base: link.File, dwarf: ?Dwarf = null, ptr_width: PtrWidth, /// If this is not null, an object file is created by LLVM and linked with LLD afterwards. llvm_object: ?*LlvmObject = null, /// A list of all input files. /// Index of each input file also encodes the priority or precedence of one input file /// over another. files: std.MultiArrayList(File.Entry) = .{}, zig_module_index: ?File.Index = null, linker_defined_index: ?File.Index = null, objects: std.ArrayListUnmanaged(File.Index) = .{}, /// Stored in native-endian format, depending on target endianness needs to be bswapped on read/write. /// Same order as in the file. shdrs: std.ArrayListUnmanaged(elf.Elf64_Shdr) = .{}, /// Given index to a section, pulls index of containing phdr if any. phdr_to_shdr_table: std.AutoHashMapUnmanaged(u16, u16) = .{}, /// File offset into the shdr table. shdr_table_offset: ?u64 = null, /// Stored in native-endian format, depending on target endianness needs to be bswapped on read/write. /// Same order as in the file. phdrs: std.ArrayListUnmanaged(elf.Elf64_Phdr) = .{}, /// The index into the program headers of the PT_PHDR program header phdr_table_index: ?u16 = null, /// The index into the program headers of the PT_LOAD program header containing the phdr /// Most linkers would merge this with phdr_load_ro_index, /// but incremental linking means we can't ensure they are consecutive. phdr_table_load_index: ?u16 = null, /// The index into the program headers of a PT_LOAD program header with Read and Execute flags phdr_load_re_index: ?u16 = null, /// The index into the program headers of the global offset table. /// It needs PT_LOAD and Read flags. phdr_got_index: ?u16 = null, /// The index into the program headers of a PT_LOAD program header with Read flag phdr_load_ro_index: ?u16 = null, /// The index into the program headers of a PT_LOAD program header with Write flag phdr_load_rw_index: ?u16 = null, /// The index into the program headers of a PT_LOAD program header with zerofill data. phdr_load_zerofill_index: ?u16 = null, entry_addr: ?u64 = null, page_size: u32, default_sym_version: elf.Elf64_Versym, /// .shstrtab buffer shstrtab: StringTable(.strtab) = .{}, /// .strtab buffer strtab: StringTable(.strtab) = .{}, /// Representation of the GOT table as committed to the file. got: GotSection = .{}, text_section_index: ?u16 = null, rodata_section_index: ?u16 = null, data_section_index: ?u16 = null, bss_section_index: ?u16 = null, eh_frame_section_index: ?u16 = null, eh_frame_hdr_section_index: ?u16 = null, dynamic_section_index: ?u16 = null, got_section_index: ?u16 = null, got_plt_section_index: ?u16 = null, plt_section_index: ?u16 = null, rela_dyn_section_index: ?u16 = null, debug_info_section_index: ?u16 = null, debug_abbrev_section_index: ?u16 = null, debug_str_section_index: ?u16 = null, debug_aranges_section_index: ?u16 = null, debug_line_section_index: ?u16 = null, shstrtab_section_index: ?u16 = null, strtab_section_index: ?u16 = null, symtab_section_index: ?u16 = null, // Linker-defined symbols dynamic_index: ?Symbol.Index = null, ehdr_start_index: ?Symbol.Index = null, init_array_start_index: ?Symbol.Index = null, init_array_end_index: ?Symbol.Index = null, fini_array_start_index: ?Symbol.Index = null, fini_array_end_index: ?Symbol.Index = null, preinit_array_start_index: ?Symbol.Index = null, preinit_array_end_index: ?Symbol.Index = null, got_index: ?Symbol.Index = null, plt_index: ?Symbol.Index = null, end_index: ?Symbol.Index = null, gnu_eh_frame_hdr_index: ?Symbol.Index = null, dso_handle_index: ?Symbol.Index = null, rela_iplt_start_index: ?Symbol.Index = null, rela_iplt_end_index: ?Symbol.Index = null, start_stop_indexes: std.ArrayListUnmanaged(u32) = .{}, /// An array of symbols parsed across all input files. symbols: std.ArrayListUnmanaged(Symbol) = .{}, symbols_extra: std.ArrayListUnmanaged(u32) = .{}, resolver: std.AutoArrayHashMapUnmanaged(u32, Symbol.Index) = .{}, symbols_free_list: std.ArrayListUnmanaged(Symbol.Index) = .{}, phdr_table_dirty: bool = false, shdr_table_dirty: bool = false, shstrtab_dirty: bool = false, strtab_dirty: bool = false, debug_strtab_dirty: bool = false, debug_abbrev_section_dirty: bool = false, debug_aranges_section_dirty: bool = false, debug_info_header_dirty: bool = false, debug_line_header_dirty: bool = false, error_flags: link.File.ErrorFlags = link.File.ErrorFlags{}, misc_errors: std.ArrayListUnmanaged(link.File.ErrorMsg) = .{}, /// Table of tracked LazySymbols. lazy_syms: LazySymbolTable = .{}, /// Table of tracked Decls. decls: std.AutoHashMapUnmanaged(Module.Decl.Index, DeclMetadata) = .{}, /// List of atoms that are owned directly by the linker. atoms: std.ArrayListUnmanaged(Atom) = .{}, /// Table of last atom index in a section and matching atom free list if any. last_atom_and_free_list_table: std.AutoArrayHashMapUnmanaged(u16, LastAtomAndFreeList) = .{}, /// Table of unnamed constants associated with a parent `Decl`. /// We store them here so that we can free the constants whenever the `Decl` /// needs updating or is freed. /// /// For example, /// /// ```zig /// const Foo = struct{ /// a: u8, /// }; /// /// pub fn main() void { /// var foo = Foo{ .a = 1 }; /// _ = foo; /// } /// ``` /// /// value assigned to label `foo` is an unnamed constant belonging/associated /// with `Decl` `main`, and lives as long as that `Decl`. unnamed_consts: UnnamedConstTable = .{}, comdat_groups: std.ArrayListUnmanaged(ComdatGroup) = .{}, comdat_groups_owners: std.ArrayListUnmanaged(ComdatGroupOwner) = .{}, comdat_groups_table: std.AutoHashMapUnmanaged(u32, ComdatGroupOwner.Index) = .{}, const UnnamedConstTable = std.AutoHashMapUnmanaged(Module.Decl.Index, std.ArrayListUnmanaged(Symbol.Index)); const LazySymbolTable = std.AutoArrayHashMapUnmanaged(Module.Decl.OptionalIndex, LazySymbolMetadata); /// When allocating, the ideal_capacity is calculated by /// actual_capacity + (actual_capacity / ideal_factor) const ideal_factor = 3; /// In order for a slice of bytes to be considered eligible to keep metadata pointing at /// it as a possible place to put new symbols, it must have enough room for this many bytes /// (plus extra for reserved capacity). const minimum_atom_size = 64; pub const min_text_capacity = padToIdeal(minimum_atom_size); pub const PtrWidth = enum { p32, p64 }; pub fn openPath(allocator: Allocator, sub_path: []const u8, options: link.Options) !*Elf { assert(options.target.ofmt == .elf); const self = try createEmpty(allocator, options); errdefer self.base.destroy(); if (options.use_llvm) { const use_lld = build_options.have_llvm and self.base.options.use_lld; if (use_lld) return self; if (options.module != null) { self.base.intermediary_basename = try std.fmt.allocPrint(allocator, "{s}{s}", .{ sub_path, options.target.ofmt.fileExt(options.target.cpu.arch), }); } } errdefer if (self.base.intermediary_basename) |path| allocator.free(path); self.base.file = try options.emit.?.directory.handle.createFile(sub_path, .{ .truncate = false, .read = true, .mode = link.determineMode(options), }); self.shdr_table_dirty = true; // Index 0 is always a null symbol. try self.symbols.append(allocator, .{}); // Index 0 is always a null symbol. try self.symbols_extra.append(allocator, 0); // Allocate atom index 0 to null atom try self.atoms.append(allocator, .{}); // Append null file at index 0 try self.files.append(allocator, .null); // There must always be a null shdr in index 0 try self.shdrs.append(allocator, .{ .sh_name = 0, .sh_type = elf.SHT_NULL, .sh_flags = 0, .sh_addr = 0, .sh_offset = 0, .sh_size = 0, .sh_link = 0, .sh_info = 0, .sh_addralign = 0, .sh_entsize = 0, }); try self.populateMissingMetadata(); return self; } pub fn createEmpty(gpa: Allocator, options: link.Options) !*Elf { const ptr_width: PtrWidth = switch (options.target.ptrBitWidth()) { 0...32 => .p32, 33...64 => .p64, else => return error.UnsupportedELFArchitecture, }; const self = try gpa.create(Elf); errdefer gpa.destroy(self); const page_size: u32 = switch (options.target.cpu.arch) { .powerpc64le => 0x10000, .sparc64 => 0x2000, else => 0x1000, }; const default_sym_version: elf.Elf64_Versym = if (options.output_mode == .Lib and options.link_mode == .Dynamic) elf.VER_NDX_GLOBAL else elf.VER_NDX_LOCAL; var dwarf: ?Dwarf = if (!options.strip and options.module != null) Dwarf.init(gpa, &self.base, options.target) else null; self.* = .{ .base = .{ .tag = .elf, .options = options, .allocator = gpa, .file = null, }, .dwarf = dwarf, .ptr_width = ptr_width, .page_size = page_size, .default_sym_version = default_sym_version, }; const use_llvm = options.use_llvm; if (use_llvm) { self.llvm_object = try LlvmObject.create(gpa, options); } return self; } pub fn deinit(self: *Elf) void { const gpa = self.base.allocator; if (self.llvm_object) |llvm_object| llvm_object.destroy(gpa); for (self.files.items(.tags), self.files.items(.data)) |tag, *data| switch (tag) { .null => {}, .zig_module => data.zig_module.deinit(gpa), .linker_defined => data.linker_defined.deinit(gpa), .object => data.object.deinit(gpa), // .shared_object => data.shared_object.deinit(gpa), }; self.files.deinit(gpa); self.objects.deinit(gpa); self.shdrs.deinit(gpa); self.phdr_to_shdr_table.deinit(gpa); self.phdrs.deinit(gpa); self.shstrtab.deinit(gpa); self.strtab.deinit(gpa); self.symbols.deinit(gpa); self.symbols_extra.deinit(gpa); self.symbols_free_list.deinit(gpa); self.got.deinit(gpa); self.resolver.deinit(gpa); self.start_stop_indexes.deinit(gpa); { var it = self.decls.iterator(); while (it.next()) |entry| { entry.value_ptr.exports.deinit(gpa); } self.decls.deinit(gpa); } self.atoms.deinit(gpa); for (self.last_atom_and_free_list_table.values()) |*value| { value.free_list.deinit(gpa); } self.last_atom_and_free_list_table.deinit(gpa); self.lazy_syms.deinit(gpa); { var it = self.unnamed_consts.valueIterator(); while (it.next()) |syms| { syms.deinit(gpa); } self.unnamed_consts.deinit(gpa); } if (self.dwarf) |*dw| { dw.deinit(); } self.misc_errors.deinit(gpa); self.comdat_groups.deinit(gpa); self.comdat_groups_owners.deinit(gpa); self.comdat_groups_table.deinit(gpa); } pub fn getDeclVAddr(self: *Elf, decl_index: Module.Decl.Index, reloc_info: link.File.RelocInfo) !u64 { assert(self.llvm_object == null); const this_sym_index = try self.getOrCreateMetadataForDecl(decl_index); const this_sym = self.symbol(this_sym_index); const vaddr = this_sym.value; const parent_atom = self.symbol(reloc_info.parent_atom_index).atom(self).?; try parent_atom.addReloc(self, .{ .r_offset = reloc_info.offset, .r_info = (@as(u64, @intCast(this_sym.esym_index)) << 32) | elf.R_X86_64_64, .r_addend = reloc_info.addend, }); return vaddr; } /// Returns end pos of collision, if any. fn detectAllocCollision(self: *Elf, start: u64, size: u64) ?u64 { const small_ptr = self.ptr_width == .p32; const ehdr_size: u64 = if (small_ptr) @sizeOf(elf.Elf32_Ehdr) else @sizeOf(elf.Elf64_Ehdr); if (start < ehdr_size) return ehdr_size; const end = start + padToIdeal(size); if (self.shdr_table_offset) |off| { const shdr_size: u64 = if (small_ptr) @sizeOf(elf.Elf32_Shdr) else @sizeOf(elf.Elf64_Shdr); const tight_size = self.shdrs.items.len * shdr_size; const increased_size = padToIdeal(tight_size); const test_end = off + increased_size; if (end > off and start < test_end) { return test_end; } } for (self.shdrs.items) |section| { const increased_size = padToIdeal(section.sh_size); const test_end = section.sh_offset + increased_size; if (end > section.sh_offset and start < test_end) { return test_end; } } for (self.phdrs.items) |phdr| { const increased_size = padToIdeal(phdr.p_filesz); const test_end = phdr.p_offset + increased_size; if (end > phdr.p_offset and start < test_end) { return test_end; } } return null; } pub fn allocatedSize(self: *Elf, start: u64) u64 { if (start == 0) return 0; var min_pos: u64 = std.math.maxInt(u64); if (self.shdr_table_offset) |off| { if (off > start and off < min_pos) min_pos = off; } for (self.shdrs.items) |section| { if (section.sh_offset <= start) continue; if (section.sh_offset < min_pos) min_pos = section.sh_offset; } for (self.phdrs.items) |phdr| { if (phdr.p_offset <= start) continue; if (phdr.p_offset < min_pos) min_pos = phdr.p_offset; } return min_pos - start; } pub fn findFreeSpace(self: *Elf, object_size: u64, min_alignment: u32) u64 { var start: u64 = 0; while (self.detectAllocCollision(start, object_size)) |item_end| { start = mem.alignForward(u64, item_end, min_alignment); } return start; } pub fn populateMissingMetadata(self: *Elf) !void { const gpa = self.base.allocator; const small_ptr = switch (self.ptr_width) { .p32 => true, .p64 => false, }; const ptr_size: u8 = self.ptrWidthBytes(); const image_base = self.calcImageBase(); if (self.phdr_table_index == null) { self.phdr_table_index = @intCast(self.phdrs.items.len); const p_align: u16 = switch (self.ptr_width) { .p32 => @alignOf(elf.Elf32_Phdr), .p64 => @alignOf(elf.Elf64_Phdr), }; try self.phdrs.append(gpa, .{ .p_type = elf.PT_PHDR, .p_offset = 0, .p_filesz = 0, .p_vaddr = image_base, .p_paddr = image_base, .p_memsz = 0, .p_align = p_align, .p_flags = elf.PF_R, }); self.phdr_table_dirty = true; } if (self.phdr_table_load_index == null) { self.phdr_table_load_index = @intCast(self.phdrs.items.len); // TODO Same as for GOT try self.phdrs.append(gpa, .{ .p_type = elf.PT_LOAD, .p_offset = 0, .p_filesz = 0, .p_vaddr = image_base, .p_paddr = image_base, .p_memsz = 0, .p_align = self.page_size, .p_flags = elf.PF_R, }); self.phdr_table_dirty = true; } if (self.phdr_load_re_index == null) { self.phdr_load_re_index = @intCast(self.phdrs.items.len); const file_size = self.base.options.program_code_size_hint; const p_align = self.page_size; const off = self.findFreeSpace(file_size, p_align); log.debug("found PT_LOAD RE free space 0x{x} to 0x{x}", .{ off, off + file_size }); const entry_addr = self.defaultEntryAddress(); try self.phdrs.append(gpa, .{ .p_type = elf.PT_LOAD, .p_offset = off, .p_filesz = file_size, .p_vaddr = entry_addr, .p_paddr = entry_addr, .p_memsz = file_size, .p_align = p_align, .p_flags = elf.PF_X | elf.PF_R | elf.PF_W, }); self.entry_addr = null; self.phdr_table_dirty = true; } if (self.phdr_got_index == null) { self.phdr_got_index = @intCast(self.phdrs.items.len); const file_size = @as(u64, ptr_size) * self.base.options.symbol_count_hint; // We really only need ptr alignment but since we are using PROGBITS, linux requires // page align. const p_align = if (self.base.options.target.os.tag == .linux) self.page_size else @as(u16, ptr_size); const off = self.findFreeSpace(file_size, p_align); log.debug("found PT_LOAD GOT free space 0x{x} to 0x{x}", .{ off, off + file_size }); // TODO instead of hard coding the vaddr, make a function to find a vaddr to put things at. // we'll need to re-use that function anyway, in case the GOT grows and overlaps something // else in virtual memory. const got_addr: u32 = if (self.base.options.target.ptrBitWidth() >= 32) 0x4000000 else 0x8000; try self.phdrs.append(gpa, .{ .p_type = elf.PT_LOAD, .p_offset = off, .p_filesz = file_size, .p_vaddr = got_addr, .p_paddr = got_addr, .p_memsz = file_size, .p_align = p_align, .p_flags = elf.PF_R | elf.PF_W, }); self.phdr_table_dirty = true; } if (self.phdr_load_ro_index == null) { self.phdr_load_ro_index = @intCast(self.phdrs.items.len); // TODO Find a hint about how much data need to be in rodata ? const file_size = 1024; // Same reason as for GOT const p_align = if (self.base.options.target.os.tag == .linux) self.page_size else @as(u16, ptr_size); const off = self.findFreeSpace(file_size, p_align); log.debug("found PT_LOAD RO free space 0x{x} to 0x{x}", .{ off, off + file_size }); // TODO Same as for GOT const rodata_addr: u32 = if (self.base.options.target.ptrBitWidth() >= 32) 0xc000000 else 0xa000; try self.phdrs.append(gpa, .{ .p_type = elf.PT_LOAD, .p_offset = off, .p_filesz = file_size, .p_vaddr = rodata_addr, .p_paddr = rodata_addr, .p_memsz = file_size, .p_align = p_align, .p_flags = elf.PF_R | elf.PF_W, }); self.phdr_table_dirty = true; } if (self.phdr_load_rw_index == null) { self.phdr_load_rw_index = @intCast(self.phdrs.items.len); // TODO Find a hint about how much data need to be in data ? const file_size = 1024; // Same reason as for GOT const p_align = if (self.base.options.target.os.tag == .linux) self.page_size else @as(u16, ptr_size); const off = self.findFreeSpace(file_size, p_align); log.debug("found PT_LOAD RW free space 0x{x} to 0x{x}", .{ off, off + file_size }); // TODO Same as for GOT const rwdata_addr: u32 = if (self.base.options.target.ptrBitWidth() >= 32) 0x10000000 else 0xc000; try self.phdrs.append(gpa, .{ .p_type = elf.PT_LOAD, .p_offset = off, .p_filesz = file_size, .p_vaddr = rwdata_addr, .p_paddr = rwdata_addr, .p_memsz = file_size, .p_align = p_align, .p_flags = elf.PF_R | elf.PF_W, }); self.phdr_table_dirty = true; } if (self.phdr_load_zerofill_index == null) { self.phdr_load_zerofill_index = @intCast(self.phdrs.items.len); const p_align = if (self.base.options.target.os.tag == .linux) self.page_size else @as(u16, ptr_size); const off = self.phdrs.items[self.phdr_load_rw_index.?].p_offset; log.debug("found PT_LOAD zerofill free space 0x{x} to 0x{x}", .{ off, off }); // TODO Same as for GOT const addr: u32 = if (self.base.options.target.ptrBitWidth() >= 32) 0x14000000 else 0xf000; try self.phdrs.append(gpa, .{ .p_type = elf.PT_LOAD, .p_offset = off, .p_filesz = 0, .p_vaddr = addr, .p_paddr = addr, .p_memsz = 0, .p_align = p_align, .p_flags = elf.PF_R | elf.PF_W, }); self.phdr_table_dirty = true; } if (self.shstrtab_section_index == null) { self.shstrtab_section_index = @intCast(self.shdrs.items.len); assert(self.shstrtab.buffer.items.len == 0); try self.shstrtab.buffer.append(gpa, 0); // need a 0 at position 0 const off = self.findFreeSpace(self.shstrtab.buffer.items.len, 1); log.debug("found .shstrtab free space 0x{x} to 0x{x}", .{ off, off + self.shstrtab.buffer.items.len }); try self.shdrs.append(gpa, .{ .sh_name = try self.shstrtab.insert(gpa, ".shstrtab"), .sh_type = elf.SHT_STRTAB, .sh_flags = 0, .sh_addr = 0, .sh_offset = off, .sh_size = self.shstrtab.buffer.items.len, .sh_link = 0, .sh_info = 0, .sh_addralign = 1, .sh_entsize = 0, }); self.shstrtab_dirty = true; self.shdr_table_dirty = true; } if (self.strtab_section_index == null) { self.strtab_section_index = @intCast(self.shdrs.items.len); assert(self.strtab.buffer.items.len == 0); try self.strtab.buffer.append(gpa, 0); // need a 0 at position 0 const off = self.findFreeSpace(self.strtab.buffer.items.len, 1); log.debug("found .strtab free space 0x{x} to 0x{x}", .{ off, off + self.strtab.buffer.items.len }); try self.shdrs.append(gpa, .{ .sh_name = try self.shstrtab.insert(gpa, ".strtab"), .sh_type = elf.SHT_STRTAB, .sh_flags = 0, .sh_addr = 0, .sh_offset = off, .sh_size = self.strtab.buffer.items.len, .sh_link = 0, .sh_info = 0, .sh_addralign = 1, .sh_entsize = 0, }); self.strtab_dirty = true; self.shdr_table_dirty = true; } if (self.text_section_index == null) { self.text_section_index = @intCast(self.shdrs.items.len); const phdr = &self.phdrs.items[self.phdr_load_re_index.?]; try self.shdrs.append(gpa, .{ .sh_name = try self.shstrtab.insert(gpa, ".text"), .sh_type = elf.SHT_PROGBITS, .sh_flags = elf.SHF_ALLOC | elf.SHF_EXECINSTR, .sh_addr = phdr.p_vaddr, .sh_offset = phdr.p_offset, .sh_size = phdr.p_filesz, .sh_link = 0, .sh_info = 0, .sh_addralign = 1, .sh_entsize = 0, }); try self.phdr_to_shdr_table.putNoClobber(gpa, self.text_section_index.?, self.phdr_load_re_index.?); try self.last_atom_and_free_list_table.putNoClobber(gpa, self.text_section_index.?, .{}); self.shdr_table_dirty = true; } if (self.got_section_index == null) { self.got_section_index = @intCast(self.shdrs.items.len); const phdr = &self.phdrs.items[self.phdr_got_index.?]; try self.shdrs.append(gpa, .{ .sh_name = try self.shstrtab.insert(gpa, ".got"), .sh_type = elf.SHT_PROGBITS, .sh_flags = elf.SHF_ALLOC, .sh_addr = phdr.p_vaddr, .sh_offset = phdr.p_offset, .sh_size = phdr.p_filesz, .sh_link = 0, .sh_info = 0, .sh_addralign = @as(u16, ptr_size), .sh_entsize = 0, }); try self.phdr_to_shdr_table.putNoClobber(gpa, self.got_section_index.?, self.phdr_got_index.?); self.shdr_table_dirty = true; } if (self.rodata_section_index == null) { self.rodata_section_index = @intCast(self.shdrs.items.len); const phdr = &self.phdrs.items[self.phdr_load_ro_index.?]; try self.shdrs.append(gpa, .{ .sh_name = try self.shstrtab.insert(gpa, ".rodata"), .sh_type = elf.SHT_PROGBITS, .sh_flags = elf.SHF_ALLOC, .sh_addr = phdr.p_vaddr, .sh_offset = phdr.p_offset, .sh_size = phdr.p_filesz, .sh_link = 0, .sh_info = 0, .sh_addralign = 1, .sh_entsize = 0, }); try self.phdr_to_shdr_table.putNoClobber(gpa, self.rodata_section_index.?, self.phdr_load_ro_index.?); try self.last_atom_and_free_list_table.putNoClobber(gpa, self.rodata_section_index.?, .{}); self.shdr_table_dirty = true; } if (self.data_section_index == null) { self.data_section_index = @intCast(self.shdrs.items.len); const phdr = &self.phdrs.items[self.phdr_load_rw_index.?]; try self.shdrs.append(gpa, .{ .sh_name = try self.shstrtab.insert(gpa, ".data"), .sh_type = elf.SHT_PROGBITS, .sh_flags = elf.SHF_WRITE | elf.SHF_ALLOC, .sh_addr = phdr.p_vaddr, .sh_offset = phdr.p_offset, .sh_size = phdr.p_filesz, .sh_link = 0, .sh_info = 0, .sh_addralign = @as(u16, ptr_size), .sh_entsize = 0, }); try self.phdr_to_shdr_table.putNoClobber(gpa, self.data_section_index.?, self.phdr_load_rw_index.?); try self.last_atom_and_free_list_table.putNoClobber(gpa, self.data_section_index.?, .{}); self.shdr_table_dirty = true; } if (self.bss_section_index == null) { self.bss_section_index = @intCast(self.shdrs.items.len); const phdr = &self.phdrs.items[self.phdr_load_zerofill_index.?]; try self.shdrs.append(gpa, .{ .sh_name = try self.shstrtab.insert(gpa, ".bss"), .sh_type = elf.SHT_NOBITS, .sh_flags = elf.SHF_WRITE | elf.SHF_ALLOC, .sh_addr = phdr.p_vaddr, .sh_offset = phdr.p_offset, .sh_size = phdr.p_filesz, .sh_link = 0, .sh_info = 0, .sh_addralign = @as(u16, ptr_size), .sh_entsize = 0, }); try self.phdr_to_shdr_table.putNoClobber(gpa, self.bss_section_index.?, self.phdr_load_zerofill_index.?); try self.last_atom_and_free_list_table.putNoClobber(gpa, self.bss_section_index.?, .{}); self.shdr_table_dirty = true; } if (self.symtab_section_index == null) { self.symtab_section_index = @intCast(self.shdrs.items.len); const min_align: u16 = if (small_ptr) @alignOf(elf.Elf32_Sym) else @alignOf(elf.Elf64_Sym); const each_size: u64 = if (small_ptr) @sizeOf(elf.Elf32_Sym) else @sizeOf(elf.Elf64_Sym); const file_size = self.base.options.symbol_count_hint * each_size; const off = self.findFreeSpace(file_size, min_align); log.debug("found symtab free space 0x{x} to 0x{x}", .{ off, off + file_size }); try self.shdrs.append(gpa, .{ .sh_name = try self.shstrtab.insert(gpa, ".symtab"), .sh_type = elf.SHT_SYMTAB, .sh_flags = 0, .sh_addr = 0, .sh_offset = off, .sh_size = file_size, // The section header index of the associated string table. .sh_link = self.strtab_section_index.?, .sh_info = @intCast(self.symbols.items.len), .sh_addralign = min_align, .sh_entsize = each_size, }); self.shdr_table_dirty = true; } if (self.dwarf) |*dw| { if (self.debug_str_section_index == null) { self.debug_str_section_index = @intCast(self.shdrs.items.len); assert(dw.strtab.buffer.items.len == 0); try dw.strtab.buffer.append(gpa, 0); try self.shdrs.append(gpa, .{ .sh_name = try self.shstrtab.insert(gpa, ".debug_str"), .sh_type = elf.SHT_PROGBITS, .sh_flags = elf.SHF_MERGE | elf.SHF_STRINGS, .sh_addr = 0, .sh_offset = 0, .sh_size = 0, .sh_link = 0, .sh_info = 0, .sh_addralign = 1, .sh_entsize = 1, }); self.debug_strtab_dirty = true; self.shdr_table_dirty = true; } if (self.debug_info_section_index == null) { self.debug_info_section_index = @intCast(self.shdrs.items.len); const file_size_hint = 200; const p_align = 1; const off = self.findFreeSpace(file_size_hint, p_align); log.debug("found .debug_info free space 0x{x} to 0x{x}", .{ off, off + file_size_hint, }); try self.shdrs.append(gpa, .{ .sh_name = try self.shstrtab.insert(gpa, ".debug_info"), .sh_type = elf.SHT_PROGBITS, .sh_flags = 0, .sh_addr = 0, .sh_offset = off, .sh_size = file_size_hint, .sh_link = 0, .sh_info = 0, .sh_addralign = p_align, .sh_entsize = 0, }); self.shdr_table_dirty = true; self.debug_info_header_dirty = true; } if (self.debug_abbrev_section_index == null) { self.debug_abbrev_section_index = @intCast(self.shdrs.items.len); const file_size_hint = 128; const p_align = 1; const off = self.findFreeSpace(file_size_hint, p_align); log.debug("found .debug_abbrev free space 0x{x} to 0x{x}", .{ off, off + file_size_hint, }); try self.shdrs.append(gpa, .{ .sh_name = try self.shstrtab.insert(gpa, ".debug_abbrev"), .sh_type = elf.SHT_PROGBITS, .sh_flags = 0, .sh_addr = 0, .sh_offset = off, .sh_size = file_size_hint, .sh_link = 0, .sh_info = 0, .sh_addralign = p_align, .sh_entsize = 0, }); self.shdr_table_dirty = true; self.debug_abbrev_section_dirty = true; } if (self.debug_aranges_section_index == null) { self.debug_aranges_section_index = @intCast(self.shdrs.items.len); const file_size_hint = 160; const p_align = 16; const off = self.findFreeSpace(file_size_hint, p_align); log.debug("found .debug_aranges free space 0x{x} to 0x{x}", .{ off, off + file_size_hint, }); try self.shdrs.append(gpa, .{ .sh_name = try self.shstrtab.insert(gpa, ".debug_aranges"), .sh_type = elf.SHT_PROGBITS, .sh_flags = 0, .sh_addr = 0, .sh_offset = off, .sh_size = file_size_hint, .sh_link = 0, .sh_info = 0, .sh_addralign = p_align, .sh_entsize = 0, }); self.shdr_table_dirty = true; self.debug_aranges_section_dirty = true; } if (self.debug_line_section_index == null) { self.debug_line_section_index = @intCast(self.shdrs.items.len); const file_size_hint = 250; const p_align = 1; const off = self.findFreeSpace(file_size_hint, p_align); log.debug("found .debug_line free space 0x{x} to 0x{x}", .{ off, off + file_size_hint, }); try self.shdrs.append(gpa, .{ .sh_name = try self.shstrtab.insert(gpa, ".debug_line"), .sh_type = elf.SHT_PROGBITS, .sh_flags = 0, .sh_addr = 0, .sh_offset = off, .sh_size = file_size_hint, .sh_link = 0, .sh_info = 0, .sh_addralign = p_align, .sh_entsize = 0, }); self.shdr_table_dirty = true; self.debug_line_header_dirty = true; } } const shsize: u64 = switch (self.ptr_width) { .p32 => @sizeOf(elf.Elf32_Shdr), .p64 => @sizeOf(elf.Elf64_Shdr), }; const shalign: u16 = switch (self.ptr_width) { .p32 => @alignOf(elf.Elf32_Shdr), .p64 => @alignOf(elf.Elf64_Shdr), }; if (self.shdr_table_offset == null) { self.shdr_table_offset = self.findFreeSpace(self.shdrs.items.len * shsize, shalign); self.shdr_table_dirty = true; } { // Iterate over symbols, populating free_list and last_text_block. if (self.symbols.items.len != 1) { @panic("TODO implement setting up free_list and last_text_block from existing ELF file"); } // We are starting with an empty file. The default values are correct, null and empty list. } if (self.shdr_table_dirty) { // We need to find out what the max file offset is according to section headers. // Otherwise, we may end up with an ELF binary with file size not matching the final section's // offset + it's filesize. var max_file_offset: u64 = 0; for (self.shdrs.items) |shdr| { if (shdr.sh_offset + shdr.sh_size > max_file_offset) { max_file_offset = shdr.sh_offset + shdr.sh_size; } } try self.base.file.?.pwriteAll(&[_]u8{0}, max_file_offset); } if (self.base.options.module) |module| { if (self.zig_module_index == null) { const index = @as(File.Index, @intCast(try self.files.addOne(gpa))); self.files.set(index, .{ .zig_module = .{ .index = index, .path = module.main_pkg.root_src_path, } }); self.zig_module_index = index; const zig_module = self.file(index).?.zig_module; const name_off = try self.strtab.insert(gpa, std.fs.path.stem(module.main_pkg.root_src_path)); const symbol_index = try self.addSymbol(); try zig_module.local_symbols.append(gpa, symbol_index); const symbol_ptr = self.symbol(symbol_index); symbol_ptr.file_index = zig_module.index; symbol_ptr.name_offset = name_off; const esym_index = try zig_module.addLocalEsym(gpa); const esym = &zig_module.local_esyms.items[esym_index]; esym.st_name = name_off; esym.st_info |= elf.STT_FILE; esym.st_shndx = elf.SHN_ABS; symbol_ptr.esym_index = esym_index; } } } pub fn growAllocSection(self: *Elf, shdr_index: u16, needed_size: u64) !void { // TODO Also detect virtual address collisions. const shdr = &self.shdrs.items[shdr_index]; const phdr_index = self.phdr_to_shdr_table.get(shdr_index).?; const phdr = &self.phdrs.items[phdr_index]; const is_zerofill = shdr.sh_type == elf.SHT_NOBITS; if (needed_size > self.allocatedSize(shdr.sh_offset) and !is_zerofill) { // Must move the entire section. const new_offset = self.findFreeSpace(needed_size, self.page_size); const existing_size = if (self.last_atom_and_free_list_table.get(shdr_index)) |meta| blk: { const last = self.atom(meta.last_atom_index) orelse break :blk 0; break :blk (last.value + last.size) - phdr.p_vaddr; } else shdr.sh_size; shdr.sh_size = 0; log.debug("new '{?s}' file offset 0x{x} to 0x{x}", .{ self.shstrtab.get(shdr.sh_name), new_offset, new_offset + existing_size, }); const amt = try self.base.file.?.copyRangeAll(shdr.sh_offset, self.base.file.?, new_offset, existing_size); if (amt != existing_size) return error.InputOutput; shdr.sh_offset = new_offset; phdr.p_offset = new_offset; } shdr.sh_size = needed_size; phdr.p_memsz = needed_size; if (!is_zerofill) { phdr.p_filesz = needed_size; } self.markDirty(shdr_index, phdr_index); } pub fn growNonAllocSection( self: *Elf, shdr_index: u16, needed_size: u64, min_alignment: u32, requires_file_copy: bool, ) !void { const shdr = &self.shdrs.items[shdr_index]; if (needed_size > self.allocatedSize(shdr.sh_offset)) { const existing_size = if (self.symtab_section_index.? == shdr_index) blk: { const sym_size: u64 = switch (self.ptr_width) { .p32 => @sizeOf(elf.Elf32_Sym), .p64 => @sizeOf(elf.Elf64_Sym), }; break :blk @as(u64, shdr.sh_info) * sym_size; } else shdr.sh_size; shdr.sh_size = 0; // Move all the symbols to a new file location. const new_offset = self.findFreeSpace(needed_size, min_alignment); log.debug("moving '{?s}' from 0x{x} to 0x{x}", .{ self.shstrtab.get(shdr.sh_name), shdr.sh_offset, new_offset, }); if (requires_file_copy) { const amt = try self.base.file.?.copyRangeAll( shdr.sh_offset, self.base.file.?, new_offset, existing_size, ); if (amt != existing_size) return error.InputOutput; } shdr.sh_offset = new_offset; } shdr.sh_size = needed_size; // anticipating adding the global symbols later self.markDirty(shdr_index, null); } pub fn markDirty(self: *Elf, shdr_index: u16, phdr_index: ?u16) void { self.shdr_table_dirty = true; // TODO look into only writing one section if (phdr_index) |_| { self.phdr_table_dirty = true; // TODO look into making only the one program header dirty } if (self.dwarf) |_| { if (self.debug_info_section_index.? == shdr_index) { self.debug_info_header_dirty = true; } else if (self.debug_line_section_index.? == shdr_index) { self.debug_line_header_dirty = true; } else if (self.debug_abbrev_section_index.? == shdr_index) { self.debug_abbrev_section_dirty = true; } else if (self.debug_str_section_index.? == shdr_index) { self.debug_strtab_dirty = true; } else if (self.debug_aranges_section_index.? == shdr_index) { self.debug_aranges_section_dirty = true; } } } pub fn flush(self: *Elf, comp: *Compilation, prog_node: *std.Progress.Node) link.File.FlushError!void { if (self.base.options.emit == null) { if (self.llvm_object) |llvm_object| { try llvm_object.flushModule(comp, prog_node); } return; } const use_lld = build_options.have_llvm and self.base.options.use_lld; if (use_lld) { return self.linkWithLLD(comp, prog_node); } switch (self.base.options.output_mode) { .Exe, .Obj => return self.flushModule(comp, prog_node), .Lib => return error.TODOImplementWritingLibFiles, } } pub fn flushModule(self: *Elf, comp: *Compilation, prog_node: *std.Progress.Node) link.File.FlushError!void { const tracy = trace(@src()); defer tracy.end(); if (self.llvm_object) |llvm_object| { try llvm_object.flushModule(comp, prog_node); const use_lld = build_options.have_llvm and self.base.options.use_lld; if (use_lld) return; } const gpa = self.base.allocator; var sub_prog_node = prog_node.start("ELF Flush", 0); sub_prog_node.activate(); defer sub_prog_node.end(); var arena_allocator = std.heap.ArenaAllocator.init(self.base.allocator); defer arena_allocator.deinit(); const arena = arena_allocator.allocator(); const directory = self.base.options.emit.?.directory; // Just an alias to make it shorter to type. const full_out_path = try directory.join(arena, &[_][]const u8{self.base.options.emit.?.sub_path}); // Here we will parse input positional and library files (if referenced). // This will roughly match in any linker backend we support. var positionals = std.ArrayList(Compilation.LinkObject).init(arena); if (self.base.intermediary_basename) |path| { const full_path = blk: { if (fs.path.dirname(full_out_path)) |dirname| { break :blk try fs.path.join(arena, &.{ dirname, path }); } else { break :blk path; } }; try positionals.append(.{ .path = full_path }); } try positionals.ensureUnusedCapacity(self.base.options.objects.len); positionals.appendSliceAssumeCapacity(self.base.options.objects); // This is a set of object files emitted by clang in a single `build-exe` invocation. // For instance, the implicit `a.o` as compiled by `zig build-exe a.c` will end up // in this set. for (comp.c_object_table.keys()) |key| { try positionals.append(.{ .path = key.status.success.object_path }); } const compiler_rt_path: ?[]const u8 = blk: { if (comp.compiler_rt_lib) |x| break :blk x.full_object_path; if (comp.compiler_rt_obj) |x| break :blk x.full_object_path; break :blk null; }; if (compiler_rt_path) |path| { try positionals.append(.{ .path = path }); } for (positionals.items) |obj| { const in_file = try std.fs.cwd().openFile(obj.path, .{}); defer in_file.close(); var parse_ctx: ParseErrorCtx = .{ .detected_cpu_arch = undefined }; self.parsePositional(in_file, obj.path, obj.must_link, &parse_ctx) catch |err| try self.handleAndReportParseError(obj.path, err, &parse_ctx); } // Handle any lazy symbols that were emitted by incremental compilation. if (self.lazy_syms.getPtr(.none)) |metadata| { const module = self.base.options.module.?; // Most lazy symbols can be updated on first use, but // anyerror needs to wait for everything to be flushed. if (metadata.text_state != .unused) self.updateLazySymbol( link.File.LazySymbol.initDecl(.code, null, module), metadata.text_symbol_index, ) catch |err| return switch (err) { error.CodegenFail => error.FlushFailure, else => |e| e, }; if (metadata.rodata_state != .unused) self.updateLazySymbol( link.File.LazySymbol.initDecl(.const_data, null, module), metadata.rodata_symbol_index, ) catch |err| return switch (err) { error.CodegenFail => error.FlushFailure, else => |e| e, }; } for (self.lazy_syms.values()) |*metadata| { if (metadata.text_state != .unused) metadata.text_state = .flushed; if (metadata.rodata_state != .unused) metadata.rodata_state = .flushed; } const target_endian = self.base.options.target.cpu.arch.endian(); const foreign_endian = target_endian != builtin.cpu.arch.endian(); if (self.dwarf) |*dw| { try dw.flushModule(self.base.options.module.?); } // If we haven't already, create a linker-generated input file comprising of // linker-defined synthetic symbols only such as `_DYNAMIC`, etc. if (self.linker_defined_index == null) { const index = @as(File.Index, @intCast(try self.files.addOne(gpa))); self.files.set(index, .{ .linker_defined = .{ .index = index } }); self.linker_defined_index = index; } try self.addLinkerDefinedSymbols(); // Now, we are ready to resolve the symbols across all input files. // We will first resolve the files in the ZigModule, next in the parsed // input Object files. // Any qualifing unresolved symbol will be upgraded to an absolute, weak // symbol for potential resolution at load-time. try self.resolveSymbols(); self.markImportsExports(); self.claimUnresolved(); // Scan and create missing synthetic entries such as GOT indirection. try self.scanRelocs(); // Allocate atoms parsed from input object files, followed by allocating // linker-defined synthetic symbols. try self.allocateObjects(); self.allocateLinkerDefinedSymbols(); // Beyond this point, everything has been allocated a virtual address and we can resolve // the relocations, and commit objects to file. if (self.zig_module_index) |index| { for (self.file(index).?.zig_module.atoms.keys()) |atom_index| { const atom_ptr = self.atom(atom_index).?; if (!atom_ptr.alive) continue; const shdr = &self.shdrs.items[atom_ptr.output_section_index]; const file_offset = shdr.sh_offset + atom_ptr.value - shdr.sh_addr; const size = math.cast(usize, atom_ptr.size) orelse return error.Overflow; const code = try gpa.alloc(u8, size); defer gpa.free(code); const amt = try self.base.file.?.preadAll(code, file_offset); if (amt != code.len) return error.InputOutput; try atom_ptr.resolveRelocs(self, code); try self.base.file.?.pwriteAll(code, file_offset); } } try self.writeObjects(); // Look for entry address in objects if not set by the incremental compiler. if (self.entry_addr == null) { const entry: ?[]const u8 = entry: { if (self.base.options.entry) |entry| break :entry entry; if (!self.isDynLib()) break :entry "_start"; break :entry null; }; self.entry_addr = if (entry) |name| entry_addr: { const global_index = self.globalByName(name) orelse break :entry_addr null; break :entry_addr self.symbol(global_index).value; } else null; } // Generate and emit the symbol table. try self.updateSymtabSize(); try self.writeSymtab(); // Dump the state for easy debugging. // State can be dumped via `--debug-log link_state`. if (build_options.enable_logging) { state_log.debug("{}", .{self.dumpState()}); } if (self.dwarf) |*dw| { if (self.debug_abbrev_section_dirty) { try dw.writeDbgAbbrev(); if (!self.shdr_table_dirty) { // Then it won't get written with the others and we need to do it. try self.writeShdr(self.debug_abbrev_section_index.?); } self.debug_abbrev_section_dirty = false; } if (self.debug_info_header_dirty) { // Currently only one compilation unit is supported, so the address range is simply // identical to the main program header virtual address and memory size. const text_phdr = &self.phdrs.items[self.phdr_load_re_index.?]; const low_pc = text_phdr.p_vaddr; const high_pc = text_phdr.p_vaddr + text_phdr.p_memsz; try dw.writeDbgInfoHeader(self.base.options.module.?, low_pc, high_pc); self.debug_info_header_dirty = false; } if (self.debug_aranges_section_dirty) { // Currently only one compilation unit is supported, so the address range is simply // identical to the main program header virtual address and memory size. const text_phdr = &self.phdrs.items[self.phdr_load_re_index.?]; try dw.writeDbgAranges(text_phdr.p_vaddr, text_phdr.p_memsz); if (!self.shdr_table_dirty) { // Then it won't get written with the others and we need to do it. try self.writeShdr(self.debug_aranges_section_index.?); } self.debug_aranges_section_dirty = false; } if (self.debug_line_header_dirty) { try dw.writeDbgLineHeader(); self.debug_line_header_dirty = false; } } if (self.phdr_table_dirty) { const phsize: u64 = switch (self.ptr_width) { .p32 => @sizeOf(elf.Elf32_Phdr), .p64 => @sizeOf(elf.Elf64_Phdr), }; const phdr_table_index = self.phdr_table_index.?; const phdr_table = &self.phdrs.items[phdr_table_index]; const phdr_table_load = &self.phdrs.items[self.phdr_table_load_index.?]; const allocated_size = self.allocatedSize(phdr_table.p_offset); const needed_size = self.phdrs.items.len * phsize; if (needed_size > allocated_size) { phdr_table.p_offset = 0; // free the space phdr_table.p_offset = self.findFreeSpace(needed_size, @as(u32, @intCast(phdr_table.p_align))); } phdr_table_load.p_offset = mem.alignBackward(u64, phdr_table.p_offset, phdr_table_load.p_align); const load_align_offset = phdr_table.p_offset - phdr_table_load.p_offset; phdr_table_load.p_filesz = load_align_offset + needed_size; phdr_table_load.p_memsz = load_align_offset + needed_size; phdr_table.p_filesz = needed_size; phdr_table.p_vaddr = phdr_table_load.p_vaddr + load_align_offset; phdr_table.p_paddr = phdr_table_load.p_paddr + load_align_offset; phdr_table.p_memsz = needed_size; switch (self.ptr_width) { .p32 => { const buf = try gpa.alloc(elf.Elf32_Phdr, self.phdrs.items.len); defer gpa.free(buf); for (buf, 0..) |*phdr, i| { phdr.* = phdrTo32(self.phdrs.items[i]); if (foreign_endian) { mem.byteSwapAllFields(elf.Elf32_Phdr, phdr); } } try self.base.file.?.pwriteAll(mem.sliceAsBytes(buf), phdr_table.p_offset); }, .p64 => { const buf = try gpa.alloc(elf.Elf64_Phdr, self.phdrs.items.len); defer gpa.free(buf); for (buf, 0..) |*phdr, i| { phdr.* = self.phdrs.items[i]; if (foreign_endian) { mem.byteSwapAllFields(elf.Elf64_Phdr, phdr); } } try self.base.file.?.pwriteAll(mem.sliceAsBytes(buf), phdr_table.p_offset); }, } // We don't actually care if the phdr load section overlaps, only the phdr section matters. phdr_table_load.p_offset = 0; phdr_table_load.p_filesz = 0; self.phdr_table_dirty = false; } { const shdr_index = self.shstrtab_section_index.?; if (self.shstrtab_dirty or self.shstrtab.buffer.items.len != self.shdrs.items[shdr_index].sh_size) { try self.growNonAllocSection(shdr_index, self.shstrtab.buffer.items.len, 1, false); const shstrtab_sect = &self.shdrs.items[shdr_index]; try self.base.file.?.pwriteAll(self.shstrtab.buffer.items, shstrtab_sect.sh_offset); self.shstrtab_dirty = false; } } { const shdr_index = self.strtab_section_index.?; if (self.strtab_dirty or self.strtab.buffer.items.len != self.shdrs.items[shdr_index].sh_size) { try self.growNonAllocSection(shdr_index, self.strtab.buffer.items.len, 1, false); const strtab_sect = self.shdrs.items[shdr_index]; try self.base.file.?.pwriteAll(self.strtab.buffer.items, strtab_sect.sh_offset); self.strtab_dirty = false; } } if (self.dwarf) |dwarf| { const shdr_index = self.debug_str_section_index.?; if (self.debug_strtab_dirty or dwarf.strtab.buffer.items.len != self.shdrs.items[shdr_index].sh_size) { try self.growNonAllocSection(shdr_index, dwarf.strtab.buffer.items.len, 1, false); const debug_strtab_sect = self.shdrs.items[shdr_index]; try self.base.file.?.pwriteAll(dwarf.strtab.buffer.items, debug_strtab_sect.sh_offset); self.debug_strtab_dirty = false; } } if (self.shdr_table_dirty) { const shsize: u64 = switch (self.ptr_width) { .p32 => @sizeOf(elf.Elf32_Shdr), .p64 => @sizeOf(elf.Elf64_Shdr), }; const shalign: u16 = switch (self.ptr_width) { .p32 => @alignOf(elf.Elf32_Shdr), .p64 => @alignOf(elf.Elf64_Shdr), }; const allocated_size = self.allocatedSize(self.shdr_table_offset.?); const needed_size = self.shdrs.items.len * shsize; if (needed_size > allocated_size) { self.shdr_table_offset = null; // free the space self.shdr_table_offset = self.findFreeSpace(needed_size, shalign); } switch (self.ptr_width) { .p32 => { const buf = try gpa.alloc(elf.Elf32_Shdr, self.shdrs.items.len); defer gpa.free(buf); for (buf, 0..) |*shdr, i| { shdr.* = shdrTo32(self.shdrs.items[i]); log.debug("writing section {?s}: {}", .{ self.shstrtab.get(shdr.sh_name), shdr.* }); if (foreign_endian) { mem.byteSwapAllFields(elf.Elf32_Shdr, shdr); } } try self.base.file.?.pwriteAll(mem.sliceAsBytes(buf), self.shdr_table_offset.?); }, .p64 => { const buf = try gpa.alloc(elf.Elf64_Shdr, self.shdrs.items.len); defer gpa.free(buf); for (buf, 0..) |*shdr, i| { shdr.* = self.shdrs.items[i]; log.debug("writing section {?s}: {}", .{ self.shstrtab.get(shdr.sh_name), shdr.* }); if (foreign_endian) { mem.byteSwapAllFields(elf.Elf64_Shdr, shdr); } } try self.base.file.?.pwriteAll(mem.sliceAsBytes(buf), self.shdr_table_offset.?); }, } self.shdr_table_dirty = false; } if (self.entry_addr == null and self.base.options.effectiveOutputMode() == .Exe) { log.debug("flushing. no_entry_point_found = true", .{}); self.error_flags.no_entry_point_found = true; } else { log.debug("flushing. no_entry_point_found = false", .{}); self.error_flags.no_entry_point_found = false; try self.writeElfHeader(); } // The point of flush() is to commit changes, so in theory, nothing should // be dirty after this. However, it is possible for some things to remain // dirty because they fail to be written in the event of compile errors, // such as debug_line_header_dirty and debug_info_header_dirty. assert(!self.debug_abbrev_section_dirty); assert(!self.debug_aranges_section_dirty); assert(!self.phdr_table_dirty); assert(!self.shdr_table_dirty); assert(!self.shstrtab_dirty); assert(!self.strtab_dirty); assert(!self.debug_strtab_dirty); assert(!self.got.dirty); } const ParseError = error{ UnknownFileType, InvalidCpuArch, OutOfMemory, Overflow, InputOutput, EndOfStream, FileSystem, NotSupported, InvalidCharacter, } || std.os.SeekError || std.fs.File.OpenError || std.fs.File.ReadError; fn parsePositional( self: *Elf, in_file: std.fs.File, path: []const u8, must_link: bool, ctx: *ParseErrorCtx, ) ParseError!void { const tracy = trace(@src()); defer tracy.end(); if (Object.isObject(in_file)) { try self.parseObject(in_file, path, ctx); } else { try self.parseLibrary(in_file, path, .{ .path = null, .needed = false, .weak = false, }, must_link, ctx); } } fn parseLibrary( self: *Elf, in_file: std.fs.File, path: []const u8, lib: link.SystemLib, must_link: bool, ctx: *ParseErrorCtx, ) ParseError!void { const tracy = trace(@src()); defer tracy.end(); _ = lib; if (Archive.isArchive(in_file)) { try self.parseArchive(in_file, path, must_link, ctx); } else return error.UnknownFileType; } fn parseObject(self: *Elf, in_file: std.fs.File, path: []const u8, ctx: *ParseErrorCtx) ParseError!void { const tracy = trace(@src()); defer tracy.end(); const gpa = self.base.allocator; const data = try in_file.readToEndAlloc(gpa, std.math.maxInt(u32)); const index = @as(File.Index, @intCast(try self.files.addOne(gpa))); self.files.set(index, .{ .object = .{ .path = path, .data = data, .index = index, } }); try self.objects.append(gpa, index); const object = self.file(index).?.object; try object.parse(self); ctx.detected_cpu_arch = object.header.?.e_machine.toTargetCpuArch().?; if (ctx.detected_cpu_arch != self.base.options.target.cpu.arch) return error.InvalidCpuArch; } fn parseArchive( self: *Elf, in_file: std.fs.File, path: []const u8, must_link: bool, ctx: *ParseErrorCtx, ) ParseError!void { const tracy = trace(@src()); defer tracy.end(); const gpa = self.base.allocator; const data = try in_file.readToEndAlloc(gpa, std.math.maxInt(u32)); var archive = Archive{ .path = path, .data = data }; defer archive.deinit(gpa); try archive.parse(self); for (archive.objects.items) |extracted| { const index = @as(File.Index, @intCast(try self.files.addOne(gpa))); self.files.set(index, .{ .object = extracted }); const object = &self.files.items(.data)[index].object; object.index = index; object.alive = must_link; try object.parse(self); try self.objects.append(gpa, index); ctx.detected_cpu_arch = object.header.?.e_machine.toTargetCpuArch().?; if (ctx.detected_cpu_arch != self.base.options.target.cpu.arch) return error.InvalidCpuArch; } } /// When resolving symbols, we approach the problem similarly to `mold`. /// 1. Resolve symbols across all objects (including those preemptively extracted archives). /// 2. Resolve symbols across all shared objects. /// 3. Mark live objects (see `Elf.markLive`) /// 4. Reset state of all resolved globals since we will redo this bit on the pruned set. /// 5. Remove references to dead objects/shared objects /// 6. Re-run symbol resolution on pruned objects and shared objects sets. fn resolveSymbols(self: *Elf) error{Overflow}!void { // Resolve symbols in the ZigModule. For now, we assume that it's always live. if (self.zig_module_index) |index| self.file(index).?.resolveSymbols(self); // Resolve symbols on the set of all objects and shared objects (even if some are unneeded). for (self.objects.items) |index| self.file(index).?.resolveSymbols(self); // Mark live objects. self.markLive(); // Reset state of all globals after marking live objects. if (self.zig_module_index) |index| self.file(index).?.resetGlobals(self); for (self.objects.items) |index| self.file(index).?.resetGlobals(self); // Prune dead objects and shared objects. var i: usize = 0; while (i < self.objects.items.len) { const index = self.objects.items[i]; if (!self.file(index).?.isAlive()) { _ = self.objects.orderedRemove(i); } else i += 1; } // Dedup comdat groups. for (self.objects.items) |index| { const object = self.file(index).?.object; for (object.comdat_groups.items) |cg_index| { const cg = self.comdatGroup(cg_index); const cg_owner = self.comdatGroupOwner(cg.owner); const owner_file_index = if (self.file(cg_owner.file)) |file_ptr| file_ptr.object.index else std.math.maxInt(File.Index); cg_owner.file = @min(owner_file_index, index); } } for (self.objects.items) |index| { const object = self.file(index).?.object; for (object.comdat_groups.items) |cg_index| { const cg = self.comdatGroup(cg_index); const cg_owner = self.comdatGroupOwner(cg.owner); if (cg_owner.file != index) { for (try object.comdatGroupMembers(cg.shndx)) |shndx| { const atom_index = object.atoms.items[shndx]; if (self.atom(atom_index)) |atom_ptr| { atom_ptr.alive = false; // atom_ptr.markFdesDead(self); } } } } } // Re-resolve the symbols. if (self.zig_module_index) |index| self.file(index).?.resolveSymbols(self); for (self.objects.items) |index| self.file(index).?.resolveSymbols(self); } /// Traverses all objects and shared objects marking any object referenced by /// a live object/shared object as alive itself. /// This routine will prune unneeded objects extracted from archives and /// unneeded shared objects. fn markLive(self: *Elf) void { for (self.objects.items) |index| { const file_ptr = self.file(index).?; if (file_ptr.isAlive()) file_ptr.markLive(self); } } fn markImportsExports(self: *Elf) void { const mark = struct { fn mark(elf_file: *Elf, file_index: File.Index) void { for (elf_file.file(file_index).?.globals()) |global_index| { const global = elf_file.symbol(global_index); if (global.version_index == elf.VER_NDX_LOCAL) continue; const file_ptr = global.file(elf_file) orelse continue; const vis = @as(elf.STV, @enumFromInt(global.elfSym(elf_file).st_other)); if (vis == .HIDDEN) continue; // if (file == .shared and !global.isAbs(self)) { // global.flags.import = true; // continue; // } if (file_ptr.index() == file_index) { global.flags.@"export" = true; if (elf_file.isDynLib() and vis != .PROTECTED) { global.flags.import = true; } } } } }.mark; if (self.zig_module_index) |index| { mark(self, index); } for (self.objects.items) |index| { mark(self, index); } } fn claimUnresolved(self: *Elf) void { if (self.zig_module_index) |index| { const zig_module = self.file(index).?.zig_module; zig_module.claimUnresolved(self); } for (self.objects.items) |index| { const object = self.file(index).?.object; object.claimUnresolved(self); } } /// In scanRelocs we will go over all live atoms and scan their relocs. /// This will help us work out what synthetics to emit, GOT indirection, etc. /// This is also the point where we will report undefined symbols for any /// alloc sections. fn scanRelocs(self: *Elf) !void { const gpa = self.base.allocator; var undefs = std.AutoHashMap(Symbol.Index, std.ArrayList(Atom.Index)).init(gpa); defer { var it = undefs.iterator(); while (it.next()) |entry| { entry.value_ptr.deinit(); } undefs.deinit(); } if (self.zig_module_index) |index| { const zig_module = self.file(index).?.zig_module; try zig_module.scanRelocs(self, &undefs); } for (self.objects.items) |index| { const object = self.file(index).?.object; try object.scanRelocs(self, &undefs); } try self.reportUndefined(&undefs); for (self.symbols.items, 0..) |*sym, sym_index| { if (sym.flags.needs_got) { log.debug("'{s}' needs GOT", .{sym.name(self)}); // TODO how can we tell we need to write it again, aka the entry is dirty? const gop = try sym.getOrCreateGotEntry(@intCast(sym_index), self); try self.got.writeEntry(self, gop.index); } } } fn allocateObjects(self: *Elf) !void { for (self.objects.items) |index| { const object = self.file(index).?.object; for (object.atoms.items) |atom_index| { const atom_ptr = self.atom(atom_index) orelse continue; if (!atom_ptr.alive) continue; try atom_ptr.allocate(self); } for (object.locals()) |local_index| { const local = self.symbol(local_index); const atom_ptr = local.atom(self) orelse continue; if (!atom_ptr.alive) continue; local.value += atom_ptr.value; } for (object.globals()) |global_index| { const global = self.symbol(global_index); const atom_ptr = global.atom(self) orelse continue; if (!atom_ptr.alive) continue; if (global.file_index == index) { global.value += atom_ptr.value; } } } } fn writeObjects(self: *Elf) !void { const gpa = self.base.allocator; for (self.objects.items) |index| { const object = self.file(index).?.object; for (object.atoms.items) |atom_index| { const atom_ptr = self.atom(atom_index) orelse continue; if (!atom_ptr.alive) continue; const shdr = &self.shdrs.items[atom_ptr.output_section_index]; if (shdr.sh_type == elf.SHT_NOBITS) continue; if (shdr.sh_flags & elf.SHF_ALLOC == 0) continue; // TODO we don't yet know how to handle non-alloc sections const file_offset = shdr.sh_offset + atom_ptr.value - shdr.sh_addr; log.debug("writing atom({d}) at 0x{x}", .{ atom_ptr.atom_index, file_offset }); const code = try atom_ptr.codeInObjectUncompressAlloc(self); defer gpa.free(code); try atom_ptr.resolveRelocs(self, code); try self.base.file.?.pwriteAll(code, file_offset); } } } fn linkWithLLD(self: *Elf, comp: *Compilation, prog_node: *std.Progress.Node) !void { const tracy = trace(@src()); defer tracy.end(); var arena_allocator = std.heap.ArenaAllocator.init(self.base.allocator); defer arena_allocator.deinit(); const arena = arena_allocator.allocator(); const directory = self.base.options.emit.?.directory; // Just an alias to make it shorter to type. const full_out_path = try directory.join(arena, &[_][]const u8{self.base.options.emit.?.sub_path}); // If there is no Zig code to compile, then we should skip flushing the output file because it // will not be part of the linker line anyway. const module_obj_path: ?[]const u8 = if (self.base.options.module != null) blk: { try self.flushModule(comp, prog_node); if (fs.path.dirname(full_out_path)) |dirname| { break :blk try fs.path.join(arena, &.{ dirname, self.base.intermediary_basename.? }); } else { break :blk self.base.intermediary_basename.?; } } else null; var sub_prog_node = prog_node.start("LLD Link", 0); sub_prog_node.activate(); sub_prog_node.context.refresh(); defer sub_prog_node.end(); const is_obj = self.base.options.output_mode == .Obj; const is_lib = self.base.options.output_mode == .Lib; const is_dyn_lib = self.base.options.link_mode == .Dynamic and is_lib; const is_exe_or_dyn_lib = is_dyn_lib or self.base.options.output_mode == .Exe; const have_dynamic_linker = self.base.options.link_libc and self.base.options.link_mode == .Dynamic and is_exe_or_dyn_lib; const target = self.base.options.target; const gc_sections = self.base.options.gc_sections orelse !is_obj; const stack_size = self.base.options.stack_size_override orelse 16777216; const allow_shlib_undefined = self.base.options.allow_shlib_undefined orelse !self.base.options.is_native_os; const compiler_rt_path: ?[]const u8 = blk: { if (comp.compiler_rt_lib) |x| break :blk x.full_object_path; if (comp.compiler_rt_obj) |x| break :blk x.full_object_path; break :blk null; }; // Here we want to determine whether we can save time by not invoking LLD when the // output is unchanged. None of the linker options or the object files that are being // linked are in the hash that namespaces the directory we are outputting to. Therefore, // we must hash those now, and the resulting digest will form the "id" of the linking // job we are about to perform. // After a successful link, we store the id in the metadata of a symlink named "lld.id" in // the artifact directory. So, now, we check if this symlink exists, and if it matches // our digest. If so, we can skip linking. Otherwise, we proceed with invoking LLD. const id_symlink_basename = "lld.id"; var man: Cache.Manifest = undefined; defer if (!self.base.options.disable_lld_caching) man.deinit(); var digest: [Cache.hex_digest_len]u8 = undefined; if (!self.base.options.disable_lld_caching) { man = comp.cache_parent.obtain(); // We are about to obtain this lock, so here we give other processes a chance first. self.base.releaseLock(); comptime assert(Compilation.link_hash_implementation_version == 10); try man.addOptionalFile(self.base.options.linker_script); try man.addOptionalFile(self.base.options.version_script); for (self.base.options.objects) |obj| { _ = try man.addFile(obj.path, null); man.hash.add(obj.must_link); man.hash.add(obj.loption); } for (comp.c_object_table.keys()) |key| { _ = try man.addFile(key.status.success.object_path, null); } try man.addOptionalFile(module_obj_path); try man.addOptionalFile(compiler_rt_path); // We can skip hashing libc and libc++ components that we are in charge of building from Zig // installation sources because they are always a product of the compiler version + target information. man.hash.addOptionalBytes(self.base.options.entry); man.hash.addOptional(self.base.options.image_base_override); man.hash.add(gc_sections); man.hash.addOptional(self.base.options.sort_section); man.hash.add(self.base.options.eh_frame_hdr); man.hash.add(self.base.options.emit_relocs); man.hash.add(self.base.options.rdynamic); man.hash.addListOfBytes(self.base.options.lib_dirs); man.hash.addListOfBytes(self.base.options.rpath_list); man.hash.add(self.base.options.each_lib_rpath); if (self.base.options.output_mode == .Exe) { man.hash.add(stack_size); man.hash.add(self.base.options.build_id); } man.hash.addListOfBytes(self.base.options.symbol_wrap_set.keys()); man.hash.add(self.base.options.skip_linker_dependencies); man.hash.add(self.base.options.z_nodelete); man.hash.add(self.base.options.z_notext); man.hash.add(self.base.options.z_defs); man.hash.add(self.base.options.z_origin); man.hash.add(self.base.options.z_nocopyreloc); man.hash.add(self.base.options.z_now); man.hash.add(self.base.options.z_relro); man.hash.add(self.base.options.z_common_page_size orelse 0); man.hash.add(self.base.options.z_max_page_size orelse 0); man.hash.add(self.base.options.hash_style); // strip does not need to go into the linker hash because it is part of the hash namespace if (self.base.options.link_libc) { man.hash.add(self.base.options.libc_installation != null); if (self.base.options.libc_installation) |libc_installation| { man.hash.addBytes(libc_installation.crt_dir.?); } if (have_dynamic_linker) { man.hash.addOptionalBytes(self.base.options.dynamic_linker); } } man.hash.addOptionalBytes(self.base.options.soname); man.hash.addOptional(self.base.options.version); try link.hashAddSystemLibs(&man, self.base.options.system_libs); man.hash.addListOfBytes(self.base.options.force_undefined_symbols.keys()); man.hash.add(allow_shlib_undefined); man.hash.add(self.base.options.bind_global_refs_locally); man.hash.add(self.base.options.compress_debug_sections); man.hash.add(self.base.options.tsan); man.hash.addOptionalBytes(self.base.options.sysroot); man.hash.add(self.base.options.linker_optimization); // We don't actually care whether it's a cache hit or miss; we just need the digest and the lock. _ = try man.hit(); digest = man.final(); var prev_digest_buf: [digest.len]u8 = undefined; const prev_digest: []u8 = Cache.readSmallFile( directory.handle, id_symlink_basename, &prev_digest_buf, ) catch |err| blk: { log.debug("ELF LLD new_digest={s} error: {s}", .{ std.fmt.fmtSliceHexLower(&digest), @errorName(err) }); // Handle this as a cache miss. break :blk prev_digest_buf[0..0]; }; if (mem.eql(u8, prev_digest, &digest)) { log.debug("ELF LLD digest={s} match - skipping invocation", .{std.fmt.fmtSliceHexLower(&digest)}); // Hot diggity dog! The output binary is already there. self.base.lock = man.toOwnedLock(); return; } log.debug("ELF LLD prev_digest={s} new_digest={s}", .{ std.fmt.fmtSliceHexLower(prev_digest), std.fmt.fmtSliceHexLower(&digest) }); // We are about to change the output file to be different, so we invalidate the build hash now. directory.handle.deleteFile(id_symlink_basename) catch |err| switch (err) { error.FileNotFound => {}, else => |e| return e, }; } // Due to a deficiency in LLD, we need to special-case BPF to a simple file // copy when generating relocatables. Normally, we would expect `lld -r` to work. // However, because LLD wants to resolve BPF relocations which it shouldn't, it fails // before even generating the relocatable. if (self.base.options.output_mode == .Obj and (self.base.options.lto or target.isBpfFreestanding())) { // In this case we must do a simple file copy // here. TODO: think carefully about how we can avoid this redundant operation when doing // build-obj. See also the corresponding TODO in linkAsArchive. const the_object_path = blk: { if (self.base.options.objects.len != 0) break :blk self.base.options.objects[0].path; if (comp.c_object_table.count() != 0) break :blk comp.c_object_table.keys()[0].status.success.object_path; if (module_obj_path) |p| break :blk p; // TODO I think this is unreachable. Audit this situation when solving the above TODO // regarding eliding redundant object -> object transformations. return error.NoObjectsToLink; }; // This can happen when using --enable-cache and using the stage1 backend. In this case // we can skip the file copy. if (!mem.eql(u8, the_object_path, full_out_path)) { try fs.cwd().copyFile(the_object_path, fs.cwd(), full_out_path, .{}); } } else { // Create an LLD command line and invoke it. var argv = std.ArrayList([]const u8).init(self.base.allocator); defer argv.deinit(); // We will invoke ourselves as a child process to gain access to LLD. // This is necessary because LLD does not behave properly as a library - // it calls exit() and does not reset all global data between invocations. const linker_command = "ld.lld"; try argv.appendSlice(&[_][]const u8{ comp.self_exe_path.?, linker_command }); if (is_obj) { try argv.append("-r"); } try argv.append("--error-limit=0"); if (self.base.options.sysroot) |sysroot| { try argv.append(try std.fmt.allocPrint(arena, "--sysroot={s}", .{sysroot})); } if (self.base.options.lto) { switch (self.base.options.optimize_mode) { .Debug => {}, .ReleaseSmall => try argv.append("--lto-O2"), .ReleaseFast, .ReleaseSafe => try argv.append("--lto-O3"), } } try argv.append(try std.fmt.allocPrint(arena, "-O{d}", .{ self.base.options.linker_optimization, })); if (self.base.options.entry) |entry| { try argv.append("--entry"); try argv.append(entry); } for (self.base.options.force_undefined_symbols.keys()) |sym| { try argv.append("-u"); try argv.append(sym); } switch (self.base.options.hash_style) { .gnu => try argv.append("--hash-style=gnu"), .sysv => try argv.append("--hash-style=sysv"), .both => {}, // this is the default } if (self.base.options.output_mode == .Exe) { try argv.append("-z"); try argv.append(try std.fmt.allocPrint(arena, "stack-size={d}", .{stack_size})); switch (self.base.options.build_id) { .none => {}, .fast, .uuid, .sha1, .md5 => { try argv.append(try std.fmt.allocPrint(arena, "--build-id={s}", .{ @tagName(self.base.options.build_id), })); }, .hexstring => |hs| { try argv.append(try std.fmt.allocPrint(arena, "--build-id=0x{s}", .{ std.fmt.fmtSliceHexLower(hs.toSlice()), })); }, } } if (self.base.options.image_base_override) |image_base| { try argv.append(try std.fmt.allocPrint(arena, "--image-base={d}", .{image_base})); } if (self.base.options.linker_script) |linker_script| { try argv.append("-T"); try argv.append(linker_script); } if (self.base.options.sort_section) |how| { const arg = try std.fmt.allocPrint(arena, "--sort-section={s}", .{@tagName(how)}); try argv.append(arg); } if (gc_sections) { try argv.append("--gc-sections"); } if (self.base.options.print_gc_sections) { try argv.append("--print-gc-sections"); } if (self.base.options.print_icf_sections) { try argv.append("--print-icf-sections"); } if (self.base.options.print_map) { try argv.append("--print-map"); } if (self.base.options.eh_frame_hdr) { try argv.append("--eh-frame-hdr"); } if (self.base.options.emit_relocs) { try argv.append("--emit-relocs"); } if (self.base.options.rdynamic) { try argv.append("--export-dynamic"); } if (self.base.options.strip) { try argv.append("-s"); } if (self.base.options.z_nodelete) { try argv.append("-z"); try argv.append("nodelete"); } if (self.base.options.z_notext) { try argv.append("-z"); try argv.append("notext"); } if (self.base.options.z_defs) { try argv.append("-z"); try argv.append("defs"); } if (self.base.options.z_origin) { try argv.append("-z"); try argv.append("origin"); } if (self.base.options.z_nocopyreloc) { try argv.append("-z"); try argv.append("nocopyreloc"); } if (self.base.options.z_now) { // LLD defaults to -zlazy try argv.append("-znow"); } if (!self.base.options.z_relro) { // LLD defaults to -zrelro try argv.append("-znorelro"); } if (self.base.options.z_common_page_size) |size| { try argv.append("-z"); try argv.append(try std.fmt.allocPrint(arena, "common-page-size={d}", .{size})); } if (self.base.options.z_max_page_size) |size| { try argv.append("-z"); try argv.append(try std.fmt.allocPrint(arena, "max-page-size={d}", .{size})); } if (getLDMOption(target)) |ldm| { // Any target ELF will use the freebsd osabi if suffixed with "_fbsd". const arg = if (target.os.tag == .freebsd) try std.fmt.allocPrint(arena, "{s}_fbsd", .{ldm}) else ldm; try argv.append("-m"); try argv.append(arg); } if (self.base.options.link_mode == .Static) { if (target.cpu.arch.isArmOrThumb()) { try argv.append("-Bstatic"); } else { try argv.append("-static"); } } else if (is_dyn_lib) { try argv.append("-shared"); } if (self.base.options.pie and self.base.options.output_mode == .Exe) { try argv.append("-pie"); } if (is_dyn_lib and target.os.tag == .netbsd) { // Add options to produce shared objects with only 2 PT_LOAD segments. // NetBSD expects 2 PT_LOAD segments in a shared object, otherwise // ld.elf_so fails loading dynamic libraries with "not found" error. // See https://github.com/ziglang/zig/issues/9109 . try argv.append("--no-rosegment"); try argv.append("-znorelro"); } try argv.append("-o"); try argv.append(full_out_path); // csu prelude var csu = try CsuObjects.init(arena, self.base.options, comp); if (csu.crt0) |v| try argv.append(v); if (csu.crti) |v| try argv.append(v); if (csu.crtbegin) |v| try argv.append(v); // rpaths var rpath_table = std.StringHashMap(void).init(self.base.allocator); defer rpath_table.deinit(); for (self.base.options.rpath_list) |rpath| { if ((try rpath_table.fetchPut(rpath, {})) == null) { try argv.append("-rpath"); try argv.append(rpath); } } for (self.base.options.symbol_wrap_set.keys()) |symbol_name| { try argv.appendSlice(&.{ "-wrap", symbol_name }); } if (self.base.options.each_lib_rpath) { var test_path = std.ArrayList(u8).init(self.base.allocator); defer test_path.deinit(); for (self.base.options.lib_dirs) |lib_dir_path| { for (self.base.options.system_libs.keys()) |link_lib| { test_path.clearRetainingCapacity(); const sep = fs.path.sep_str; try test_path.writer().print("{s}" ++ sep ++ "lib{s}.so", .{ lib_dir_path, link_lib, }); fs.cwd().access(test_path.items, .{}) catch |err| switch (err) { error.FileNotFound => continue, else => |e| return e, }; if ((try rpath_table.fetchPut(lib_dir_path, {})) == null) { try argv.append("-rpath"); try argv.append(lib_dir_path); } } } for (self.base.options.objects) |obj| { if (Compilation.classifyFileExt(obj.path) == .shared_library) { const lib_dir_path = std.fs.path.dirname(obj.path) orelse continue; if (obj.loption) continue; if ((try rpath_table.fetchPut(lib_dir_path, {})) == null) { try argv.append("-rpath"); try argv.append(lib_dir_path); } } } } for (self.base.options.lib_dirs) |lib_dir| { try argv.append("-L"); try argv.append(lib_dir); } if (self.base.options.link_libc) { if (self.base.options.libc_installation) |libc_installation| { try argv.append("-L"); try argv.append(libc_installation.crt_dir.?); } if (have_dynamic_linker) { if (self.base.options.dynamic_linker) |dynamic_linker| { try argv.append("-dynamic-linker"); try argv.append(dynamic_linker); } } } if (is_dyn_lib) { if (self.base.options.soname) |soname| { try argv.append("-soname"); try argv.append(soname); } if (self.base.options.version_script) |version_script| { try argv.append("-version-script"); try argv.append(version_script); } } // Positional arguments to the linker such as object files. var whole_archive = false; for (self.base.options.objects) |obj| { if (obj.must_link and !whole_archive) { try argv.append("-whole-archive"); whole_archive = true; } else if (!obj.must_link and whole_archive) { try argv.append("-no-whole-archive"); whole_archive = false; } if (obj.loption) { assert(obj.path[0] == ':'); try argv.append("-l"); } try argv.append(obj.path); } if (whole_archive) { try argv.append("-no-whole-archive"); whole_archive = false; } for (comp.c_object_table.keys()) |key| { try argv.append(key.status.success.object_path); } if (module_obj_path) |p| { try argv.append(p); } // TSAN if (self.base.options.tsan) { try argv.append(comp.tsan_static_lib.?.full_object_path); } // libc if (is_exe_or_dyn_lib and !self.base.options.skip_linker_dependencies and !self.base.options.link_libc) { if (comp.libc_static_lib) |lib| { try argv.append(lib.full_object_path); } } // stack-protector. // Related: https://github.com/ziglang/zig/issues/7265 if (comp.libssp_static_lib) |ssp| { try argv.append(ssp.full_object_path); } // Shared libraries. if (is_exe_or_dyn_lib) { const system_libs = self.base.options.system_libs.keys(); const system_libs_values = self.base.options.system_libs.values(); // Worst-case, we need an --as-needed argument for every lib, as well // as one before and one after. try argv.ensureUnusedCapacity(system_libs.len * 2 + 2); argv.appendAssumeCapacity("--as-needed"); var as_needed = true; for (system_libs_values) |lib_info| { const lib_as_needed = !lib_info.needed; switch ((@as(u2, @intFromBool(lib_as_needed)) << 1) | @intFromBool(as_needed)) { 0b00, 0b11 => {}, 0b01 => { argv.appendAssumeCapacity("--no-as-needed"); as_needed = false; }, 0b10 => { argv.appendAssumeCapacity("--as-needed"); as_needed = true; }, } // By this time, we depend on these libs being dynamically linked // libraries and not static libraries (the check for that needs to be earlier), // but they could be full paths to .so files, in which case we // want to avoid prepending "-l". argv.appendAssumeCapacity(lib_info.path.?); } if (!as_needed) { argv.appendAssumeCapacity("--as-needed"); as_needed = true; } // libc++ dep if (self.base.options.link_libcpp) { try argv.append(comp.libcxxabi_static_lib.?.full_object_path); try argv.append(comp.libcxx_static_lib.?.full_object_path); } // libunwind dep if (self.base.options.link_libunwind) { try argv.append(comp.libunwind_static_lib.?.full_object_path); } // libc dep self.error_flags.missing_libc = false; if (self.base.options.link_libc) { if (self.base.options.libc_installation != null) { const needs_grouping = self.base.options.link_mode == .Static; if (needs_grouping) try argv.append("--start-group"); try argv.appendSlice(target_util.libcFullLinkFlags(target)); if (needs_grouping) try argv.append("--end-group"); } else if (target.isGnuLibC()) { for (glibc.libs) |lib| { const lib_path = try std.fmt.allocPrint(arena, "{s}{c}lib{s}.so.{d}", .{ comp.glibc_so_files.?.dir_path, fs.path.sep, lib.name, lib.sover, }); try argv.append(lib_path); } try argv.append(try comp.get_libc_crt_file(arena, "libc_nonshared.a")); } else if (target.isMusl()) { try argv.append(try comp.get_libc_crt_file(arena, switch (self.base.options.link_mode) { .Static => "libc.a", .Dynamic => "libc.so", })); } else { self.error_flags.missing_libc = true; return error.FlushFailure; } } } // compiler-rt. Since compiler_rt exports symbols like `memset`, it needs // to be after the shared libraries, so they are picked up from the shared // libraries, not libcompiler_rt. if (compiler_rt_path) |p| { try argv.append(p); } // crt postlude if (csu.crtend) |v| try argv.append(v); if (csu.crtn) |v| try argv.append(v); if (allow_shlib_undefined) { try argv.append("--allow-shlib-undefined"); } switch (self.base.options.compress_debug_sections) { .none => {}, .zlib => try argv.append("--compress-debug-sections=zlib"), } if (self.base.options.bind_global_refs_locally) { try argv.append("-Bsymbolic"); } if (self.base.options.verbose_link) { // Skip over our own name so that the LLD linker name is the first argv item. Compilation.dump_argv(argv.items[1..]); } if (std.process.can_spawn) { // If possible, we run LLD as a child process because it does not always // behave properly as a library, unfortunately. // https://github.com/ziglang/zig/issues/3825 var child = std.ChildProcess.init(argv.items, arena); if (comp.clang_passthrough_mode) { child.stdin_behavior = .Inherit; child.stdout_behavior = .Inherit; child.stderr_behavior = .Inherit; const term = child.spawnAndWait() catch |err| { log.err("unable to spawn {s}: {s}", .{ argv.items[0], @errorName(err) }); return error.UnableToSpawnSelf; }; switch (term) { .Exited => |code| { if (code != 0) { std.process.exit(code); } }, else => std.process.abort(), } } else { child.stdin_behavior = .Ignore; child.stdout_behavior = .Ignore; child.stderr_behavior = .Pipe; try child.spawn(); const stderr = try child.stderr.?.reader().readAllAlloc(arena, std.math.maxInt(usize)); const term = child.wait() catch |err| { log.err("unable to spawn {s}: {s}", .{ argv.items[0], @errorName(err) }); return error.UnableToSpawnSelf; }; switch (term) { .Exited => |code| { if (code != 0) { comp.lockAndParseLldStderr(linker_command, stderr); return error.LLDReportedFailure; } }, else => { log.err("{s} terminated with stderr:\n{s}", .{ argv.items[0], stderr }); return error.LLDCrashed; }, } if (stderr.len != 0) { log.warn("unexpected LLD stderr:\n{s}", .{stderr}); } } } else { const exit_code = try lldMain(arena, argv.items, false); if (exit_code != 0) { if (comp.clang_passthrough_mode) { std.process.exit(exit_code); } else { return error.LLDReportedFailure; } } } } if (!self.base.options.disable_lld_caching) { // Update the file with the digest. If it fails we can continue; it only // means that the next invocation will have an unnecessary cache miss. Cache.writeSmallFile(directory.handle, id_symlink_basename, &digest) catch |err| { log.warn("failed to save linking hash digest file: {s}", .{@errorName(err)}); }; // Again failure here only means an unnecessary cache miss. man.writeManifest() catch |err| { log.warn("failed to write cache manifest when linking: {s}", .{@errorName(err)}); }; // We hang on to this lock so that the output file path can be used without // other processes clobbering it. self.base.lock = man.toOwnedLock(); } } fn writeDwarfAddrAssumeCapacity(self: *Elf, buf: *std.ArrayList(u8), addr: u64) void { const target_endian = self.base.options.target.cpu.arch.endian(); switch (self.ptr_width) { .p32 => mem.writeInt(u32, buf.addManyAsArrayAssumeCapacity(4), @as(u32, @intCast(addr)), target_endian), .p64 => mem.writeInt(u64, buf.addManyAsArrayAssumeCapacity(8), addr, target_endian), } } fn writeElfHeader(self: *Elf) !void { var hdr_buf: [@sizeOf(elf.Elf64_Ehdr)]u8 = undefined; var index: usize = 0; hdr_buf[0..4].* = elf.MAGIC.*; index += 4; hdr_buf[index] = switch (self.ptr_width) { .p32 => elf.ELFCLASS32, .p64 => elf.ELFCLASS64, }; index += 1; const endian = self.base.options.target.cpu.arch.endian(); hdr_buf[index] = switch (endian) { .Little => elf.ELFDATA2LSB, .Big => elf.ELFDATA2MSB, }; index += 1; hdr_buf[index] = 1; // ELF version index += 1; // OS ABI, often set to 0 regardless of target platform // ABI Version, possibly used by glibc but not by static executables // padding @memset(hdr_buf[index..][0..9], 0); index += 9; assert(index == 16); const elf_type = switch (self.base.options.effectiveOutputMode()) { .Exe => elf.ET.EXEC, .Obj => elf.ET.REL, .Lib => switch (self.base.options.link_mode) { .Static => elf.ET.REL, .Dynamic => elf.ET.DYN, }, }; mem.writeInt(u16, hdr_buf[index..][0..2], @intFromEnum(elf_type), endian); index += 2; const machine = self.base.options.target.cpu.arch.toElfMachine(); mem.writeInt(u16, hdr_buf[index..][0..2], @intFromEnum(machine), endian); index += 2; // ELF Version, again mem.writeInt(u32, hdr_buf[index..][0..4], 1, endian); index += 4; const e_entry = if (elf_type == .REL) 0 else self.entry_addr.?; const phdr_table_offset = self.phdrs.items[self.phdr_table_index.?].p_offset; switch (self.ptr_width) { .p32 => { mem.writeInt(u32, hdr_buf[index..][0..4], @as(u32, @intCast(e_entry)), endian); index += 4; // e_phoff mem.writeInt(u32, hdr_buf[index..][0..4], @as(u32, @intCast(phdr_table_offset)), endian); index += 4; // e_shoff mem.writeInt(u32, hdr_buf[index..][0..4], @as(u32, @intCast(self.shdr_table_offset.?)), endian); index += 4; }, .p64 => { // e_entry mem.writeInt(u64, hdr_buf[index..][0..8], e_entry, endian); index += 8; // e_phoff mem.writeInt(u64, hdr_buf[index..][0..8], phdr_table_offset, endian); index += 8; // e_shoff mem.writeInt(u64, hdr_buf[index..][0..8], self.shdr_table_offset.?, endian); index += 8; }, } const e_flags = 0; mem.writeInt(u32, hdr_buf[index..][0..4], e_flags, endian); index += 4; const e_ehsize: u16 = switch (self.ptr_width) { .p32 => @sizeOf(elf.Elf32_Ehdr), .p64 => @sizeOf(elf.Elf64_Ehdr), }; mem.writeInt(u16, hdr_buf[index..][0..2], e_ehsize, endian); index += 2; const e_phentsize: u16 = switch (self.ptr_width) { .p32 => @sizeOf(elf.Elf32_Phdr), .p64 => @sizeOf(elf.Elf64_Phdr), }; mem.writeInt(u16, hdr_buf[index..][0..2], e_phentsize, endian); index += 2; const e_phnum = @as(u16, @intCast(self.phdrs.items.len)); mem.writeInt(u16, hdr_buf[index..][0..2], e_phnum, endian); index += 2; const e_shentsize: u16 = switch (self.ptr_width) { .p32 => @sizeOf(elf.Elf32_Shdr), .p64 => @sizeOf(elf.Elf64_Shdr), }; mem.writeInt(u16, hdr_buf[index..][0..2], e_shentsize, endian); index += 2; const e_shnum = @as(u16, @intCast(self.shdrs.items.len)); mem.writeInt(u16, hdr_buf[index..][0..2], e_shnum, endian); index += 2; mem.writeInt(u16, hdr_buf[index..][0..2], self.shstrtab_section_index.?, endian); index += 2; assert(index == e_ehsize); try self.base.file.?.pwriteAll(hdr_buf[0..index], 0); } fn freeUnnamedConsts(self: *Elf, decl_index: Module.Decl.Index) void { const unnamed_consts = self.unnamed_consts.getPtr(decl_index) orelse return; for (unnamed_consts.items) |sym_index| { self.freeDeclMetadata(sym_index); } unnamed_consts.clearAndFree(self.base.allocator); } fn freeDeclMetadata(self: *Elf, sym_index: Symbol.Index) void { const sym = self.symbol(sym_index); sym.atom(self).?.free(self); log.debug("adding %{d} to local symbols free list", .{sym_index}); self.symbols_free_list.append(self.base.allocator, sym_index) catch {}; self.symbols.items[sym_index] = .{}; // TODO free GOT entry here } pub fn freeDecl(self: *Elf, decl_index: Module.Decl.Index) void { if (self.llvm_object) |llvm_object| return llvm_object.freeDecl(decl_index); const mod = self.base.options.module.?; const decl = mod.declPtr(decl_index); log.debug("freeDecl {*}", .{decl}); if (self.decls.fetchRemove(decl_index)) |const_kv| { var kv = const_kv; const sym_index = kv.value.symbol_index; self.freeDeclMetadata(sym_index); self.freeUnnamedConsts(decl_index); kv.value.exports.deinit(self.base.allocator); } if (self.dwarf) |*dw| { dw.freeDecl(decl_index); } } pub fn getOrCreateMetadataForLazySymbol(self: *Elf, sym: link.File.LazySymbol) !Symbol.Index { const mod = self.base.options.module.?; const gop = try self.lazy_syms.getOrPut(self.base.allocator, sym.getDecl(mod)); errdefer _ = if (!gop.found_existing) self.lazy_syms.pop(); if (!gop.found_existing) gop.value_ptr.* = .{}; const metadata: struct { symbol_index: *Symbol.Index, state: *LazySymbolMetadata.State, } = switch (sym.kind) { .code => .{ .symbol_index = &gop.value_ptr.text_symbol_index, .state = &gop.value_ptr.text_state, }, .const_data => .{ .symbol_index = &gop.value_ptr.rodata_symbol_index, .state = &gop.value_ptr.rodata_state, }, }; const zig_module = self.file(self.zig_module_index.?).?.zig_module; switch (metadata.state.*) { .unused => metadata.symbol_index.* = try zig_module.addAtom(switch (sym.kind) { .code => self.text_section_index.?, .const_data => self.rodata_section_index.?, }, self), .pending_flush => return metadata.symbol_index.*, .flushed => {}, } metadata.state.* = .pending_flush; const symbol_index = metadata.symbol_index.*; // anyerror needs to be deferred until flushModule if (sym.getDecl(mod) != .none) try self.updateLazySymbol(sym, symbol_index); return symbol_index; } pub fn getOrCreateMetadataForDecl(self: *Elf, decl_index: Module.Decl.Index) !Symbol.Index { const gop = try self.decls.getOrPut(self.base.allocator, decl_index); if (!gop.found_existing) { const zig_module = self.file(self.zig_module_index.?).?.zig_module; gop.value_ptr.* = .{ .symbol_index = try zig_module.addAtom(self.getDeclShdrIndex(decl_index), self), .exports = .{}, }; } return gop.value_ptr.symbol_index; } fn getDeclShdrIndex(self: *Elf, decl_index: Module.Decl.Index) u16 { const mod = self.base.options.module.?; const decl = mod.declPtr(decl_index); const ty = decl.ty; const zig_ty = ty.zigTypeTag(mod); const val = decl.val; const shdr_index: u16 = blk: { if (val.isUndefDeep(mod)) { // TODO in release-fast and release-small, we should put undef in .bss break :blk self.data_section_index.?; } switch (zig_ty) { // TODO: what if this is a function pointer? .Fn => break :blk self.text_section_index.?, else => { if (val.getVariable(mod)) |_| { break :blk self.data_section_index.?; } break :blk self.rodata_section_index.?; }, } }; return shdr_index; } fn updateDeclCode( self: *Elf, decl_index: Module.Decl.Index, sym_index: Symbol.Index, code: []const u8, stt_bits: u8, ) !void { const gpa = self.base.allocator; const mod = self.base.options.module.?; const zig_module = self.file(self.zig_module_index.?).?.zig_module; const decl = mod.declPtr(decl_index); const decl_name = mod.intern_pool.stringToSlice(try decl.getFullyQualifiedName(mod)); log.debug("updateDeclCode {s}{*}", .{ decl_name, decl }); const required_alignment = decl.getAlignment(mod); const sym = self.symbol(sym_index); const esym = &zig_module.local_esyms.items[sym.esym_index]; const atom_ptr = sym.atom(self).?; const shdr_index = sym.output_section_index; sym.name_offset = try self.strtab.insert(gpa, decl_name); atom_ptr.alive = true; atom_ptr.name_offset = sym.name_offset; esym.st_name = sym.name_offset; esym.st_info |= stt_bits; esym.st_size = code.len; const old_size = atom_ptr.size; const old_vaddr = atom_ptr.value; atom_ptr.alignment = required_alignment; atom_ptr.size = code.len; if (old_size > 0 and self.base.child_pid == null) { const capacity = atom_ptr.capacity(self); const need_realloc = code.len > capacity or !required_alignment.check(sym.value); if (need_realloc) { try atom_ptr.grow(self); log.debug("growing {s} from 0x{x} to 0x{x}", .{ decl_name, old_vaddr, atom_ptr.value }); if (old_vaddr != atom_ptr.value) { sym.value = atom_ptr.value; esym.st_value = atom_ptr.value; log.debug(" (writing new offset table entry)", .{}); const extra = sym.extra(self).?; try self.got.writeEntry(self, extra.got); } } else if (code.len < old_size) { atom_ptr.shrink(self); } } else { try atom_ptr.allocate(self); errdefer self.freeDeclMetadata(sym_index); log.debug("allocated atom for {s} at 0x{x} to 0x{x}", .{ decl_name, atom_ptr.value, atom_ptr.value + atom_ptr.size, }); sym.value = atom_ptr.value; esym.st_value = atom_ptr.value; sym.flags.needs_got = true; const gop = try sym.getOrCreateGotEntry(sym_index, self); try self.got.writeEntry(self, gop.index); } const phdr_index = self.phdr_to_shdr_table.get(shdr_index).?; const section_offset = sym.value - self.phdrs.items[phdr_index].p_vaddr; const file_offset = self.shdrs.items[shdr_index].sh_offset + section_offset; if (self.base.child_pid) |pid| { switch (builtin.os.tag) { .linux => { var code_vec: [1]std.os.iovec_const = .{.{ .iov_base = code.ptr, .iov_len = code.len, }}; var remote_vec: [1]std.os.iovec_const = .{.{ .iov_base = @as([*]u8, @ptrFromInt(@as(usize, @intCast(sym.value)))), .iov_len = code.len, }}; const rc = std.os.linux.process_vm_writev(pid, &code_vec, &remote_vec, 0); switch (std.os.errno(rc)) { .SUCCESS => assert(rc == code.len), else => |errno| log.warn("process_vm_writev failure: {s}", .{@tagName(errno)}), } }, else => return error.HotSwapUnavailableOnHostOperatingSystem, } } try self.base.file.?.pwriteAll(code, file_offset); } pub fn updateFunc(self: *Elf, mod: *Module, func_index: InternPool.Index, air: Air, liveness: Liveness) !void { if (build_options.skip_non_native and builtin.object_format != .elf) { @panic("Attempted to compile for object format that was disabled by build configuration"); } if (self.llvm_object) |llvm_object| return llvm_object.updateFunc(mod, func_index, air, liveness); const tracy = trace(@src()); defer tracy.end(); const func = mod.funcInfo(func_index); const decl_index = func.owner_decl; const decl = mod.declPtr(decl_index); const sym_index = try self.getOrCreateMetadataForDecl(decl_index); self.freeUnnamedConsts(decl_index); self.symbol(sym_index).atom(self).?.freeRelocs(self); var code_buffer = std.ArrayList(u8).init(self.base.allocator); defer code_buffer.deinit(); var decl_state: ?Dwarf.DeclState = if (self.dwarf) |*dw| try dw.initDeclState(mod, decl_index) else null; defer if (decl_state) |*ds| ds.deinit(); const res = if (decl_state) |*ds| try codegen.generateFunction(&self.base, decl.srcLoc(mod), func_index, air, liveness, &code_buffer, .{ .dwarf = ds, }) else try codegen.generateFunction(&self.base, decl.srcLoc(mod), func_index, air, liveness, &code_buffer, .none); const code = switch (res) { .ok => code_buffer.items, .fail => |em| { decl.analysis = .codegen_failure; try mod.failed_decls.put(mod.gpa, decl_index, em); return; }, }; try self.updateDeclCode(decl_index, sym_index, code, elf.STT_FUNC); if (decl_state) |*ds| { const sym = self.symbol(sym_index); try self.dwarf.?.commitDeclState( mod, decl_index, sym.value, sym.atom(self).?.size, ds, ); } // Since we updated the vaddr and the size, each corresponding export // symbol also needs to be updated. return self.updateDeclExports(mod, decl_index, mod.getDeclExports(decl_index)); } pub fn updateDecl( self: *Elf, mod: *Module, decl_index: Module.Decl.Index, ) link.File.UpdateDeclError!void { if (build_options.skip_non_native and builtin.object_format != .elf) { @panic("Attempted to compile for object format that was disabled by build configuration"); } if (self.llvm_object) |llvm_object| return llvm_object.updateDecl(mod, decl_index); const tracy = trace(@src()); defer tracy.end(); const decl = mod.declPtr(decl_index); if (decl.val.getExternFunc(mod)) |_| { return; // TODO Should we do more when front-end analyzed extern decl? } if (decl.val.getVariable(mod)) |variable| { if (variable.is_extern) { return; // TODO Should we do more when front-end analyzed extern decl? } } const sym_index = try self.getOrCreateMetadataForDecl(decl_index); self.symbol(sym_index).atom(self).?.freeRelocs(self); var code_buffer = std.ArrayList(u8).init(self.base.allocator); defer code_buffer.deinit(); var decl_state: ?Dwarf.DeclState = if (self.dwarf) |*dw| try dw.initDeclState(mod, decl_index) else null; defer if (decl_state) |*ds| ds.deinit(); // TODO implement .debug_info for global variables const decl_val = if (decl.val.getVariable(mod)) |variable| variable.init.toValue() else decl.val; const res = if (decl_state) |*ds| try codegen.generateSymbol(&self.base, decl.srcLoc(mod), .{ .ty = decl.ty, .val = decl_val, }, &code_buffer, .{ .dwarf = ds, }, .{ .parent_atom_index = sym_index, }) else try codegen.generateSymbol(&self.base, decl.srcLoc(mod), .{ .ty = decl.ty, .val = decl_val, }, &code_buffer, .none, .{ .parent_atom_index = sym_index, }); const code = switch (res) { .ok => code_buffer.items, .fail => |em| { decl.analysis = .codegen_failure; try mod.failed_decls.put(mod.gpa, decl_index, em); return; }, }; try self.updateDeclCode(decl_index, sym_index, code, elf.STT_OBJECT); if (decl_state) |*ds| { const sym = self.symbol(sym_index); try self.dwarf.?.commitDeclState( mod, decl_index, sym.value, sym.atom(self).?.size, ds, ); } // Since we updated the vaddr and the size, each corresponding export // symbol also needs to be updated. return self.updateDeclExports(mod, decl_index, mod.getDeclExports(decl_index)); } fn updateLazySymbol(self: *Elf, sym: link.File.LazySymbol, symbol_index: Symbol.Index) !void { const gpa = self.base.allocator; const mod = self.base.options.module.?; const zig_module = self.file(self.zig_module_index.?).?.zig_module; var required_alignment: InternPool.Alignment = .none; var code_buffer = std.ArrayList(u8).init(gpa); defer code_buffer.deinit(); const name_str_index = blk: { const name = try std.fmt.allocPrint(gpa, "__lazy_{s}_{}", .{ @tagName(sym.kind), sym.ty.fmt(mod), }); defer gpa.free(name); break :blk try self.strtab.insert(gpa, name); }; const name = self.strtab.get(name_str_index).?; const src = if (sym.ty.getOwnerDeclOrNull(mod)) |owner_decl| mod.declPtr(owner_decl).srcLoc(mod) else Module.SrcLoc{ .file_scope = undefined, .parent_decl_node = undefined, .lazy = .unneeded, }; const res = try codegen.generateLazySymbol( &self.base, src, sym, &required_alignment, &code_buffer, .none, .{ .parent_atom_index = symbol_index }, ); const code = switch (res) { .ok => code_buffer.items, .fail => |em| { log.err("{s}", .{em.msg}); return error.CodegenFail; }, }; const local_sym = self.symbol(symbol_index); const phdr_index = self.phdr_to_shdr_table.get(local_sym.output_section_index).?; local_sym.name_offset = name_str_index; const local_esym = &zig_module.local_esyms.items[local_sym.esym_index]; local_esym.st_name = name_str_index; local_esym.st_info |= elf.STT_OBJECT; local_esym.st_size = code.len; const atom_ptr = local_sym.atom(self).?; atom_ptr.alive = true; atom_ptr.name_offset = name_str_index; atom_ptr.alignment = required_alignment; atom_ptr.size = code.len; try atom_ptr.allocate(self); errdefer self.freeDeclMetadata(symbol_index); log.debug("allocated atom for {s} at 0x{x} to 0x{x}", .{ name, atom_ptr.value, atom_ptr.value + atom_ptr.size, }); local_sym.value = atom_ptr.value; local_esym.st_value = atom_ptr.value; local_sym.flags.needs_got = true; const gop = try local_sym.getOrCreateGotEntry(symbol_index, self); try self.got.writeEntry(self, gop.index); const section_offset = atom_ptr.value - self.phdrs.items[phdr_index].p_vaddr; const file_offset = self.shdrs.items[local_sym.output_section_index].sh_offset + section_offset; try self.base.file.?.pwriteAll(code, file_offset); } pub fn lowerUnnamedConst(self: *Elf, typed_value: TypedValue, decl_index: Module.Decl.Index) !u32 { const gpa = self.base.allocator; var code_buffer = std.ArrayList(u8).init(gpa); defer code_buffer.deinit(); const mod = self.base.options.module.?; const gop = try self.unnamed_consts.getOrPut(gpa, decl_index); if (!gop.found_existing) { gop.value_ptr.* = .{}; } const unnamed_consts = gop.value_ptr; const decl = mod.declPtr(decl_index); const name_str_index = blk: { const decl_name = mod.intern_pool.stringToSlice(try decl.getFullyQualifiedName(mod)); const index = unnamed_consts.items.len; const name = try std.fmt.allocPrint(gpa, "__unnamed_{s}_{d}", .{ decl_name, index }); defer gpa.free(name); break :blk try self.strtab.insert(gpa, name); }; const name = self.strtab.get(name_str_index).?; const zig_module = self.file(self.zig_module_index.?).?.zig_module; const sym_index = try zig_module.addAtom(self.rodata_section_index.?, self); const res = try codegen.generateSymbol(&self.base, decl.srcLoc(mod), typed_value, &code_buffer, .{ .none = {}, }, .{ .parent_atom_index = sym_index, }); const code = switch (res) { .ok => code_buffer.items, .fail => |em| { decl.analysis = .codegen_failure; try mod.failed_decls.put(mod.gpa, decl_index, em); log.err("{s}", .{em.msg}); return error.CodegenFail; }, }; const required_alignment = typed_value.ty.abiAlignment(mod); const shdr_index = self.rodata_section_index.?; const phdr_index = self.phdr_to_shdr_table.get(shdr_index).?; const local_sym = self.symbol(sym_index); local_sym.name_offset = name_str_index; const local_esym = &zig_module.local_esyms.items[local_sym.esym_index]; local_esym.st_name = name_str_index; local_esym.st_info |= elf.STT_OBJECT; local_esym.st_size = code.len; const atom_ptr = local_sym.atom(self).?; atom_ptr.alive = true; atom_ptr.name_offset = name_str_index; atom_ptr.alignment = required_alignment; atom_ptr.size = code.len; try atom_ptr.allocate(self); errdefer self.freeDeclMetadata(sym_index); log.debug("allocated atom for {s} at 0x{x} to 0x{x}", .{ name, atom_ptr.value, atom_ptr.value + atom_ptr.size }); local_sym.value = atom_ptr.value; local_esym.st_value = atom_ptr.value; try unnamed_consts.append(gpa, atom_ptr.atom_index); const section_offset = atom_ptr.value - self.phdrs.items[phdr_index].p_vaddr; const file_offset = self.shdrs.items[shdr_index].sh_offset + section_offset; try self.base.file.?.pwriteAll(code, file_offset); return sym_index; } pub fn updateDeclExports( self: *Elf, mod: *Module, decl_index: Module.Decl.Index, exports: []const *Module.Export, ) link.File.UpdateDeclExportsError!void { if (build_options.skip_non_native and builtin.object_format != .elf) { @panic("Attempted to compile for object format that was disabled by build configuration"); } if (self.llvm_object) |llvm_object| return llvm_object.updateDeclExports(mod, decl_index, exports); if (self.base.options.emit == null) return; const tracy = trace(@src()); defer tracy.end(); const gpa = self.base.allocator; const zig_module = self.file(self.zig_module_index.?).?.zig_module; const decl = mod.declPtr(decl_index); const decl_sym_index = try self.getOrCreateMetadataForDecl(decl_index); const decl_sym = self.symbol(decl_sym_index); const decl_esym = zig_module.local_esyms.items[decl_sym.esym_index]; const decl_metadata = self.decls.getPtr(decl_index).?; for (exports) |exp| { const exp_name = mod.intern_pool.stringToSlice(exp.opts.name); if (exp.opts.section.unwrap()) |section_name| { if (!mod.intern_pool.stringEqlSlice(section_name, ".text")) { try mod.failed_exports.ensureUnusedCapacity(mod.gpa, 1); mod.failed_exports.putAssumeCapacityNoClobber( exp, try Module.ErrorMsg.create(gpa, decl.srcLoc(mod), "Unimplemented: ExportOptions.section", .{}), ); continue; } } const stb_bits: u8 = switch (exp.opts.linkage) { .Internal => elf.STB_LOCAL, .Strong => blk: { const entry_name = self.base.options.entry orelse "_start"; if (mem.eql(u8, exp_name, entry_name)) { self.entry_addr = decl_sym.value; } break :blk elf.STB_GLOBAL; }, .Weak => elf.STB_WEAK, .LinkOnce => { try mod.failed_exports.ensureUnusedCapacity(mod.gpa, 1); mod.failed_exports.putAssumeCapacityNoClobber( exp, try Module.ErrorMsg.create(gpa, decl.srcLoc(mod), "Unimplemented: GlobalLinkage.LinkOnce", .{}), ); continue; }, }; const stt_bits: u8 = @as(u4, @truncate(decl_esym.st_info)); const name_off = try self.strtab.insert(gpa, exp_name); const sym_index = if (decl_metadata.@"export"(self, exp_name)) |exp_index| exp_index.* else blk: { const sym_index = try zig_module.addGlobalEsym(gpa); const lookup_gop = try zig_module.globals_lookup.getOrPut(gpa, name_off); const esym = zig_module.elfSym(sym_index); esym.st_name = name_off; lookup_gop.value_ptr.* = sym_index; try decl_metadata.exports.append(gpa, sym_index); const gop = try self.getOrPutGlobal(name_off); try zig_module.global_symbols.append(gpa, gop.index); break :blk sym_index; }; const esym = &zig_module.global_esyms.items[sym_index & 0x0fffffff]; esym.st_value = decl_sym.value; esym.st_shndx = decl_sym.atom_index; esym.st_info = (stb_bits << 4) | stt_bits; esym.st_name = name_off; } } /// Must be called only after a successful call to `updateDecl`. pub fn updateDeclLineNumber(self: *Elf, mod: *Module, decl_index: Module.Decl.Index) !void { const tracy = trace(@src()); defer tracy.end(); const decl = mod.declPtr(decl_index); const decl_name = mod.intern_pool.stringToSlice(try decl.getFullyQualifiedName(mod)); log.debug("updateDeclLineNumber {s}{*}", .{ decl_name, decl }); if (self.llvm_object) |_| return; if (self.dwarf) |*dw| { try dw.updateDeclLineNumber(mod, decl_index); } } pub fn deleteDeclExport( self: *Elf, decl_index: Module.Decl.Index, name: InternPool.NullTerminatedString, ) void { if (self.llvm_object) |_| return; const metadata = self.decls.getPtr(decl_index) orelse return; const mod = self.base.options.module.?; const zig_module = self.file(self.zig_module_index.?).?.zig_module; const exp_name = mod.intern_pool.stringToSlice(name); const esym_index = metadata.@"export"(self, exp_name) orelse return; log.debug("deleting export '{s}'", .{exp_name}); const esym = &zig_module.global_esyms.items[esym_index.*]; _ = zig_module.globals_lookup.remove(esym.st_name); const sym_index = self.resolver.get(esym.st_name).?; const sym = self.symbol(sym_index); if (sym.file_index == zig_module.index) { _ = self.resolver.swapRemove(esym.st_name); sym.* = .{}; } esym.* = null_sym; } fn addLinkerDefinedSymbols(self: *Elf) !void { const linker_defined_index = self.linker_defined_index orelse return; const linker_defined = self.file(linker_defined_index).?.linker_defined; self.dynamic_index = try linker_defined.addGlobal("_DYNAMIC", self); self.ehdr_start_index = try linker_defined.addGlobal("__ehdr_start", self); self.init_array_start_index = try linker_defined.addGlobal("__init_array_start", self); self.init_array_end_index = try linker_defined.addGlobal("__init_array_end", self); self.fini_array_start_index = try linker_defined.addGlobal("__fini_array_start", self); self.fini_array_end_index = try linker_defined.addGlobal("__fini_array_end", self); self.preinit_array_start_index = try linker_defined.addGlobal("__preinit_array_start", self); self.preinit_array_end_index = try linker_defined.addGlobal("__preinit_array_end", self); self.got_index = try linker_defined.addGlobal("_GLOBAL_OFFSET_TABLE_", self); self.plt_index = try linker_defined.addGlobal("_PROCEDURE_LINKAGE_TABLE_", self); self.end_index = try linker_defined.addGlobal("_end", self); if (self.base.options.eh_frame_hdr) { self.gnu_eh_frame_hdr_index = try linker_defined.addGlobal("__GNU_EH_FRAME_HDR", self); } if (self.globalByName("__dso_handle")) |index| { if (self.symbol(index).file(self) == null) self.dso_handle_index = try linker_defined.addGlobal("__dso_handle", self); } self.rela_iplt_start_index = try linker_defined.addGlobal("__rela_iplt_start", self); self.rela_iplt_end_index = try linker_defined.addGlobal("__rela_iplt_end", self); // for (self.objects.items) |index| { // const object = self.getFile(index).?.object; // for (object.atoms.items) |atom_index| { // if (self.getStartStopBasename(atom_index)) |name| { // const gpa = self.base.allocator; // try self.start_stop_indexes.ensureUnusedCapacity(gpa, 2); // const start = try std.fmt.allocPrintZ(gpa, "__start_{s}", .{name}); // defer gpa.free(start); // const stop = try std.fmt.allocPrintZ(gpa, "__stop_{s}", .{name}); // defer gpa.free(stop); // self.start_stop_indexes.appendAssumeCapacity(try internal.addSyntheticGlobal(start, self)); // self.start_stop_indexes.appendAssumeCapacity(try internal.addSyntheticGlobal(stop, self)); // } // } // } linker_defined.resolveSymbols(self); } fn allocateLinkerDefinedSymbols(self: *Elf) void { // _DYNAMIC if (self.dynamic_section_index) |shndx| { const shdr = &self.shdrs.items[shndx]; const symbol_ptr = self.symbol(self.dynamic_index.?); symbol_ptr.value = shdr.sh_addr; symbol_ptr.output_section_index = shndx; } // __ehdr_start { const symbol_ptr = self.symbol(self.ehdr_start_index.?); symbol_ptr.value = self.calcImageBase(); symbol_ptr.output_section_index = 1; } // __init_array_start, __init_array_end if (self.sectionByName(".init_array")) |shndx| { const start_sym = self.symbol(self.init_array_start_index.?); const end_sym = self.symbol(self.init_array_end_index.?); const shdr = &self.shdrs.items[shndx]; start_sym.output_section_index = shndx; start_sym.value = shdr.sh_addr; end_sym.output_section_index = shndx; end_sym.value = shdr.sh_addr + shdr.sh_size; } // __fini_array_start, __fini_array_end if (self.sectionByName(".fini_array")) |shndx| { const start_sym = self.symbol(self.fini_array_start_index.?); const end_sym = self.symbol(self.fini_array_end_index.?); const shdr = &self.shdrs.items[shndx]; start_sym.output_section_index = shndx; start_sym.value = shdr.sh_addr; end_sym.output_section_index = shndx; end_sym.value = shdr.sh_addr + shdr.sh_size; } // __preinit_array_start, __preinit_array_end if (self.sectionByName(".preinit_array")) |shndx| { const start_sym = self.symbol(self.preinit_array_start_index.?); const end_sym = self.symbol(self.preinit_array_end_index.?); const shdr = &self.shdrs.items[shndx]; start_sym.output_section_index = shndx; start_sym.value = shdr.sh_addr; end_sym.output_section_index = shndx; end_sym.value = shdr.sh_addr + shdr.sh_size; } // _GLOBAL_OFFSET_TABLE_ if (self.got_plt_section_index) |shndx| { const shdr = &self.shdrs.items[shndx]; const symbol_ptr = self.symbol(self.got_index.?); symbol_ptr.value = shdr.sh_addr; symbol_ptr.output_section_index = shndx; } // _PROCEDURE_LINKAGE_TABLE_ if (self.plt_section_index) |shndx| { const shdr = &self.shdrs.items[shndx]; const symbol_ptr = self.symbol(self.plt_index.?); symbol_ptr.value = shdr.sh_addr; symbol_ptr.output_section_index = shndx; } // __dso_handle if (self.dso_handle_index) |index| { const shdr = &self.shdrs.items[1]; const symbol_ptr = self.symbol(index); symbol_ptr.value = shdr.sh_addr; symbol_ptr.output_section_index = 0; } // __GNU_EH_FRAME_HDR if (self.eh_frame_hdr_section_index) |shndx| { const shdr = &self.shdrs.items[shndx]; const symbol_ptr = self.symbol(self.gnu_eh_frame_hdr_index.?); symbol_ptr.value = shdr.sh_addr; symbol_ptr.output_section_index = shndx; } // __rela_iplt_start, __rela_iplt_end if (self.rela_dyn_section_index) |shndx| blk: { if (self.base.options.link_mode != .Static or self.base.options.pie) break :blk; const shdr = &self.shdrs.items[shndx]; const end_addr = shdr.sh_addr + shdr.sh_size; const start_addr = end_addr - self.calcNumIRelativeRelocs() * @sizeOf(elf.Elf64_Rela); const start_sym = self.symbol(self.rela_iplt_start_index.?); const end_sym = self.symbol(self.rela_iplt_end_index.?); start_sym.value = start_addr; start_sym.output_section_index = shndx; end_sym.value = end_addr; end_sym.output_section_index = shndx; } // _end { const end_symbol = self.symbol(self.end_index.?); for (self.shdrs.items, 0..) |*shdr, shndx| { if (shdr.sh_flags & elf.SHF_ALLOC != 0) { end_symbol.value = shdr.sh_addr + shdr.sh_size; end_symbol.output_section_index = @intCast(shndx); } } } // __start_*, __stop_* { var index: usize = 0; while (index < self.start_stop_indexes.items.len) : (index += 2) { const start = self.symbol(self.start_stop_indexes.items[index]); const name = start.name(self); const stop = self.symbol(self.start_stop_indexes.items[index + 1]); const shndx = self.sectionByName(name["__start_".len..]).?; const shdr = &self.shdrs.items[shndx]; start.value = shdr.sh_addr; start.output_section_index = shndx; stop.value = shdr.sh_addr + shdr.sh_size; stop.output_section_index = shndx; } } } fn updateSymtabSize(self: *Elf) !void { var sizes = SymtabSize{}; if (self.zig_module_index) |index| { const zig_module = self.file(index).?.zig_module; zig_module.updateSymtabSize(self); sizes.nlocals += zig_module.output_symtab_size.nlocals; sizes.nglobals += zig_module.output_symtab_size.nglobals; } for (self.objects.items) |index| { const object = self.file(index).?.object; object.updateSymtabSize(self); sizes.nlocals += object.output_symtab_size.nlocals; sizes.nglobals += object.output_symtab_size.nglobals; } if (self.got_section_index) |_| { self.got.updateSymtabSize(self); sizes.nlocals += self.got.output_symtab_size.nlocals; } if (self.linker_defined_index) |index| { const linker_defined = self.file(index).?.linker_defined; linker_defined.updateSymtabSize(self); sizes.nlocals += linker_defined.output_symtab_size.nlocals; } const shdr = &self.shdrs.items[self.symtab_section_index.?]; shdr.sh_info = sizes.nlocals + 1; self.markDirty(self.symtab_section_index.?, null); const sym_size: u64 = switch (self.ptr_width) { .p32 => @sizeOf(elf.Elf32_Sym), .p64 => @sizeOf(elf.Elf64_Sym), }; const sym_align: u16 = switch (self.ptr_width) { .p32 => @alignOf(elf.Elf32_Sym), .p64 => @alignOf(elf.Elf64_Sym), }; const needed_size = (sizes.nlocals + sizes.nglobals + 1) * sym_size; try self.growNonAllocSection(self.symtab_section_index.?, needed_size, sym_align, true); } fn writeSymtab(self: *Elf) !void { const gpa = self.base.allocator; const shdr = &self.shdrs.items[self.symtab_section_index.?]; const sym_size: u64 = switch (self.ptr_width) { .p32 => @sizeOf(elf.Elf32_Sym), .p64 => @sizeOf(elf.Elf64_Sym), }; const nsyms = math.cast(usize, @divExact(shdr.sh_size, sym_size)) orelse return error.Overflow; log.debug("writing {d} symbols at 0x{x}", .{ nsyms, shdr.sh_offset }); const symtab = try gpa.alloc(elf.Elf64_Sym, nsyms); defer gpa.free(symtab); symtab[0] = null_sym; var ctx: struct { ilocal: usize, iglobal: usize, symtab: []elf.Elf64_Sym } = .{ .ilocal = 1, .iglobal = shdr.sh_info, .symtab = symtab, }; if (self.zig_module_index) |index| { const zig_module = self.file(index).?.zig_module; zig_module.writeSymtab(self, ctx); ctx.ilocal += zig_module.output_symtab_size.nlocals; ctx.iglobal += zig_module.output_symtab_size.nglobals; } for (self.objects.items) |index| { const object = self.file(index).?.object; object.writeSymtab(self, ctx); ctx.ilocal += object.output_symtab_size.nlocals; ctx.iglobal += object.output_symtab_size.nglobals; } if (self.got_section_index) |_| { try self.got.writeSymtab(self, ctx); ctx.ilocal += self.got.output_symtab_size.nlocals; } if (self.linker_defined_index) |index| { const linker_defined = self.file(index).?.linker_defined; linker_defined.writeSymtab(self, ctx); ctx.ilocal += linker_defined.output_symtab_size.nlocals; } const foreign_endian = self.base.options.target.cpu.arch.endian() != builtin.cpu.arch.endian(); switch (self.ptr_width) { .p32 => { const buf = try gpa.alloc(elf.Elf32_Sym, symtab.len); defer gpa.free(buf); for (buf, symtab) |*out, sym| { out.* = .{ .st_name = sym.st_name, .st_info = sym.st_info, .st_other = sym.st_other, .st_shndx = sym.st_shndx, .st_value = @as(u32, @intCast(sym.st_value)), .st_size = @as(u32, @intCast(sym.st_size)), }; if (foreign_endian) mem.byteSwapAllFields(elf.Elf32_Sym, out); } try self.base.file.?.pwriteAll(mem.sliceAsBytes(buf), shdr.sh_offset); }, .p64 => { if (foreign_endian) { for (symtab) |*sym| mem.byteSwapAllFields(elf.Elf64_Sym, sym); } try self.base.file.?.pwriteAll(mem.sliceAsBytes(symtab), shdr.sh_offset); }, } } /// Always 4 or 8 depending on whether this is 32-bit ELF or 64-bit ELF. fn ptrWidthBytes(self: Elf) u8 { return switch (self.ptr_width) { .p32 => 4, .p64 => 8, }; } /// Does not necessarily match `ptrWidthBytes` for example can be 2 bytes /// in a 32-bit ELF file. pub fn archPtrWidthBytes(self: Elf) u8 { return @as(u8, @intCast(@divExact(self.base.options.target.ptrBitWidth(), 8))); } fn phdrTo32(phdr: elf.Elf64_Phdr) elf.Elf32_Phdr { return .{ .p_type = phdr.p_type, .p_flags = phdr.p_flags, .p_offset = @as(u32, @intCast(phdr.p_offset)), .p_vaddr = @as(u32, @intCast(phdr.p_vaddr)), .p_paddr = @as(u32, @intCast(phdr.p_paddr)), .p_filesz = @as(u32, @intCast(phdr.p_filesz)), .p_memsz = @as(u32, @intCast(phdr.p_memsz)), .p_align = @as(u32, @intCast(phdr.p_align)), }; } fn writeShdr(self: *Elf, index: usize) !void { const foreign_endian = self.base.options.target.cpu.arch.endian() != builtin.cpu.arch.endian(); switch (self.ptr_width) { .p32 => { var shdr: [1]elf.Elf32_Shdr = undefined; shdr[0] = shdrTo32(self.shdrs.items[index]); if (foreign_endian) { mem.byteSwapAllFields(elf.Elf32_Shdr, &shdr[0]); } const offset = self.shdr_table_offset.? + index * @sizeOf(elf.Elf32_Shdr); return self.base.file.?.pwriteAll(mem.sliceAsBytes(&shdr), offset); }, .p64 => { var shdr = [1]elf.Elf64_Shdr{self.shdrs.items[index]}; if (foreign_endian) { mem.byteSwapAllFields(elf.Elf64_Shdr, &shdr[0]); } const offset = self.shdr_table_offset.? + index * @sizeOf(elf.Elf64_Shdr); return self.base.file.?.pwriteAll(mem.sliceAsBytes(&shdr), offset); }, } } fn shdrTo32(shdr: elf.Elf64_Shdr) elf.Elf32_Shdr { return .{ .sh_name = shdr.sh_name, .sh_type = shdr.sh_type, .sh_flags = @as(u32, @intCast(shdr.sh_flags)), .sh_addr = @as(u32, @intCast(shdr.sh_addr)), .sh_offset = @as(u32, @intCast(shdr.sh_offset)), .sh_size = @as(u32, @intCast(shdr.sh_size)), .sh_link = shdr.sh_link, .sh_info = shdr.sh_info, .sh_addralign = @as(u32, @intCast(shdr.sh_addralign)), .sh_entsize = @as(u32, @intCast(shdr.sh_entsize)), }; } fn getLDMOption(target: std.Target) ?[]const u8 { switch (target.cpu.arch) { .x86 => return "elf_i386", .aarch64 => return "aarch64linux", .aarch64_be => return "aarch64_be_linux", .arm, .thumb => return "armelf_linux_eabi", .armeb, .thumbeb => return "armebelf_linux_eabi", .powerpc => return "elf32ppclinux", .powerpc64 => return "elf64ppc", .powerpc64le => return "elf64lppc", .sparc, .sparcel => return "elf32_sparc", .sparc64 => return "elf64_sparc", .mips => return "elf32btsmip", .mipsel => return "elf32ltsmip", .mips64 => { if (target.abi == .gnuabin32) { return "elf32btsmipn32"; } else { return "elf64btsmip"; } }, .mips64el => { if (target.abi == .gnuabin32) { return "elf32ltsmipn32"; } else { return "elf64ltsmip"; } }, .s390x => return "elf64_s390", .x86_64 => { if (target.abi == .gnux32) { return "elf32_x86_64"; } else { return "elf_x86_64"; } }, .riscv32 => return "elf32lriscv", .riscv64 => return "elf64lriscv", else => return null, } } pub fn padToIdeal(actual_size: anytype) @TypeOf(actual_size) { return actual_size +| (actual_size / ideal_factor); } // Provide a blueprint of csu (c-runtime startup) objects for supported // link modes. // // This is for cross-mode targets only. For host-mode targets the system // compiler can be probed to produce a robust blueprint. // // Targets requiring a libc for which zig does not bundle a libc are // host-mode targets. Unfortunately, host-mode probes are not yet // implemented. For now the data is hard-coded here. Such targets are // { freebsd, netbsd, openbsd, dragonfly }. const CsuObjects = struct { crt0: ?[]const u8 = null, crti: ?[]const u8 = null, crtbegin: ?[]const u8 = null, crtend: ?[]const u8 = null, crtn: ?[]const u8 = null, fn init(arena: mem.Allocator, link_options: link.Options, comp: *const Compilation) !CsuObjects { // crt objects are only required for libc. if (!link_options.link_libc) return CsuObjects{}; var result: CsuObjects = .{}; // Flatten crt cases. const mode: enum { dynamic_lib, dynamic_exe, dynamic_pie, static_exe, static_pie, } = switch (link_options.output_mode) { .Obj => return CsuObjects{}, .Lib => switch (link_options.link_mode) { .Dynamic => .dynamic_lib, .Static => return CsuObjects{}, }, .Exe => switch (link_options.link_mode) { .Dynamic => if (link_options.pie) .dynamic_pie else .dynamic_exe, .Static => if (link_options.pie) .static_pie else .static_exe, }, }; if (link_options.target.isAndroid()) { switch (mode) { // zig fmt: off .dynamic_lib => result.set( null, null, "crtbegin_so.o", "crtend_so.o", null ), .dynamic_exe, .dynamic_pie => result.set( null, null, "crtbegin_dynamic.o", "crtend_android.o", null ), .static_exe, .static_pie => result.set( null, null, "crtbegin_static.o", "crtend_android.o", null ), // zig fmt: on } } else { switch (link_options.target.os.tag) { .linux => { switch (mode) { // zig fmt: off .dynamic_lib => result.set( null, "crti.o", "crtbeginS.o", "crtendS.o", "crtn.o" ), .dynamic_exe => result.set( "crt1.o", "crti.o", "crtbegin.o", "crtend.o", "crtn.o" ), .dynamic_pie => result.set( "Scrt1.o", "crti.o", "crtbeginS.o", "crtendS.o", "crtn.o" ), .static_exe => result.set( "crt1.o", "crti.o", "crtbeginT.o", "crtend.o", "crtn.o" ), .static_pie => result.set( "rcrt1.o", "crti.o", "crtbeginS.o", "crtendS.o", "crtn.o" ), // zig fmt: on } if (link_options.libc_installation) |_| { // hosted-glibc provides crtbegin/end objects in platform/compiler-specific dirs // and they are not known at comptime. For now null-out crtbegin/end objects; // there is no feature loss, zig has never linked those objects in before. result.crtbegin = null; result.crtend = null; } else { // Bundled glibc only has Scrt1.o . if (result.crt0 != null and link_options.target.isGnuLibC()) result.crt0 = "Scrt1.o"; } }, .dragonfly => switch (mode) { // zig fmt: off .dynamic_lib => result.set( null, "crti.o", "crtbeginS.o", "crtendS.o", "crtn.o" ), .dynamic_exe => result.set( "crt1.o", "crti.o", "crtbegin.o", "crtend.o", "crtn.o" ), .dynamic_pie => result.set( "Scrt1.o", "crti.o", "crtbeginS.o", "crtendS.o", "crtn.o" ), .static_exe => result.set( "crt1.o", "crti.o", "crtbegin.o", "crtend.o", "crtn.o" ), .static_pie => result.set( "Scrt1.o", "crti.o", "crtbeginS.o", "crtendS.o", "crtn.o" ), // zig fmt: on }, .freebsd => switch (mode) { // zig fmt: off .dynamic_lib => result.set( null, "crti.o", "crtbeginS.o", "crtendS.o", "crtn.o" ), .dynamic_exe => result.set( "crt1.o", "crti.o", "crtbegin.o", "crtend.o", "crtn.o" ), .dynamic_pie => result.set( "Scrt1.o", "crti.o", "crtbeginS.o", "crtendS.o", "crtn.o" ), .static_exe => result.set( "crt1.o", "crti.o", "crtbeginT.o", "crtend.o", "crtn.o" ), .static_pie => result.set( "Scrt1.o", "crti.o", "crtbeginS.o", "crtendS.o", "crtn.o" ), // zig fmt: on }, .netbsd => switch (mode) { // zig fmt: off .dynamic_lib => result.set( null, "crti.o", "crtbeginS.o", "crtendS.o", "crtn.o" ), .dynamic_exe => result.set( "crt0.o", "crti.o", "crtbegin.o", "crtend.o", "crtn.o" ), .dynamic_pie => result.set( "crt0.o", "crti.o", "crtbeginS.o", "crtendS.o", "crtn.o" ), .static_exe => result.set( "crt0.o", "crti.o", "crtbeginT.o", "crtend.o", "crtn.o" ), .static_pie => result.set( "crt0.o", "crti.o", "crtbeginT.o", "crtendS.o", "crtn.o" ), // zig fmt: on }, .openbsd => switch (mode) { // zig fmt: off .dynamic_lib => result.set( null, null, "crtbeginS.o", "crtendS.o", null ), .dynamic_exe, .dynamic_pie => result.set( "crt0.o", null, "crtbegin.o", "crtend.o", null ), .static_exe, .static_pie => result.set( "rcrt0.o", null, "crtbegin.o", "crtend.o", null ), // zig fmt: on }, .haiku => switch (mode) { // zig fmt: off .dynamic_lib => result.set( null, "crti.o", "crtbeginS.o", "crtendS.o", "crtn.o" ), .dynamic_exe => result.set( "start_dyn.o", "crti.o", "crtbegin.o", "crtend.o", "crtn.o" ), .dynamic_pie => result.set( "start_dyn.o", "crti.o", "crtbeginS.o", "crtendS.o", "crtn.o" ), .static_exe => result.set( "start_dyn.o", "crti.o", "crtbegin.o", "crtend.o", "crtn.o" ), .static_pie => result.set( "start_dyn.o", "crti.o", "crtbeginS.o", "crtendS.o", "crtn.o" ), // zig fmt: on }, .solaris => switch (mode) { // zig fmt: off .dynamic_lib => result.set( null, "crti.o", null, null, "crtn.o" ), .dynamic_exe, .dynamic_pie => result.set( "crt1.o", "crti.o", null, null, "crtn.o" ), .static_exe, .static_pie => result.set( null, null, null, null, null ), // zig fmt: on }, else => {}, } } // Convert each object to a full pathname. if (link_options.libc_installation) |lci| { const crt_dir_path = lci.crt_dir orelse return error.LibCInstallationMissingCRTDir; switch (link_options.target.os.tag) { .dragonfly => { if (result.crt0) |*obj| obj.* = try fs.path.join(arena, &[_][]const u8{ crt_dir_path, obj.* }); if (result.crti) |*obj| obj.* = try fs.path.join(arena, &[_][]const u8{ crt_dir_path, obj.* }); if (result.crtn) |*obj| obj.* = try fs.path.join(arena, &[_][]const u8{ crt_dir_path, obj.* }); var gccv: []const u8 = undefined; if (link_options.target.os.version_range.semver.isAtLeast(.{ .major = 5, .minor = 4, .patch = 0 }) orelse true) { gccv = "gcc80"; } else { gccv = "gcc54"; } if (result.crtbegin) |*obj| obj.* = try fs.path.join(arena, &[_][]const u8{ crt_dir_path, gccv, obj.* }); if (result.crtend) |*obj| obj.* = try fs.path.join(arena, &[_][]const u8{ crt_dir_path, gccv, obj.* }); }, .haiku => { const gcc_dir_path = lci.gcc_dir orelse return error.LibCInstallationMissingCRTDir; if (result.crt0) |*obj| obj.* = try fs.path.join(arena, &[_][]const u8{ crt_dir_path, obj.* }); if (result.crti) |*obj| obj.* = try fs.path.join(arena, &[_][]const u8{ crt_dir_path, obj.* }); if (result.crtn) |*obj| obj.* = try fs.path.join(arena, &[_][]const u8{ crt_dir_path, obj.* }); if (result.crtbegin) |*obj| obj.* = try fs.path.join(arena, &[_][]const u8{ gcc_dir_path, obj.* }); if (result.crtend) |*obj| obj.* = try fs.path.join(arena, &[_][]const u8{ gcc_dir_path, obj.* }); }, else => { inline for (std.meta.fields(@TypeOf(result))) |f| { if (@field(result, f.name)) |*obj| { obj.* = try fs.path.join(arena, &[_][]const u8{ crt_dir_path, obj.* }); } } }, } } else { inline for (std.meta.fields(@TypeOf(result))) |f| { if (@field(result, f.name)) |*obj| { if (comp.crt_files.get(obj.*)) |crtf| { obj.* = crtf.full_object_path; } else { @field(result, f.name) = null; } } } } return result; } fn set( self: *CsuObjects, crt0: ?[]const u8, crti: ?[]const u8, crtbegin: ?[]const u8, crtend: ?[]const u8, crtn: ?[]const u8, ) void { self.crt0 = crt0; self.crti = crti; self.crtbegin = crtbegin; self.crtend = crtend; self.crtn = crtn; } }; pub fn calcImageBase(self: Elf) u64 { if (self.base.options.pic) return 0; // TODO flag an error if PIC and image_base_override return self.base.options.image_base_override orelse switch (self.ptr_width) { .p32 => 0x1000, .p64 => 0x1000000, }; } pub fn defaultEntryAddress(self: Elf) u64 { if (self.entry_addr) |addr| return addr; return switch (self.base.options.target.cpu.arch) { .spu_2 => 0, else => default_entry_addr, }; } pub fn isDynLib(self: Elf) bool { return self.base.options.output_mode == .Lib and self.base.options.link_mode == .Dynamic; } pub fn sectionByName(self: *Elf, name: [:0]const u8) ?u16 { for (self.shdrs.items, 0..) |*shdr, i| { const this_name = self.shstrtab.getAssumeExists(shdr.sh_name); if (mem.eql(u8, this_name, name)) return @as(u16, @intCast(i)); } else return null; } pub fn calcNumIRelativeRelocs(self: *Elf) u64 { _ = self; unreachable; // TODO } pub fn atom(self: *Elf, atom_index: Atom.Index) ?*Atom { if (atom_index == 0) return null; assert(atom_index < self.atoms.items.len); return &self.atoms.items[atom_index]; } pub fn addAtom(self: *Elf) !Atom.Index { const index = @as(Atom.Index, @intCast(self.atoms.items.len)); const atom_ptr = try self.atoms.addOne(self.base.allocator); atom_ptr.* = .{ .atom_index = index }; return index; } pub fn file(self: *Elf, index: File.Index) ?File { const tag = self.files.items(.tags)[index]; return switch (tag) { .null => null, .linker_defined => .{ .linker_defined = &self.files.items(.data)[index].linker_defined }, .zig_module => .{ .zig_module = &self.files.items(.data)[index].zig_module }, .object => .{ .object = &self.files.items(.data)[index].object }, }; } /// Returns pointer-to-symbol described at sym_index. pub fn symbol(self: *Elf, sym_index: Symbol.Index) *Symbol { return &self.symbols.items[sym_index]; } pub fn addSymbol(self: *Elf) !Symbol.Index { try self.symbols.ensureUnusedCapacity(self.base.allocator, 1); const index = blk: { if (self.symbols_free_list.popOrNull()) |index| { log.debug(" (reusing symbol index {d})", .{index}); break :blk index; } else { log.debug(" (allocating symbol index {d})", .{self.symbols.items.len}); const index = @as(Symbol.Index, @intCast(self.symbols.items.len)); _ = self.symbols.addOneAssumeCapacity(); break :blk index; } }; self.symbols.items[index] = .{}; return index; } pub fn addSymbolExtra(self: *Elf, extra: Symbol.Extra) !u32 { const fields = @typeInfo(Symbol.Extra).Struct.fields; try self.symbols_extra.ensureUnusedCapacity(self.base.allocator, fields.len); return self.addSymbolExtraAssumeCapacity(extra); } pub fn addSymbolExtraAssumeCapacity(self: *Elf, extra: Symbol.Extra) u32 { const index = @as(u32, @intCast(self.symbols_extra.items.len)); const fields = @typeInfo(Symbol.Extra).Struct.fields; inline for (fields) |field| { self.symbols_extra.appendAssumeCapacity(switch (field.type) { u32 => @field(extra, field.name), else => @compileError("bad field type"), }); } return index; } pub fn symbolExtra(self: *Elf, index: u32) ?Symbol.Extra { if (index == 0) return null; const fields = @typeInfo(Symbol.Extra).Struct.fields; var i: usize = index; var result: Symbol.Extra = undefined; inline for (fields) |field| { @field(result, field.name) = switch (field.type) { u32 => self.symbols_extra.items[i], else => @compileError("bad field type"), }; i += 1; } return result; } pub fn setSymbolExtra(self: *Elf, index: u32, extra: Symbol.Extra) void { assert(index > 0); const fields = @typeInfo(Symbol.Extra).Struct.fields; inline for (fields, 0..) |field, i| { self.symbols_extra.items[index + i] = switch (field.type) { u32 => @field(extra, field.name), else => @compileError("bad field type"), }; } } const GetOrPutGlobalResult = struct { found_existing: bool, index: Symbol.Index, }; pub fn getOrPutGlobal(self: *Elf, name_off: u32) !GetOrPutGlobalResult { const gpa = self.base.allocator; const gop = try self.resolver.getOrPut(gpa, name_off); if (!gop.found_existing) { const index = try self.addSymbol(); const global = self.symbol(index); global.name_offset = name_off; gop.value_ptr.* = index; } return .{ .found_existing = gop.found_existing, .index = gop.value_ptr.*, }; } pub fn globalByName(self: *Elf, name: []const u8) ?Symbol.Index { const name_off = self.strtab.getOffset(name) orelse return null; return self.resolver.get(name_off); } pub fn getGlobalSymbol(self: *Elf, name: []const u8, lib_name: ?[]const u8) !u32 { _ = lib_name; const gpa = self.base.allocator; const off = try self.strtab.insert(gpa, name); const zig_module = self.file(self.zig_module_index.?).?.zig_module; const lookup_gop = try zig_module.globals_lookup.getOrPut(gpa, off); if (!lookup_gop.found_existing) { const esym_index = try zig_module.addGlobalEsym(gpa); const esym = zig_module.elfSym(esym_index); esym.st_name = off; lookup_gop.value_ptr.* = esym_index; const gop = try self.getOrPutGlobal(off); try zig_module.global_symbols.append(gpa, gop.index); } return lookup_gop.value_ptr.*; } const GetOrCreateComdatGroupOwnerResult = struct { found_existing: bool, index: ComdatGroupOwner.Index, }; pub fn getOrCreateComdatGroupOwner(self: *Elf, off: u32) !GetOrCreateComdatGroupOwnerResult { const gpa = self.base.allocator; const gop = try self.comdat_groups_table.getOrPut(gpa, off); if (!gop.found_existing) { const index = @as(ComdatGroupOwner.Index, @intCast(self.comdat_groups_owners.items.len)); const owner = try self.comdat_groups_owners.addOne(gpa); owner.* = .{}; gop.value_ptr.* = index; } return .{ .found_existing = gop.found_existing, .index = gop.value_ptr.*, }; } pub fn addComdatGroup(self: *Elf) !ComdatGroup.Index { const index = @as(ComdatGroup.Index, @intCast(self.comdat_groups.items.len)); _ = try self.comdat_groups.addOne(self.base.allocator); return index; } pub fn comdatGroup(self: *Elf, index: ComdatGroup.Index) *ComdatGroup { assert(index < self.comdat_groups.items.len); return &self.comdat_groups.items[index]; } pub fn comdatGroupOwner(self: *Elf, index: ComdatGroupOwner.Index) *ComdatGroupOwner { assert(index < self.comdat_groups_owners.items.len); return &self.comdat_groups_owners.items[index]; } fn reportUndefined(self: *Elf, undefs: anytype) !void { const gpa = self.base.allocator; const max_notes = 4; try self.misc_errors.ensureUnusedCapacity(gpa, undefs.count()); var it = undefs.iterator(); while (it.next()) |entry| { const undef_index = entry.key_ptr.*; const atoms = entry.value_ptr.*.items; const nnotes = @min(atoms.len, max_notes); var notes = try std.ArrayList(link.File.ErrorMsg).initCapacity(gpa, max_notes + 1); defer notes.deinit(); for (atoms[0..nnotes]) |atom_index| { const atom_ptr = self.atom(atom_index).?; const file_ptr = self.file(atom_ptr.file_index).?; const note = try std.fmt.allocPrint(gpa, "referenced by {s}:{s}", .{ file_ptr.fmtPath(), atom_ptr.name(self), }); notes.appendAssumeCapacity(.{ .msg = note }); } if (atoms.len > max_notes) { const remaining = atoms.len - max_notes; const note = try std.fmt.allocPrint(gpa, "referenced {d} more times", .{remaining}); notes.appendAssumeCapacity(.{ .msg = note }); } var err_msg = link.File.ErrorMsg{ .msg = try std.fmt.allocPrint(gpa, "undefined symbol: {s}", .{self.symbol(undef_index).name(self)}), }; err_msg.notes = try notes.toOwnedSlice(); self.misc_errors.appendAssumeCapacity(err_msg); } } const ParseErrorCtx = struct { detected_cpu_arch: std.Target.Cpu.Arch, }; fn handleAndReportParseError( self: *Elf, path: []const u8, err: ParseError, ctx: *const ParseErrorCtx, ) error{OutOfMemory}!void { const cpu_arch = self.base.options.target.cpu.arch; switch (err) { error.UnknownFileType => try self.reportParseError(path, "unknown file type", .{}), error.InvalidCpuArch => try self.reportParseError( path, "invalid cpu architecture: expected '{s}', but found '{s}'", .{ @tagName(cpu_arch), @tagName(ctx.detected_cpu_arch) }, ), else => |e| try self.reportParseError( path, "unexpected error: parsing object failed with error {s}", .{@errorName(e)}, ), } } fn reportParseError( self: *Elf, path: []const u8, comptime format: []const u8, args: anytype, ) error{OutOfMemory}!void { const gpa = self.base.allocator; try self.misc_errors.ensureUnusedCapacity(gpa, 1); var notes = try gpa.alloc(link.File.ErrorMsg, 1); errdefer gpa.free(notes); notes[0] = .{ .msg = try std.fmt.allocPrint(gpa, "while parsing {s}", .{path}) }; self.misc_errors.appendAssumeCapacity(.{ .msg = try std.fmt.allocPrint(gpa, format, args), .notes = notes, }); } fn dumpState(self: *Elf) std.fmt.Formatter(fmtDumpState) { return .{ .data = self }; } fn fmtDumpState( self: *Elf, comptime unused_fmt_string: []const u8, options: std.fmt.FormatOptions, writer: anytype, ) !void { _ = unused_fmt_string; _ = options; if (self.zig_module_index) |index| { const zig_module = self.file(index).?.zig_module; try writer.print("zig_module({d}) : {s}\n", .{ index, zig_module.path }); try writer.print("{}\n", .{zig_module.fmtSymtab(self)}); } for (self.objects.items) |index| { const object = self.file(index).?.object; try writer.print("object({d}) : {}", .{ index, object.fmtPath() }); if (!object.alive) try writer.writeAll(" : [*]"); try writer.writeByte('\n'); try writer.print("{}{}{}{}{}\n", .{ object.fmtAtoms(self), object.fmtCies(self), object.fmtFdes(self), object.fmtSymtab(self), object.fmtComdatGroups(self), }); } if (self.linker_defined_index) |index| { const linker_defined = self.file(index).?.linker_defined; try writer.print("linker_defined({d}) : (linker defined)\n", .{index}); try writer.print("{}\n", .{linker_defined.fmtSymtab(self)}); } try writer.print("{}\n", .{self.got.fmt(self)}); } /// Binary search pub fn bsearch(comptime T: type, haystack: []align(1) const T, predicate: anytype) usize { if (!@hasDecl(@TypeOf(predicate), "predicate")) @compileError("Predicate is required to define fn predicate(@This(), T) bool"); var min: usize = 0; var max: usize = haystack.len; while (min < max) { const index = (min + max) / 2; const curr = haystack[index]; if (predicate.predicate(curr)) { min = index + 1; } else { max = index; } } return min; } /// Linear search pub fn lsearch(comptime T: type, haystack: []align(1) const T, predicate: anytype) usize { if (!@hasDecl(@TypeOf(predicate), "predicate")) @compileError("Predicate is required to define fn predicate(@This(), T) bool"); var i: usize = 0; while (i < haystack.len) : (i += 1) { if (predicate.predicate(haystack[i])) break; } return i; } const default_entry_addr = 0x8000000; pub const base_tag: link.File.Tag = .elf; const LastAtomAndFreeList = struct { /// Index of the last allocated atom in this section. last_atom_index: Atom.Index = 0, /// A list of atoms that have surplus capacity. This list can have false /// positives, as functions grow and shrink over time, only sometimes being added /// or removed from the freelist. /// /// An atom has surplus capacity when its overcapacity value is greater than /// padToIdeal(minimum_atom_size). That is, when it has so /// much extra capacity, that we could fit a small new symbol in it, itself with /// ideal_capacity or more. /// /// Ideal capacity is defined by size + (size / ideal_factor) /// /// Overcapacity is measured by actual_capacity - ideal_capacity. Note that /// overcapacity can be negative. A simple way to have negative overcapacity is to /// allocate a fresh text block, which will have ideal capacity, and then grow it /// by 1 byte. It will then have -1 overcapacity. free_list: std.ArrayListUnmanaged(Atom.Index) = .{}, }; const LazySymbolMetadata = struct { const State = enum { unused, pending_flush, flushed }; text_symbol_index: Symbol.Index = undefined, rodata_symbol_index: Symbol.Index = undefined, text_state: State = .unused, rodata_state: State = .unused, }; const DeclMetadata = struct { symbol_index: Symbol.Index, /// A list of all exports aliases of this Decl. exports: std.ArrayListUnmanaged(Symbol.Index) = .{}, fn @"export"(m: DeclMetadata, elf_file: *Elf, name: []const u8) ?*u32 { const zig_module = elf_file.file(elf_file.zig_module_index.?).?.zig_module; for (m.exports.items) |*exp| { const exp_name = elf_file.strtab.getAssumeExists(zig_module.elfSym(exp.*).st_name); if (mem.eql(u8, name, exp_name)) return exp; } return null; } }; const ComdatGroupOwner = struct { file: File.Index = 0, const Index = u32; }; pub const ComdatGroup = struct { owner: ComdatGroupOwner.Index, shndx: u16, pub const Index = u32; }; pub const SymtabSize = struct { nlocals: u32 = 0, nglobals: u32 = 0, }; pub const null_sym = elf.Elf64_Sym{ .st_name = 0, .st_info = 0, .st_other = 0, .st_shndx = 0, .st_value = 0, .st_size = 0, }; const std = @import("std"); const build_options = @import("build_options"); const builtin = @import("builtin"); const assert = std.debug.assert; const elf = std.elf; const fs = std.fs; const log = std.log.scoped(.link); const state_log = std.log.scoped(.link_state); const math = std.math; const mem = std.mem; const codegen = @import("../codegen.zig"); const glibc = @import("../glibc.zig"); const link = @import("../link.zig"); const lldMain = @import("../main.zig").lldMain; const musl = @import("../musl.zig"); const target_util = @import("../target.zig"); const trace = @import("../tracy.zig").trace; const synthetic_sections = @import("Elf/synthetic_sections.zig"); const Air = @import("../Air.zig"); const Allocator = std.mem.Allocator; const Archive = @import("Elf/Archive.zig"); pub const Atom = @import("Elf/Atom.zig"); const Cache = std.Build.Cache; const Compilation = @import("../Compilation.zig"); const Dwarf = @import("Dwarf.zig"); const Elf = @This(); const File = @import("Elf/file.zig").File; const GotSection = synthetic_sections.GotSection; const LinkerDefined = @import("Elf/LinkerDefined.zig"); const Liveness = @import("../Liveness.zig"); const LlvmObject = @import("../codegen/llvm.zig").Object; const Module = @import("../Module.zig"); const Object = @import("Elf/Object.zig"); const InternPool = @import("../InternPool.zig"); const Package = @import("../Package.zig"); const Symbol = @import("Elf/Symbol.zig"); const StringTable = @import("strtab.zig").StringTable; const TableSection = @import("table_section.zig").TableSection; const Type = @import("../type.zig").Type; const TypedValue = @import("../TypedValue.zig"); const Value = @import("../value.zig").Value; const ZigModule = @import("Elf/ZigModule.zig");