const std = @import("std"); const assert = std.debug.assert; const builtin = @import("builtin"); const log = std.log.scoped(.macho); const macho = std.macho; const mem = std.mem; const native_endian = builtin.target.cpu.arch.endian(); const MachO = @import("../MachO.zig"); pub fn isFatLibrary(path: []const u8) !bool { const file = try std.fs.cwd().openFile(path, .{}); defer file.close(); const hdr = file.reader().readStructEndian(macho.fat_header, .big) catch return false; return hdr.magic == macho.FAT_MAGIC; } pub const Arch = struct { tag: std.Target.Cpu.Arch, offset: u32, size: u32, }; pub fn parseArchs(path: []const u8, buffer: *[2]Arch) ![]const Arch { const file = try std.fs.cwd().openFile(path, .{}); defer file.close(); const reader = file.reader(); const fat_header = try reader.readStructEndian(macho.fat_header, .big); assert(fat_header.magic == macho.FAT_MAGIC); var count: usize = 0; var fat_arch_index: u32 = 0; while (fat_arch_index < fat_header.nfat_arch) : (fat_arch_index += 1) { const fat_arch = try reader.readStructEndian(macho.fat_arch, .big); // If we come across an architecture that we do not know how to handle, that's // fine because we can keep looking for one that might match. const arch: std.Target.Cpu.Arch = switch (fat_arch.cputype) { macho.CPU_TYPE_ARM64 => if (fat_arch.cpusubtype == macho.CPU_SUBTYPE_ARM_ALL) .aarch64 else continue, macho.CPU_TYPE_X86_64 => if (fat_arch.cpusubtype == macho.CPU_SUBTYPE_X86_64_ALL) .x86_64 else continue, else => continue, }; buffer[count] = .{ .tag = arch, .offset = fat_arch.offset, .size = fat_arch.size }; count += 1; } return buffer[0..count]; }