const std = @import("std"); const builtin = @import("builtin"); const log = std.log.scoped(.archive); const macho = std.macho; const mem = std.mem; const native_endian = builtin.target.cpu.arch.endian(); pub fn decodeArch(cputype: macho.cpu_type_t, comptime logError: bool) !std.Target.Cpu.Arch { const cpu_arch: std.Target.Cpu.Arch = switch (cputype) { macho.CPU_TYPE_ARM64 => .aarch64, macho.CPU_TYPE_X86_64 => .x86_64, else => { if (logError) { log.err("unsupported cpu architecture 0x{x}", .{cputype}); } return error.UnsupportedCpuArchitecture; }, }; return cpu_arch; } fn readFatStruct(reader: anytype, comptime T: type) !T { // Fat structures (fat_header & fat_arch) are always written and read to/from // disk in big endian order. var res = try reader.readStruct(T); if (native_endian != std.builtin.Endian.Big) { mem.byteSwapAllFields(T, &res); } return res; } pub fn getLibraryOffset(reader: anytype, cpu_arch: std.Target.Cpu.Arch) !u64 { const fat_header = try readFatStruct(reader, macho.fat_header); if (fat_header.magic != macho.FAT_MAGIC) return 0; var fat_arch_index: u32 = 0; while (fat_arch_index < fat_header.nfat_arch) : (fat_arch_index += 1) { const fat_arch = try readFatStruct(reader, macho.fat_arch); // If we come across an architecture that we do not know how to handle, that's // fine because we can keep looking for one that might match. const lib_arch = decodeArch(fat_arch.cputype, false) catch |err| switch (err) { error.UnsupportedCpuArchitecture => continue, }; if (lib_arch == cpu_arch) { // We have found a matching architecture! return fat_arch.offset; } } else { log.err("Could not find matching cpu architecture in fat library: expected {s}", .{ @tagName(cpu_arch), }); return error.MismatchedCpuArchitecture; } }