the byte size of the in-memory representation of the field.
+int FieldSpaceUsed(const FieldDescriptor* field) {
+ typedef FieldDescriptor FD; // avoid line wrapping
+ if (field->label() == FD::LABEL_REPEATED) {
+ switch (field->cpp_type()) {
+ case FD::CPPTYPE_INT32:
+ return sizeof(RepeatedField<int32_t>);
+ case FD::CPPTYPE_INT64:
+ return sizeof(RepeatedField<int64_t>);
+ case FD::CPPTYPE_UINT32:
+ return sizeof(RepeatedField<uint32_t>);
+ case FD::CPPTYPE_UINT64:
+ return sizeof(RepeatedField<uint64_t>);
+ case FD::CPPTYPE_DOUBLE:
+ return sizeof(RepeatedField<double>);
+ case FD::CPPTYPE_FLOAT:
+ return sizeof(RepeatedField<float>);
+ case FD::CPPTYPE_BOOL:
+ return sizeof(RepeatedField<bool>);
+ case FD::CPPTYPE_ENUM:
+ return sizeof(RepeatedField<int>);
+ case FD::CPPTYPE_MESSAGE:
+ if (IsMapFieldInApi(field)) {
+ return sizeof(DynamicMapField);
+ } else {
+ return sizeof(RepeatedPtrField<Message>);
+ }
+
+ case FD::CPPTYPE_STRING:
+ switch (field->options().ctype()) {
+ default: // TODO(kenton): Support other string reps.
+ case FieldOptions::STRING:
+ return sizeof(RepeatedPtrField<std::string>);
+ }
+ break;
+ }
+ } else {
+ switch (field->cpp_type()) {
+ case FD::CPPTYPE_INT32:
+ return sizeof(int32_t);
+ case FD::CPPTYPE_INT64:
+ return sizeof(int64_t);
+ case FD::CPPTYPE_UINT32:
+ return sizeof(uint32_t);
+ case FD::CPPTYPE_UINT64:
+ return sizeof(uint64_t);
+ case FD::CPPTYPE_DOUBLE:
+ return sizeof(double);
+ case FD::CPPTYPE_FLOAT:
+ return sizeof(float);
+ case FD::CPPTYPE_BOOL:
+ return sizeof(bool);
+ case FD::CPPTYPE_ENUM:
+ return sizeof(int);
+
+ case FD::CPPTYPE_MESSAGE:
+ return sizeof(Message*);
+
+ case FD::CPPTYPE_STRING:
+ switch (field->options().ctype()) {
+ default: // TODO(kenton): Support other string reps.
+ case FieldOptions::STRING:
+ return sizeof(ArenaStringPtr);
+ }
+ break;
+ }
+ }
+
+ GOOGLE_LOG(DFATAL) << "Can't get here.";
+ return 0;
+}
+
+inline int DivideRoundingUp(int i, int j) { return (i + (j - 1)) / j; }
+
+static const int kSafeAlignment = sizeof(uint64_t);
+static const int kMaxOneofUnionSize = sizeof(uint64_t);
+
+inline int AlignTo(int offset, int alignment) {
+ return DivideRoundingUp(offset, alignment) * alignment;
+}
+
+// Rounds the given byte offset up to the next offset aligned such that any
+// type may be stored at it.
+inline int AlignOffset(int offset) { return AlignTo(offset, kSafeAlignment); }
+
+#define bitsizeof(T) (sizeof(T) * 8)
+
+} // namespace
+
+// ===================================================================
+
+class DynamicMessage : public Message {
+ public:
+ explicit DynamicMessage(const DynamicMessageFactory::TypeInfo* type_info);
+
+ // This should only be used by GetPrototypeNoLock() to avoid dead lock.
+ DynamicMessage(DynamicMessageFactory::TypeInfo* type_info, bool lock_factory);
+
+ ~DynamicMessage();
+
+ // Called on the prototype after construction to initialize message fields.
+ // Cross linking the default instances allows for fast reflection access of
+ // unset message fields. Without it we would have to go to the MessageFactory
+ // to get the prototype, which is a much more expensive operation.
+ //
+ // Generated messages do not cross-link to avoid dynamic initialization of the
+ // global instances.
+ // Instead, they keep the default instances in the FieldDescriptor objects.
+ void CrossLinkPrototypes();
+
+ // implements Message ----------------------------------------------
+
+ Message* New(Arena* arena) const override;
+
+ int GetCachedSize() const override;
+ void SetCachedSize(int size) const override;
+
+ Metadata GetMetadata() const override;
+
+#if defined(__cpp_lib_destroying_delete) && defined(__cpp_sized_deallocation)
+ static void operator delete(DynamicMessage* msg, std::destroying_delete_t);
+#else
+ // We actually allocate more memory than sizeof(*this) when this
+ // class's memory is allocated via the global operator new. Thus, we need to
+ // manually call the global operator delete. Calling the destructor is taken
+ // care of for us. This makes DynamicMessage compatible with -fsized-delete.
+ // It doesn't work for MSVC though.
+#ifndef _MSC_VER
+ static void operator delete(void* ptr) { ::operator delete(ptr); }
+#endif // !_MSC_VER
+#endif
+
+ private:
+ DynamicMessage(const DynamicMessageFactory::TypeInfo* type_info,
+ Arena* arena);
+
+ void SharedCtor(bool lock_factory);
+
+ // Needed to get the offset of the internal metadata member.
+ friend class DynamicMessageFactory;
+
+ bool is_prototype() const;
+
+ inline int OffsetValue(int v, FieldDescriptor::Type type) const {
+ if (type == FieldDescriptor::TYPE_MESSAGE) {
+ return v & ~0x1u;
+ }
+ return v;
+ }
+
+ inline void* OffsetToPointer(int offset) {
+ return reinterpret_cast<uint8_t*>(this) + offset;
+ }
+ inline const void* OffsetToPointer(int offset) const {
+ return reinterpret_cast<const uint8_t*>(this) + offset;
+ }
+
+ void* MutableRaw(int i);
+ void* MutableExtensionsRaw();
+ void* MutableWeakFieldMapRaw();
+ void* MutableOneofCaseRaw(int i);
+ void* MutableOneofFieldRaw(const FieldDescriptor* f);
+
+ const DynamicMessageFactory::TypeInfo* type_info_;
+ mutable std::atomic<int> cached_byte_size_;
+ GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(DynamicMessage);
+};
+
+struct DynamicMessageFactory::TypeInfo {
+ int size;
+ int has_bits_offset;
+ int oneof_case_offset;
+ int extensions_offset;
+
+ // Not owned by the TypeInfo.
+ DynamicMessageFactory* factory; // The factory that created this object.
+ const DescriptorPool* pool; // The factory's DescriptorPool.
+ const Descriptor* type; // Type of this DynamicMessage.
+
+ // Warning: The order in which the following pointers are defined is
+ // important (the prototype must be deleted *before* the offsets).
+ std::unique_ptr<uint32_t[]> offsets;
+ std::unique_ptr<uint32_t[]> has_bits_indices;
+ std::unique_ptr<const Reflection> reflection;
+ // Don't use a unique_ptr to hold the prototype: the destructor for
+ // DynamicMessage needs to know whether it is the prototype, and does so by
+ // looking back at this field. This would assume details about the
+ // implementation of unique_ptr.
+ const DynamicMessage* prototype;
+ int weak_field_map_offset; // The offset for the weak_field_map;
+
+ TypeInfo() : prototype(nullptr) {}
+
+ ~TypeInfo() { delete prototype; }
+};
+
+DynamicMessage::DynamicMessage(const DynamicMessageFactory::TypeInfo* type_info)
+ : type_info_(type_info), cached_byte_size_(0) {
+ SharedCtor(true);
+}
+
+DynamicMessage::DynamicMessage(const DynamicMessageFactory::TypeInfo* type_info,
+ Arena* arena)
+ : Message(arena), type_info_(type_info), cached_byte_size_(0) {
+ SharedCtor(true);
+}
+
+DynamicMessage::DynamicMessage(DynamicMessageFactory::TypeInfo* type_info,
+ bool lock_factory)
+ : type_info_(type_info), cached_byte_size_(0) {
+ // The prototype in type_info has to be set before creating the prototype
+ // instance on memory. e.g., message Foo { map<int32_t, Foo> a = 1; }. When
+ // creating prototype for Foo, prototype of the map entry will also be
+ // created, which needs the address of the prototype of Foo (the value in
+ // map). To break the cyclic dependency, we have to assign the address of
+ // prototype into type_info first.
+ type_info->prototype = this;
+ SharedCtor(lock_factory);
+}
+
+inline void* DynamicMessage::MutableRaw(int i) {
+ return OffsetToPointer(
+ OffsetValue(type_info_->offsets[i], type_info_->type->field(i)->type()));
+}
+void* DynamicMessage::MutableExtensionsRaw() {
+ return OffsetToPointer(type_info_->extensions_offset);
+}
+void* DynamicMessage::MutableWeakFieldMapRaw() {
+ return OffsetToPointer(type_info_->weak_field_map_offset);
+}
+void* DynamicMessage::MutableOneofCaseRaw(int i) {
+ return OffsetToPointer(type_info_->oneof_case_offset + sizeof(uint32_t) * i);
+}
+void* DynamicMessage::MutableOneofFieldRaw(const FieldDescriptor* f) {
+ return OffsetToPointer(
+ OffsetValue(type_info_->offsets[type_info_->type->field_count() +
+ f->containing_oneof()->index()],
+ f->type()));
+}
+
+void DynamicMessage::SharedCtor(bool lock_factory) {
+ // We need to call constructors for various fields manually and set
+ // default values where appropriate. We use placement new to call
+ // constructors. If you haven't heard of placement new, I suggest Googling
+ // it now. We use placement new even for primitive types that don't have
+ // constructors for consistency. (In theory, placement new should be used
+ // any time you are trying to convert untyped memory to typed memory, though
+ // in practice that's not strictly necessary for types that don't have a
+ // constructor.)
+
+ const Descriptor* descriptor = type_info_->type;
+ // Initialize oneof cases.
+ int oneof_count = 0;
+ for (int i = 0; i < descriptor->oneof_decl_count(); ++i) {
+ if (descriptor->oneof_decl(i)->is_synthetic()) continue;
+ new (MutableOneofCaseRaw(oneof_count++)) uint32_t{0};
+ }
+
+ if (type_info_->extensions_offset != -1) {
+ new (MutableExtensionsRaw()) ExtensionSet(GetArenaForAllocation());
+ }
+ for (int i = 0; i < descriptor->field_count(); i++) {
+ const FieldDescriptor* field = descriptor->field(i);
+ void* field_ptr = MutableRaw(i);
+ if (InRealOneof(field)) {
+ continue;
+ }
+ switch (field->cpp_type()) {
+#define HANDLE_TYPE(CPPTYPE, TYPE) \
+ case FieldDescriptor::CPPTYPE_##CPPTYPE: \
+ if (!field->is_repeated()) { \
+ new (field_ptr) TYPE(field->default_value_##TYPE()); \
+ } else { \
+ new (field_ptr) RepeatedField<TYPE>(GetArenaForAllocation()); \
+ } \
+ break;
+
+ HANDLE_TYPE(INT32, int32_t);
+ HANDLE_TYPE(INT64, int64_t);
+ HANDLE_TYPE(UINT32, uint32_t);
+ HANDLE_TYPE(UINT64, uint64_t);
+ HANDLE_TYPE(DOUBLE, double);
+ HANDLE_TYPE(FLOAT, float);
+ HANDLE_TYPE(BOOL, bool);
+#undef HANDLE_TYPE
+
+ case FieldDescriptor::CPPTYPE_ENUM:
+ if (!field->is_repeated()) {
+ new (field_ptr) int{field->default_value_enum()->number()};
+ } else {
+ new (field_ptr) RepeatedField<int>(GetArenaForAllocation());
+ }
+ break;
+
+ case FieldDescriptor::CPPTYPE_STRING:
+ switch (field->options().ctype()) {
+ default: // TODO(kenton): Support other string reps.
+ case FieldOptions::STRING:
+ if (!field->is_repeated()) {
+ const std::string* default_value =
+ field->default_value_string().empty()
+ ? &internal::GetEmptyStringAlreadyInited()
+ : nullptr;
+ ArenaStringPtr* asp = new (field_ptr) ArenaStringPtr();
+ asp->UnsafeSetDefault(default_value);
+ } else {
+ new (field_ptr)
+ RepeatedPtrField<std::string>(GetArenaForAllocation());
+ }
+ break;
+ }
+ break;
+
+ case FieldDescriptor::CPPTYPE_MESSAGE: {
+ if (!field->is_repeated()) {
+ new (field_ptr) Message*(nullptr);
+ } else {
+ if (IsMapFieldInApi(field)) {
+ // We need to lock in most cases to avoid data racing. Only not lock
+ // when the constructor is called inside GetPrototype(), in which
+ // case we have already locked the factory.
+ if (lock_factory) {
+ if (GetArenaForAllocation() != nullptr) {
+ new (field_ptr) DynamicMapField(
+ type_info_->factory->GetPrototype(field->message_type()),
+ GetArenaForAllocation());
+ if (GetOwningArena() != nullptr) {
+ // Needs to destroy the mutex member.
+ GetOwningArena()->OwnDestructor(
+ static_cast<DynamicMapField*>(field_ptr));
+ }
+ } else {
+ new (field_ptr) DynamicMapField(
+ type_info_->factory->GetPrototype(field->message_type()));
+ }
+ } else {
+ if (GetArenaForAllocation() != nullptr) {
+ new (field_ptr)
+ DynamicMapField(type_info_->factory->GetPrototypeNoLock(
+ field->message_type()),
+ GetArenaForAllocation());
+ if (GetOwningArena() != nullptr) {
+ // Needs to destroy the mutex member.
+ GetOwningArena()->OwnDestructor(
+ static_cast<DynamicMapField*>(field_ptr));
+ }
+ } else {
+ new (field_ptr)
+ DynamicMapField(type_info_->factory->GetPrototypeNoLock(
+ field->message_type()));
+ }
+ }
+ } else {
+ new (field_ptr) RepeatedPtrField<Message>(GetArenaForAllocation());
+ }
+ }
+ break;
+ }
+ }
+ }
+}
+
+bool DynamicMessage::is_prototype() const {
+ return type_info_->prototype == this ||
+ // If type_info_->prototype is nullptr, then we must be constructing
+ // the prototype now, which means we must be the prototype.
+ type_info_->prototype == nullptr;
+}
+
+#if defined(__cpp_lib_destroying_delete) && defined(__cpp_sized_deallocation)
+void DynamicMessage::operator delete(DynamicMessage* msg,
+ std::destroying_delete_t) {
+ const size_t size = msg->type_info_->size;
+ msg->~DynamicMessage();
+ ::operator delete(msg, size);
+}
+#endif
+
+DynamicMessage::~DynamicMessage() {
+ const Descriptor* descriptor = type_info_->type;
+
+ _internal_metadata_.Delete<UnknownFieldSet>();
+
+ if (type_info_->extensions_offset != -1) {
+ reinterpret_cast<ExtensionSet*>(MutableExtensionsRaw())->~ExtensionSet();
+ }
+
+ // We need to manually run the destructors for repeated fields and strings,
+ // just as we ran their constructors in the DynamicMessage constructor.
+ // We also need to manually delete oneof fields if it is set and is string
+ // or message.
+ // Additionally, if any singular embedded messages have been allocated, we
+ // need to delete them, UNLESS we are the prototype message of this type,
+ // in which case any embedded messages are other prototypes and shouldn't
+ // be touched.
+ for (int i = 0; i < descriptor->field_count(); i++) {
+ const FieldDescriptor* field = descriptor->field(i);
+ if (InRealOneof(field)) {
+ void* field_ptr = MutableOneofCaseRaw(field->containing_oneof()->index());
+ if (*(reinterpret_cast<const int32_t*>(field_ptr)) == field->number()) {
+ field_ptr = MutableOneofFieldRaw(field);
+ if (field->cpp_type() == FieldDescriptor::CPPTYPE_STRING) {
+ switch (field->options().ctype()) {
+ default:
+ case FieldOptions::STRING: {
+ // Oneof string fields are never set as a default instance.
+ // We just need to pass some arbitrary default string to make it
+ // work. This allows us to not have the real default accessible
+ // from reflection.
+ const std::string* default_value = nullptr;
+ reinterpret_cast<ArenaStringPtr*>(field_ptr)->Destroy(
+ default_value, nullptr);
+ break;
+ }
+ }
+ } else if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
+ delete *reinterpret_cast<Message**>(field_ptr);
+ }
+ }
+ continue;
+ }
+ void* field_ptr = MutableRaw(i);
+
+ if (field->is_repeated()) {
+ switch (field->cpp_type()) {
+#define HANDLE_TYPE(UPPERCASE, LOWERCASE) \
+ case FieldDescriptor::CPPTYPE_##UPPERCASE: \
+ reinterpret_cast<RepeatedField<LOWERCASE>*>(field_ptr) \
+ ->~RepeatedField<LOWERCASE>(); \
+ break
+
+ HANDLE_TYPE(INT32, int32_t);
+ HANDLE_TYPE(INT64, int64_t);
+ HANDLE_TYPE(UINT32, uint32_t);
+ HANDLE_TYPE(UINT64, uint64_t);
+ HANDLE_TYPE(DOUBLE, double);
+ HANDLE_TYPE(FLOAT, float);
+ HANDLE_TYPE(BOOL, bool);
+ HANDLE_TYPE(ENUM, int);
+#undef HANDLE_TYPE
+
+ case FieldDescriptor::CPPTYPE_STRING:
+ switch (field->options().ctype()) {
+ default: // TODO(kenton): Support other string reps.
+ case FieldOptions::STRING:
+ reinterpret_cast<RepeatedPtrField<std::string>*>(field_ptr)
+ ->~RepeatedPtrField<std::string>();
+ break;
+ }
+ break;
+
+ case FieldDescriptor::CPPTYPE_MESSAGE:
+ if (IsMapFieldInApi(field)) {
+ reinterpret_cast<DynamicMapField*>(field_ptr)->~DynamicMapField();
+ } else {
+ reinterpret_cast<RepeatedPtrField<Message>*>(field_ptr)
+ ->~RepeatedPtrField<Message>();
+ }
+ break;
+ }
+
+ } else if (field->cpp_type() == FieldDescriptor::CPPTYPE_STRING) {
+ switch (field->options().ctype()) {
+ default: // TODO(kenton): Support other string reps.
+ case FieldOptions::STRING: {
+ const std::string* default_value =
+ reinterpret_cast<const ArenaStringPtr*>(
+ type_info_->prototype->OffsetToPointer(
+ type_info_->offsets[i]))
+ ->GetPointer();
+ reinterpret_cast<ArenaStringPtr*>(field_ptr)->Destroy(default_value,
+ nullptr);
+ break;
+ }
+ }
+ } else if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
+ if (!is_prototype()) {
+ Message* message = *reinterpret_cast<Message**>(field_ptr);
+ if (message != nullptr) {
+ delete message;
+ }
+ }
+ }
+ }
+}
+
+void DynamicMessage::CrossLinkPrototypes() {
+ // This should only be called on the prototype message.
+ GOOGLE_CHECK(is_prototype());
+
+ DynamicMessageFactory* factory = type_info_->factory;
+ const Descriptor* descriptor = type_info_->type;
+
+ // Cross-link default messages.
+ for (int i = 0; i < descriptor->field_count(); i++) {
+ const FieldDescriptor* field = descriptor->field(i);
+ if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE &&
+ !field->options().weak() && !InRealOneof(field) &&
+ !field->is_repeated()) {
+ void* field_ptr = MutableRaw(i);
+ // For fields with message types, we need to cross-link with the
+ // prototype for the field's type.
+ // For singular fields, the field is just a pointer which should
+ // point to the prototype.
+ *reinterpret_cast<const Message**>(field_ptr) =
+ factory->GetPrototypeNoLock(field->message_type());
+ }
+ }
+}
+
+Message* DynamicMessage::New(Arena* arena) const {
+ if (arena != nullptr) {
+ void* new_base = Arena::CreateArray<char>(arena, type_info_->size);
+ memset(new_base, 0, type_info_->size);
+ return new (new_base) DynamicMessage(type_info_, arena);
+ } else {
+ void* new_base = operator new(type_info_->size);
+ memset(new_base, 0, type_info_->size);
+ return new (new_base) DynamicMessage(type_info_);
+ }
+}
+
+int DynamicMessage::GetCachedSize() const {
+ return cached_byte_size_.load(std::memory_order_relaxed);
+}
+
+void DynamicMessage::SetCachedSize(int size) const {
+ cached_byte_size_.store(size, std::memory_order_relaxed);
+}
+
+Metadata DynamicMessage::GetMetadata() const {
+ Metadata metadata;
+ metadata.descriptor = type_info_->type;
+ metadata.reflection = type_info_->reflection.get();
+ return metadata;
+}
+
+// ===================================================================
+
+DynamicMessageFactory::DynamicMessageFactory()
+ : pool_(nullptr), delegate_to_generated_factory_(false) {}
+
+DynamicMessageFactory::DynamicMessageFactory(const DescriptorPool* pool)
+ : pool_(pool), delegate_to_generated_factory_(false) {}
+
+DynamicMessageFactory::~DynamicMessageFactory() {
+ for (auto iter = prototypes_.begin(); iter != prototypes_.end(); ++iter) {
+ delete iter->second;
+ }
+}
+
+const Message* DynamicMessageFactory::GetPrototype(const Descriptor* type) {
+ MutexLock lock(&prototypes_mutex_);
+ return GetPrototypeNoLock(type);
+}
+
+const Message* DynamicMessageFactory::GetPrototypeNoLock(
+ const Descriptor* type) {
+ if (delegate_to_generated_factory_ &&
+ type->file()->pool() == DescriptorPool::generated_pool()) {
+ return MessageFactory::generated_factory()->GetPrototype(type);
+ }
+
+ const TypeInfo** target = &prototypes_[type];
+ if (*target != nullptr) {
+ // Already exists.
+ return (*target)->prototype;
+ }
+
+ TypeInfo* type_info = new TypeInfo;
+ *target = type_info;
+
+ type_info->type = type;
+ type_info->pool = (pool_ == nullptr) ? type->file()->pool() : pool_;
+ type_info->factory = this;
+
+ // We need to construct all the structures passed to Reflection's constructor.
+ // This includes:
+ // - A block of memory that contains space for all the message's fields.
+ // - An array of integers indicating the byte offset of each field within
+ // this block.
+ // - A big bitfield containing a bit for each field indicating whether
+ // or not that field is set.
+ int real_oneof_count = 0;
+ for (int i = 0; i < type->oneof_decl_count(); i++) {
+ if (!type->oneof_decl(i)->is_synthetic()) {
+ real_oneof_count++;
+ }
+ }
+
+ // Compute size and offsets.
+ uint32_t* offsets = new uint32_t[type->field_count() + real_oneof_count];
+ type_info->offsets.reset(offsets);
+
+ // Decide all field offsets by packing in order.
+ // We place the DynamicMessage object itself at the beginning of the allocated
+ // space.
+ int size = sizeof(DynamicMessage);
+ size = AlignOffset(size);
+
+ // Next the has_bits, which is an array of uint32s.
+ type_info->has_bits_offset = -1;
+ int max_hasbit = 0;
+ for (int i = 0; i < type->field_count(); i++) {
+ if (HasHasbit(type->field(i))) {
+ if (type_info->has_bits_offset == -1) {
+ // At least one field in the message requires a hasbit, so allocate
+ // hasbits.
+ type_info->has_bits_offset = size;
+ uint32_t* has_bits_indices = new uint32_t[type->field_count()];
+ for (int j = 0; j < type->field_count(); j++) {
+ // Initialize to -1, fields that need a hasbit will overwrite.
+ has_bits_indices[j] = static_cast<uint32_t>(-1);
+ }
+ type_info->has_bits_indices.reset(has_bits_indices);
+ }
+ type_info->has_bits_indices[i] = max_hasbit++;
+ }
+ }
+
+ if (max_hasbit > 0) {
+ int has_bits_array_size = DivideRoundingUp(max_hasbit, bitsizeof(uint32_t));
+ size += has_bits_array_size * sizeof(uint32_t);
+ size = AlignOffset(size);
+ }
+
+ // The oneof_case, if any. It is an array of uint32s.
+ if (real_oneof_count > 0) {
+ type_info->oneof_case_offset = size;
+ size += real_oneof_count * sizeof(uint32_t);
+ size = AlignOffset(size);
+ }
+
+ // The ExtensionSet, if any.
+ if (type->extension_range_count() > 0) {
+ type_info->extensions_offset = size;
+ size += sizeof(ExtensionSet);
+ size = AlignOffset(size);
+ } else {
+ // No extensions.
+ type_info->extensions_offset = -1;
+ }
+
+ // All the fields.
+ //
+ // TODO(b/31226269): Optimize the order of fields to minimize padding.
+ for (int i = 0; i < type->field_count(); i++) {
+ // Make sure field is aligned to avoid bus errors.
+ // Oneof fields do not use any space.
+ if (!InRealOneof(type->field(i))) {
+ int field_size = FieldSpaceUsed(type->field(i));
+ size = AlignTo(size, std::min(kSafeAlignment, field_size));
+ offsets[i] = size;
+ size += field_size;
+ }
+ }
+
+ // The oneofs.
+ for (int i = 0; i < type->oneof_decl_count(); i++) {
+ if (!type->oneof_decl(i)->is_synthetic()) {
+ size = AlignTo(size, kSafeAlignment);
+ offsets[type->field_count() + i] = size;
+ size += kMaxOneofUnionSize;
+ }
+ }
+
+ type_info->weak_field_map_offset = -1;
+
+ // Align the final size to make sure no clever allocators think that
+ // alignment is not necessary.
+ type_info->size = size;
+
+ // Construct the reflection object.
+
+ // Compute the size of default oneof instance and offsets of default
+ // oneof fields.
+ for (int i = 0; i < type->oneof_decl_count(); i++) {
+ if (type->oneof_decl(i)->is_synthetic()) continue;
+ for (int j = 0; j < type->oneof_decl(i)->field_count(); j++) {
+ const FieldDescriptor* field = type->oneof_decl(i)->field(j);
+ // oneof fields are not accessed through offsets, but we still have the
+ // entry from a legacy implementation. This should be removed at some
+ // point.
+ // Mark the field to prevent unintentional access through reflection.
+ // Don't use the top bit because that is for unused fields.
+ offsets[field->index()] = internal::kInvalidFieldOffsetTag;
+ }
+ }
+
+ // Allocate the prototype fields.
+ void* base = operator new(size);
+ memset(base, 0, size);
+
+ // We have already locked the factory so we should not lock in the constructor
+ // of dynamic message to avoid dead lock.
+ DynamicMessage* prototype = new (base) DynamicMessage(type_info, false);
+
+ internal::ReflectionSchema schema = {
+ type_info->prototype,
+ type_info->offsets.get(),
+ type_info->has_bits_indices.get(),
+ type_info->has_bits_offset,
+ PROTOBUF_FIELD_OFFSET(DynamicMessage, _internal_metadata_),
+ type_info->extensions_offset,
+ type_info->oneof_case_offset,
+ type_info->size,
+ type_info->weak_field_map_offset,
+ nullptr /* inlined_string_indices_ */,
+ 0 /* inlined_string_donated_offset_ */};
+
+ type_info->reflection.reset(
+ new Reflection(type_info->type, schema, type_info->pool, this));
+
+ // Cross link prototypes.
+ prototype->CrossLinkPrototypes();
+
+ return prototype;
+}
+
+} // namespace protobuf
+} // namespace google
+
+#include <port_undef.inc> // NOLINT