const std = @import("std"); const build_options = @import("build_options"); const builtin = @import("builtin"); const assert = std.debug.assert; const fs = std.fs; const mem = std.mem; const log = std.log.scoped(.link); const trace = @import("tracy.zig").trace; const wasi_libc = @import("wasi_libc.zig"); const Air = @import("Air.zig"); const Allocator = std.mem.Allocator; const Cache = @import("Cache.zig"); const Compilation = @import("Compilation.zig"); const LibCInstallation = @import("libc_installation.zig").LibCInstallation; const Liveness = @import("Liveness.zig"); const Module = @import("Module.zig"); const Package = @import("Package.zig"); const Type = @import("type.zig").Type; const TypedValue = @import("TypedValue.zig"); /// When adding a new field, remember to update `hashAddSystemLibs`. pub const SystemLib = struct { needed: bool = false, weak: bool = false, }; pub const CacheMode = enum { incremental, whole }; pub fn hashAddSystemLibs( hh: *Cache.HashHelper, hm: std.StringArrayHashMapUnmanaged(SystemLib), ) void { const keys = hm.keys(); hh.add(keys.len); hh.addListOfBytes(keys); for (hm.values()) |value| { hh.add(value.needed); hh.add(value.weak); } } pub const producer_string = if (builtin.is_test) "zig test" else "zig " ++ build_options.version; pub const Emit = struct { /// Where the output will go. directory: Compilation.Directory, /// Path to the output file, relative to `directory`. sub_path: []const u8, /// Returns the full path to `basename` if it were in the same directory as the /// `Emit` sub_path. pub fn basenamePath(emit: Emit, arena: Allocator, basename: [:0]const u8) ![:0]const u8 { const full_path = if (emit.directory.path) |p| try fs.path.join(arena, &[_][]const u8{ p, emit.sub_path }) else emit.sub_path; if (fs.path.dirname(full_path)) |dirname| { return try fs.path.joinZ(arena, &.{ dirname, basename }); } else { return basename; } } }; pub const Options = struct { /// This is `null` when `-fno-emit-bin` is used. emit: ?Emit, /// This is `null` not building a Windows DLL, or when `-fno-emit-implib` is used. implib_emit: ?Emit, target: std.Target, output_mode: std.builtin.OutputMode, link_mode: std.builtin.LinkMode, object_format: std.Target.ObjectFormat, optimize_mode: std.builtin.Mode, machine_code_model: std.builtin.CodeModel, root_name: [:0]const u8, /// Not every Compilation compiles .zig code! For example you could do `zig build-exe foo.o`. module: ?*Module, dynamic_linker: ?[]const u8, /// The root path for the dynamic linker and system libraries (as well as frameworks on Darwin) sysroot: ?[]const u8, /// Used for calculating how much space to reserve for symbols in case the binary file /// does not already have a symbol table. symbol_count_hint: u64 = 32, /// Used for calculating how much space to reserve for executable program code in case /// the binary file does not already have such a section. program_code_size_hint: u64 = 256 * 1024, entry_addr: ?u64 = null, entry: ?[]const u8, stack_size_override: ?u64, image_base_override: ?u64, cache_mode: CacheMode, include_compiler_rt: bool, /// Set to `true` to omit debug info. strip: bool, /// If this is true then this link code is responsible for outputting an object /// file and then using LLD to link it together with the link options and other objects. /// Otherwise (depending on `use_llvm`) this link code directly outputs and updates the final binary. use_lld: bool, /// If this is true then this link code is responsible for making an LLVM IR Module, /// outputting it to an object file, and then linking that together with link options and /// other objects. /// Otherwise (depending on `use_lld`) this link code directly outputs and updates the final binary. use_llvm: bool, link_libc: bool, link_libcpp: bool, link_libunwind: bool, function_sections: bool, eh_frame_hdr: bool, emit_relocs: bool, rdynamic: bool, z_nodelete: bool, z_notext: bool, z_defs: bool, z_origin: bool, z_nocopyreloc: bool, z_now: bool, z_relro: bool, tsaware: bool, nxcompat: bool, dynamicbase: bool, linker_optimization: u8, bind_global_refs_locally: bool, import_memory: bool, import_table: bool, export_table: bool, initial_memory: ?u64, max_memory: ?u64, shared_memory: bool, export_symbol_names: []const []const u8, global_base: ?u64, is_native_os: bool, is_native_abi: bool, pic: bool, pie: bool, lto: bool, valgrind: bool, tsan: bool, stack_check: bool, red_zone: bool, omit_frame_pointer: bool, single_threaded: bool, verbose_link: bool, dll_export_fns: bool, error_return_tracing: bool, skip_linker_dependencies: bool, parent_compilation_link_libc: bool, each_lib_rpath: bool, build_id: bool, disable_lld_caching: bool, is_test: bool, use_stage1: bool, hash_style: HashStyle, major_subsystem_version: ?u32, minor_subsystem_version: ?u32, gc_sections: ?bool = null, allow_shlib_undefined: ?bool, subsystem: ?std.Target.SubSystem, linker_script: ?[]const u8, version_script: ?[]const u8, soname: ?[]const u8, llvm_cpu_features: ?[*:0]const u8, objects: []Compilation.LinkObject, framework_dirs: []const []const u8, frameworks: std.StringArrayHashMapUnmanaged(SystemLib), system_libs: std.StringArrayHashMapUnmanaged(SystemLib), wasi_emulated_libs: []const wasi_libc.CRTFile, lib_dirs: []const []const u8, rpath_list: []const []const u8, version: ?std.builtin.Version, compatibility_version: ?std.builtin.Version, libc_installation: ?*const LibCInstallation, /// WASI-only. Type of WASI execution model ("command" or "reactor"). wasi_exec_model: std.builtin.WasiExecModel = undefined, /// (Zig compiler development) Enable dumping of linker's state as JSON. enable_link_snapshots: bool = false, /// (Darwin) Path and version of the native SDK if detected. native_darwin_sdk: ?std.zig.system.darwin.DarwinSDK = null, /// (Darwin) Install name for the dylib install_name: ?[]const u8 = null, /// (Darwin) Path to entitlements file entitlements: ?[]const u8 = null, /// (Darwin) size of the __PAGEZERO segment pagezero_size: ?u64 = null, /// (Darwin) search strategy for system libraries search_strategy: ?File.MachO.SearchStrategy = null, /// (Darwin) set minimum space for future expansion of the load commands headerpad_size: ?u32 = null, /// (Darwin) set enough space as if all paths were MATPATHLEN headerpad_max_install_names: bool = false, /// (Darwin) remove dylibs that are unreachable by the entry point or exported symbols dead_strip_dylibs: bool = false, pub fn effectiveOutputMode(options: Options) std.builtin.OutputMode { return if (options.use_lld) .Obj else options.output_mode; } pub fn move(self: *Options) Options { const copied_state = self.*; self.system_libs = .{}; return copied_state; } }; pub const HashStyle = enum { sysv, gnu, both }; pub const File = struct { tag: Tag, options: Options, file: ?fs.File, allocator: Allocator, /// When linking with LLD, this linker code will output an object file only at /// this location, and then this path can be placed on the LLD linker line. intermediary_basename: ?[]const u8 = null, /// Prevents other processes from clobbering files in the output directory /// of this linking operation. lock: ?Cache.Lock = null, pub const LinkBlock = union { elf: Elf.TextBlock, coff: Coff.TextBlock, macho: MachO.TextBlock, plan9: Plan9.DeclBlock, c: void, wasm: Wasm.DeclBlock, spirv: void, nvptx: void, }; pub const LinkFn = union { elf: Dwarf.SrcFn, coff: Coff.SrcFn, macho: Dwarf.SrcFn, plan9: void, c: void, wasm: Wasm.FnData, spirv: SpirV.FnData, nvptx: void, }; pub const Export = union { elf: Elf.Export, coff: void, macho: MachO.Export, plan9: Plan9.Export, c: void, wasm: Wasm.Export, spirv: void, nvptx: void, }; /// Attempts incremental linking, if the file already exists. If /// incremental linking fails, falls back to truncating the file and /// rewriting it. A malicious file is detected as incremental link failure /// and does not cause Illegal Behavior. This operation is not atomic. pub fn openPath(allocator: Allocator, options: Options) !*File { if (options.object_format == .macho) { return &(try MachO.openPath(allocator, options)).base; } const use_stage1 = build_options.is_stage1 and options.use_stage1; if (use_stage1 or options.emit == null) { return switch (options.object_format) { .coff => &(try Coff.createEmpty(allocator, options)).base, .elf => &(try Elf.createEmpty(allocator, options)).base, .macho => unreachable, .wasm => &(try Wasm.createEmpty(allocator, options)).base, .plan9 => return &(try Plan9.createEmpty(allocator, options)).base, .c => unreachable, // Reported error earlier. .spirv => &(try SpirV.createEmpty(allocator, options)).base, .nvptx => &(try NvPtx.createEmpty(allocator, options)).base, .hex => return error.HexObjectFormatUnimplemented, .raw => return error.RawObjectFormatUnimplemented, }; } const emit = options.emit.?; const use_lld = build_options.have_llvm and options.use_lld; // comptime known false when !have_llvm const sub_path = if (use_lld) blk: { if (options.module == null) { // No point in opening a file, we would not write anything to it. // Initialize with empty. return switch (options.object_format) { .coff => &(try Coff.createEmpty(allocator, options)).base, .elf => &(try Elf.createEmpty(allocator, options)).base, .macho => unreachable, .plan9 => &(try Plan9.createEmpty(allocator, options)).base, .wasm => &(try Wasm.createEmpty(allocator, options)).base, .c => unreachable, // Reported error earlier. .spirv => &(try SpirV.createEmpty(allocator, options)).base, .nvptx => &(try NvPtx.createEmpty(allocator, options)).base, .hex => return error.HexObjectFormatUnimplemented, .raw => return error.RawObjectFormatUnimplemented, }; } // Open a temporary object file, not the final output file because we // want to link with LLD. break :blk try std.fmt.allocPrint(allocator, "{s}{s}", .{ emit.sub_path, options.object_format.fileExt(options.target.cpu.arch), }); } else emit.sub_path; errdefer if (use_lld) allocator.free(sub_path); const file: *File = switch (options.object_format) { .coff => &(try Coff.openPath(allocator, sub_path, options)).base, .elf => &(try Elf.openPath(allocator, sub_path, options)).base, .macho => unreachable, .plan9 => &(try Plan9.openPath(allocator, sub_path, options)).base, .wasm => &(try Wasm.openPath(allocator, sub_path, options)).base, .c => &(try C.openPath(allocator, sub_path, options)).base, .spirv => &(try SpirV.openPath(allocator, sub_path, options)).base, .nvptx => &(try NvPtx.openPath(allocator, sub_path, options)).base, .hex => return error.HexObjectFormatUnimplemented, .raw => return error.RawObjectFormatUnimplemented, }; if (use_lld) { // TODO this intermediary_basename isn't enough; in the case of `zig build-exe`, // we also want to put the intermediary object file in the cache while the // main emit directory is the cwd. file.intermediary_basename = sub_path; } return file; } pub fn cast(base: *File, comptime T: type) ?*T { if (base.tag != T.base_tag) return null; return @fieldParentPtr(T, "base", base); } pub fn makeWritable(base: *File) !void { switch (base.tag) { .coff, .elf, .macho, .plan9 => { if (base.file != null) return; const emit = base.options.emit orelse return; base.file = try emit.directory.handle.createFile(emit.sub_path, .{ .truncate = false, .read = true, .mode = determineMode(base.options), }); }, .c, .wasm, .spirv, .nvptx => {}, } } pub fn makeExecutable(base: *File) !void { switch (base.options.output_mode) { .Obj => return, .Lib => switch (base.options.link_mode) { .Static => return, .Dynamic => {}, }, .Exe => {}, } switch (base.tag) { .macho => if (base.file) |f| { if (comptime builtin.target.isDarwin() and builtin.target.cpu.arch == .aarch64) { if (base.options.target.cpu.arch == .aarch64) { // XNU starting with Big Sur running on arm64 is caching inodes of running binaries. // Any change to the binary will effectively invalidate the kernel's cache // resulting in a SIGKILL on each subsequent run. Since when doing incremental // linking we're modifying a binary in-place, this will end up with the kernel // killing it on every subsequent run. To circumvent it, we will copy the file // into a new inode, remove the original file, and rename the copy to match // the original file. This is super messy, but there doesn't seem any other // way to please the XNU. const emit = base.options.emit orelse return; try emit.directory.handle.copyFile(emit.sub_path, emit.directory.handle, emit.sub_path, .{}); } } if (base.intermediary_basename == null) { f.close(); base.file = null; } }, .coff, .elf, .plan9 => if (base.file) |f| { if (base.intermediary_basename != null) { // The file we have open is not the final file that we want to // make executable, so we don't have to close it. return; } f.close(); base.file = null; }, .c, .wasm, .spirv, .nvptx => {}, } } pub const UpdateDeclError = error{ OutOfMemory, Overflow, Underflow, FileTooBig, InputOutput, FilesOpenedWithWrongFlags, IsDir, NoSpaceLeft, Unseekable, PermissionDenied, FileBusy, SystemResources, OperationAborted, BrokenPipe, ConnectionResetByPeer, ConnectionTimedOut, NotOpenForReading, WouldBlock, AccessDenied, Unexpected, DiskQuota, NotOpenForWriting, AnalysisFail, CodegenFail, EmitFail, NameTooLong, CurrentWorkingDirectoryUnlinked, }; /// Called from within the CodeGen to lower a local variable instantion as an unnamed /// constant. Returns the symbol index of the lowered constant in the read-only section /// of the final binary. pub fn lowerUnnamedConst(base: *File, tv: TypedValue, decl_index: Module.Decl.Index) UpdateDeclError!u32 { const decl = base.options.module.?.declPtr(decl_index); log.debug("lowerUnnamedConst {*} ({s})", .{ decl, decl.name }); switch (base.tag) { // zig fmt: off .coff => return @fieldParentPtr(Coff, "base", base).lowerUnnamedConst(tv, decl_index), .elf => return @fieldParentPtr(Elf, "base", base).lowerUnnamedConst(tv, decl_index), .macho => return @fieldParentPtr(MachO, "base", base).lowerUnnamedConst(tv, decl_index), .plan9 => return @fieldParentPtr(Plan9, "base", base).lowerUnnamedConst(tv, decl_index), .spirv => unreachable, .c => unreachable, .wasm => return @fieldParentPtr(Wasm, "base", base).lowerUnnamedConst(tv, decl_index), .nvptx => unreachable, // zig fmt: on } } /// Called from within CodeGen to retrieve the symbol index of a global symbol. /// If no symbol exists yet with this name, a new undefined global symbol will /// be created. This symbol may get resolved once all relocatables are (re-)linked. pub fn getGlobalSymbol(base: *File, name: []const u8) UpdateDeclError!u32 { log.debug("getGlobalSymbol '{s}'", .{name}); switch (base.tag) { // zig fmt: off .coff => unreachable, .elf => unreachable, .macho => return @fieldParentPtr(MachO, "base", base).getGlobalSymbol(name), .plan9 => unreachable, .spirv => unreachable, .c => unreachable, .wasm => return @fieldParentPtr(Wasm, "base", base).getGlobalSymbol(name), .nvptx => unreachable, // zig fmt: on } } /// May be called before or after updateDeclExports but must be called /// after allocateDeclIndexes for any given Decl. pub fn updateDecl(base: *File, module: *Module, decl_index: Module.Decl.Index) UpdateDeclError!void { const decl = module.declPtr(decl_index); log.debug("updateDecl {*} ({s}), type={}", .{ decl, decl.name, decl.ty.fmtDebug() }); assert(decl.has_tv); switch (base.tag) { // zig fmt: off .coff => return @fieldParentPtr(Coff, "base", base).updateDecl(module, decl_index), .elf => return @fieldParentPtr(Elf, "base", base).updateDecl(module, decl_index), .macho => return @fieldParentPtr(MachO, "base", base).updateDecl(module, decl_index), .c => return @fieldParentPtr(C, "base", base).updateDecl(module, decl_index), .wasm => return @fieldParentPtr(Wasm, "base", base).updateDecl(module, decl_index), .spirv => return @fieldParentPtr(SpirV, "base", base).updateDecl(module, decl_index), .plan9 => return @fieldParentPtr(Plan9, "base", base).updateDecl(module, decl_index), .nvptx => return @fieldParentPtr(NvPtx, "base", base).updateDecl(module, decl_index), // zig fmt: on } } /// May be called before or after updateDeclExports but must be called /// after allocateDeclIndexes for any given Decl. pub fn updateFunc(base: *File, module: *Module, func: *Module.Fn, air: Air, liveness: Liveness) UpdateDeclError!void { const owner_decl = module.declPtr(func.owner_decl); log.debug("updateFunc {*} ({s}), type={}", .{ owner_decl, owner_decl.name, owner_decl.ty.fmtDebug(), }); switch (base.tag) { // zig fmt: off .coff => return @fieldParentPtr(Coff, "base", base).updateFunc(module, func, air, liveness), .elf => return @fieldParentPtr(Elf, "base", base).updateFunc(module, func, air, liveness), .macho => return @fieldParentPtr(MachO, "base", base).updateFunc(module, func, air, liveness), .c => return @fieldParentPtr(C, "base", base).updateFunc(module, func, air, liveness), .wasm => return @fieldParentPtr(Wasm, "base", base).updateFunc(module, func, air, liveness), .spirv => return @fieldParentPtr(SpirV, "base", base).updateFunc(module, func, air, liveness), .plan9 => return @fieldParentPtr(Plan9, "base", base).updateFunc(module, func, air, liveness), .nvptx => return @fieldParentPtr(NvPtx, "base", base).updateFunc(module, func, air, liveness), // zig fmt: on } } pub fn updateDeclLineNumber(base: *File, module: *Module, decl: *Module.Decl) UpdateDeclError!void { log.debug("updateDeclLineNumber {*} ({s}), line={}", .{ decl, decl.name, decl.src_line + 1, }); assert(decl.has_tv); switch (base.tag) { .coff => return @fieldParentPtr(Coff, "base", base).updateDeclLineNumber(module, decl), .elf => return @fieldParentPtr(Elf, "base", base).updateDeclLineNumber(module, decl), .macho => return @fieldParentPtr(MachO, "base", base).updateDeclLineNumber(module, decl), .c => return @fieldParentPtr(C, "base", base).updateDeclLineNumber(module, decl), .wasm => return @fieldParentPtr(Wasm, "base", base).updateDeclLineNumber(module, decl), .plan9 => @panic("TODO: implement updateDeclLineNumber for plan9"), .spirv, .nvptx => {}, } } /// Must be called before any call to updateDecl or updateDeclExports for /// any given Decl. /// TODO we're transitioning to deleting this function and instead having /// each linker backend notice the first time updateDecl or updateFunc is called, or /// a callee referenced from AIR. pub fn allocateDeclIndexes(base: *File, decl_index: Module.Decl.Index) error{OutOfMemory}!void { const decl = base.options.module.?.declPtr(decl_index); log.debug("allocateDeclIndexes {*} ({s})", .{ decl, decl.name }); switch (base.tag) { .coff => return @fieldParentPtr(Coff, "base", base).allocateDeclIndexes(decl_index), .elf => return @fieldParentPtr(Elf, "base", base).allocateDeclIndexes(decl_index), .macho => return @fieldParentPtr(MachO, "base", base).allocateDeclIndexes(decl_index) catch |err| switch (err) { // remap this error code because we are transitioning away from // `allocateDeclIndexes`. error.Overflow => return error.OutOfMemory, error.OutOfMemory => return error.OutOfMemory, }, .wasm => return @fieldParentPtr(Wasm, "base", base).allocateDeclIndexes(decl_index), .plan9 => return @fieldParentPtr(Plan9, "base", base).allocateDeclIndexes(decl_index), .c, .spirv, .nvptx => {}, } } pub fn releaseLock(self: *File) void { if (self.lock) |*lock| { lock.release(); self.lock = null; } } pub fn toOwnedLock(self: *File) Cache.Lock { const lock = self.lock.?; self.lock = null; return lock; } pub fn destroy(base: *File) void { base.releaseLock(); if (base.file) |f| f.close(); if (base.intermediary_basename) |sub_path| base.allocator.free(sub_path); base.options.system_libs.deinit(base.allocator); switch (base.tag) { .coff => { const parent = @fieldParentPtr(Coff, "base", base); parent.deinit(); base.allocator.destroy(parent); }, .elf => { const parent = @fieldParentPtr(Elf, "base", base); parent.deinit(); base.allocator.destroy(parent); }, .macho => { const parent = @fieldParentPtr(MachO, "base", base); parent.deinit(); base.allocator.destroy(parent); }, .c => { const parent = @fieldParentPtr(C, "base", base); parent.deinit(); base.allocator.destroy(parent); }, .wasm => { const parent = @fieldParentPtr(Wasm, "base", base); parent.deinit(); base.allocator.destroy(parent); }, .spirv => { const parent = @fieldParentPtr(SpirV, "base", base); parent.deinit(); base.allocator.destroy(parent); }, .plan9 => { const parent = @fieldParentPtr(Plan9, "base", base); parent.deinit(); base.allocator.destroy(parent); }, .nvptx => { const parent = @fieldParentPtr(NvPtx, "base", base); parent.deinit(); base.allocator.destroy(parent); }, } } /// Commit pending changes and write headers. Takes into account final output mode /// and `use_lld`, not only `effectiveOutputMode`. pub fn flush(base: *File, comp: *Compilation, prog_node: *std.Progress.Node) !void { if (comp.clang_preprocessor_mode == .yes) { const emit = base.options.emit orelse return; // -fno-emit-bin // TODO: avoid extra link step when it's just 1 object file (the `zig cc -c` case) // Until then, we do `lld -r -o output.o input.o` even though the output is the same // as the input. For the preprocessing case (`zig cc -E -o foo`) we copy the file // to the final location. See also the corresponding TODO in Coff linking. const full_out_path = try emit.directory.join(comp.gpa, &[_][]const u8{emit.sub_path}); defer comp.gpa.free(full_out_path); assert(comp.c_object_table.count() == 1); const the_key = comp.c_object_table.keys()[0]; const cached_pp_file_path = the_key.status.success.object_path; try fs.cwd().copyFile(cached_pp_file_path, fs.cwd(), full_out_path, .{}); return; } const use_lld = build_options.have_llvm and base.options.use_lld; if (use_lld and base.options.output_mode == .Lib and base.options.link_mode == .Static) { return base.linkAsArchive(comp, prog_node); } switch (base.tag) { .coff => return @fieldParentPtr(Coff, "base", base).flush(comp, prog_node), .elf => return @fieldParentPtr(Elf, "base", base).flush(comp, prog_node), .macho => return @fieldParentPtr(MachO, "base", base).flush(comp, prog_node), .c => return @fieldParentPtr(C, "base", base).flush(comp, prog_node), .wasm => return @fieldParentPtr(Wasm, "base", base).flush(comp, prog_node), .spirv => return @fieldParentPtr(SpirV, "base", base).flush(comp, prog_node), .plan9 => return @fieldParentPtr(Plan9, "base", base).flush(comp, prog_node), .nvptx => return @fieldParentPtr(NvPtx, "base", base).flush(comp, prog_node), } } /// Commit pending changes and write headers. Works based on `effectiveOutputMode` /// rather than final output mode. pub fn flushModule(base: *File, comp: *Compilation, prog_node: *std.Progress.Node) !void { switch (base.tag) { .coff => return @fieldParentPtr(Coff, "base", base).flushModule(comp, prog_node), .elf => return @fieldParentPtr(Elf, "base", base).flushModule(comp, prog_node), .macho => return @fieldParentPtr(MachO, "base", base).flushModule(comp, prog_node), .c => return @fieldParentPtr(C, "base", base).flushModule(comp, prog_node), .wasm => return @fieldParentPtr(Wasm, "base", base).flushModule(comp, prog_node), .spirv => return @fieldParentPtr(SpirV, "base", base).flushModule(comp, prog_node), .plan9 => return @fieldParentPtr(Plan9, "base", base).flushModule(comp, prog_node), .nvptx => return @fieldParentPtr(NvPtx, "base", base).flushModule(comp, prog_node), } } /// Called when a Decl is deleted from the Module. pub fn freeDecl(base: *File, decl_index: Module.Decl.Index) void { switch (base.tag) { .coff => @fieldParentPtr(Coff, "base", base).freeDecl(decl_index), .elf => @fieldParentPtr(Elf, "base", base).freeDecl(decl_index), .macho => @fieldParentPtr(MachO, "base", base).freeDecl(decl_index), .c => @fieldParentPtr(C, "base", base).freeDecl(decl_index), .wasm => @fieldParentPtr(Wasm, "base", base).freeDecl(decl_index), .spirv => @fieldParentPtr(SpirV, "base", base).freeDecl(decl_index), .plan9 => @fieldParentPtr(Plan9, "base", base).freeDecl(decl_index), .nvptx => @fieldParentPtr(NvPtx, "base", base).freeDecl(decl_index), } } pub fn errorFlags(base: *File) ErrorFlags { switch (base.tag) { .coff => return @fieldParentPtr(Coff, "base", base).error_flags, .elf => return @fieldParentPtr(Elf, "base", base).error_flags, .macho => return @fieldParentPtr(MachO, "base", base).error_flags, .plan9 => return @fieldParentPtr(Plan9, "base", base).error_flags, .c => return .{ .no_entry_point_found = false }, .wasm, .spirv, .nvptx => return ErrorFlags{}, } } pub const UpdateDeclExportsError = error{ OutOfMemory, AnalysisFail, }; /// May be called before or after updateDecl, but must be called after /// allocateDeclIndexes for any given Decl. pub fn updateDeclExports( base: *File, module: *Module, decl_index: Module.Decl.Index, exports: []const *Module.Export, ) UpdateDeclExportsError!void { const decl = module.declPtr(decl_index); log.debug("updateDeclExports {*} ({s})", .{ decl, decl.name }); assert(decl.has_tv); switch (base.tag) { .coff => return @fieldParentPtr(Coff, "base", base).updateDeclExports(module, decl_index, exports), .elf => return @fieldParentPtr(Elf, "base", base).updateDeclExports(module, decl_index, exports), .macho => return @fieldParentPtr(MachO, "base", base).updateDeclExports(module, decl_index, exports), .c => return @fieldParentPtr(C, "base", base).updateDeclExports(module, decl_index, exports), .wasm => return @fieldParentPtr(Wasm, "base", base).updateDeclExports(module, decl_index, exports), .spirv => return @fieldParentPtr(SpirV, "base", base).updateDeclExports(module, decl_index, exports), .plan9 => return @fieldParentPtr(Plan9, "base", base).updateDeclExports(module, decl_index, exports), .nvptx => return @fieldParentPtr(NvPtx, "base", base).updateDeclExports(module, decl_index, exports), } } pub const RelocInfo = struct { parent_atom_index: u32, offset: u64, addend: u32, }; /// Get allocated `Decl`'s address in virtual memory. /// The linker is passed information about the containing atom, `parent_atom_index`, and offset within it's /// memory buffer, `offset`, so that it can make a note of potential relocation sites, should the /// `Decl`'s address was not yet resolved, or the containing atom gets moved in virtual memory. pub fn getDeclVAddr(base: *File, decl_index: Module.Decl.Index, reloc_info: RelocInfo) !u64 { switch (base.tag) { .coff => return @fieldParentPtr(Coff, "base", base).getDeclVAddr(decl_index, reloc_info), .elf => return @fieldParentPtr(Elf, "base", base).getDeclVAddr(decl_index, reloc_info), .macho => return @fieldParentPtr(MachO, "base", base).getDeclVAddr(decl_index, reloc_info), .plan9 => return @fieldParentPtr(Plan9, "base", base).getDeclVAddr(decl_index, reloc_info), .c => unreachable, .wasm => return @fieldParentPtr(Wasm, "base", base).getDeclVAddr(decl_index, reloc_info), .spirv => unreachable, .nvptx => unreachable, } } /// This function is called by the frontend before flush(). It communicates that /// `options.bin_file.emit` directory needs to be renamed from /// `[zig-cache]/tmp/[random]` to `[zig-cache]/o/[digest]`. /// The frontend would like to simply perform a file system rename, however, /// some linker backends care about the file paths of the objects they are linking. /// So this function call tells linker backends to rename the paths of object files /// to observe the new directory path. /// Linker backends which do not have this requirement can fall back to the simple /// implementation at the bottom of this function. /// This function is only called when CacheMode is `whole`. pub fn renameTmpIntoCache( base: *File, cache_directory: Compilation.Directory, tmp_dir_sub_path: []const u8, o_sub_path: []const u8, ) !void { // So far, none of the linker backends need to respond to this event, however, // it makes sense that they might want to. So we leave this mechanism here // for now. Once the linker backends get more mature, if it turns out this // is not needed we can refactor this into having the frontend do the rename // directly, and remove this function from link.zig. _ = base; while (true) { if (builtin.os.tag == .windows) { // workaround windows `renameW` can't fail with `PathAlreadyExists` // See https://github.com/ziglang/zig/issues/8362 if (cache_directory.handle.access(o_sub_path, .{})) |_| { try cache_directory.handle.deleteTree(o_sub_path); continue; } else |err| switch (err) { error.FileNotFound => {}, else => |e| return e, } try std.fs.rename( cache_directory.handle, tmp_dir_sub_path, cache_directory.handle, o_sub_path, ); break; } else { std.fs.rename( cache_directory.handle, tmp_dir_sub_path, cache_directory.handle, o_sub_path, ) catch |err| switch (err) { error.PathAlreadyExists => { try cache_directory.handle.deleteTree(o_sub_path); continue; }, else => |e| return e, }; break; } } } pub fn linkAsArchive(base: *File, comp: *Compilation, prog_node: *std.Progress.Node) !void { const tracy = trace(@src()); defer tracy.end(); var arena_allocator = std.heap.ArenaAllocator.init(base.allocator); defer arena_allocator.deinit(); const arena = arena_allocator.allocator(); const directory = base.options.emit.?.directory; // Just an alias to make it shorter to type. const full_out_path = try directory.join(arena, &[_][]const u8{base.options.emit.?.sub_path}); const full_out_path_z = try arena.dupeZ(u8, full_out_path); // If there is no Zig code to compile, then we should skip flushing the output file // because it will not be part of the linker line anyway. const module_obj_path: ?[]const u8 = if (base.options.module) |module| blk: { const use_stage1 = build_options.is_stage1 and base.options.use_stage1; if (use_stage1) { const obj_basename = try std.zig.binNameAlloc(arena, .{ .root_name = base.options.root_name, .target = base.options.target, .output_mode = .Obj, }); switch (base.options.cache_mode) { .incremental => break :blk try module.zig_cache_artifact_directory.join( arena, &[_][]const u8{obj_basename}, ), .whole => break :blk try fs.path.join(arena, &.{ fs.path.dirname(full_out_path_z).?, obj_basename, }), } } try base.flushModule(comp, prog_node); const dirname = fs.path.dirname(full_out_path_z) orelse "."; break :blk try fs.path.join(arena, &.{ dirname, base.intermediary_basename.? }); } else null; log.debug("module_obj_path={s}", .{if (module_obj_path) |s| s else "(null)"}); const compiler_rt_path: ?[]const u8 = if (base.options.include_compiler_rt) comp.compiler_rt_obj.?.full_object_path else null; // This function follows the same pattern as link.Elf.linkWithLLD so if you want some // insight as to what's going on here you can read that function body which is more // well-commented. const id_symlink_basename = "llvm-ar.id"; var man: Cache.Manifest = undefined; defer if (!base.options.disable_lld_caching) man.deinit(); var digest: [Cache.hex_digest_len]u8 = undefined; if (!base.options.disable_lld_caching) { man = comp.cache_parent.obtain(); // We are about to obtain this lock, so here we give other processes a chance first. base.releaseLock(); for (base.options.objects) |obj| { _ = try man.addFile(obj.path, null); man.hash.add(obj.must_link); } for (comp.c_object_table.keys()) |key| { _ = try man.addFile(key.status.success.object_path, null); } try man.addOptionalFile(module_obj_path); try man.addOptionalFile(compiler_rt_path); // We don't actually care whether it's a cache hit or miss; we just need the digest and the lock. _ = try man.hit(); digest = man.final(); var prev_digest_buf: [digest.len]u8 = undefined; const prev_digest: []u8 = Cache.readSmallFile( directory.handle, id_symlink_basename, &prev_digest_buf, ) catch |err| b: { log.debug("archive new_digest={s} readFile error: {s}", .{ std.fmt.fmtSliceHexLower(&digest), @errorName(err) }); break :b prev_digest_buf[0..0]; }; if (mem.eql(u8, prev_digest, &digest)) { log.debug("archive digest={s} match - skipping invocation", .{std.fmt.fmtSliceHexLower(&digest)}); base.lock = man.toOwnedLock(); return; } // We are about to change the output file to be different, so we invalidate the build hash now. directory.handle.deleteFile(id_symlink_basename) catch |err| switch (err) { error.FileNotFound => {}, else => |e| return e, }; } const num_object_files = base.options.objects.len + comp.c_object_table.count() + 2; var object_files = try std.ArrayList([*:0]const u8).initCapacity(base.allocator, num_object_files); defer object_files.deinit(); for (base.options.objects) |obj| { object_files.appendAssumeCapacity(try arena.dupeZ(u8, obj.path)); } for (comp.c_object_table.keys()) |key| { object_files.appendAssumeCapacity(try arena.dupeZ(u8, key.status.success.object_path)); } if (module_obj_path) |p| { object_files.appendAssumeCapacity(try arena.dupeZ(u8, p)); } if (compiler_rt_path) |p| { object_files.appendAssumeCapacity(try arena.dupeZ(u8, p)); } if (base.options.verbose_link) { std.debug.print("ar rcs {s}", .{full_out_path_z}); for (object_files.items) |arg| { std.debug.print(" {s}", .{arg}); } std.debug.print("\n", .{}); } const llvm = @import("codegen/llvm/bindings.zig"); const os_type = @import("target.zig").osToLLVM(base.options.target.os.tag); const bad = llvm.WriteArchive(full_out_path_z, object_files.items.ptr, object_files.items.len, os_type); if (bad) return error.UnableToWriteArchive; if (!base.options.disable_lld_caching) { Cache.writeSmallFile(directory.handle, id_symlink_basename, &digest) catch |err| { log.warn("failed to save archive hash digest file: {s}", .{@errorName(err)}); }; man.writeManifest() catch |err| { log.warn("failed to write cache manifest when archiving: {s}", .{@errorName(err)}); }; base.lock = man.toOwnedLock(); } } pub const Tag = enum { coff, elf, macho, c, wasm, spirv, plan9, nvptx, }; pub const ErrorFlags = struct { no_entry_point_found: bool = false, missing_libc: bool = false, }; pub const C = @import("link/C.zig"); pub const Coff = @import("link/Coff.zig"); pub const Plan9 = @import("link/Plan9.zig"); pub const Elf = @import("link/Elf.zig"); pub const MachO = @import("link/MachO.zig"); pub const SpirV = @import("link/SpirV.zig"); pub const Wasm = @import("link/Wasm.zig"); pub const NvPtx = @import("link/NvPtx.zig"); pub const Dwarf = @import("link/Dwarf.zig"); }; pub fn determineMode(options: Options) fs.File.Mode { // On common systems with a 0o022 umask, 0o777 will still result in a file created // with 0o755 permissions, but it works appropriately if the system is configured // more leniently. As another data point, C's fopen seems to open files with the // 666 mode. const executable_mode = if (builtin.target.os.tag == .windows) 0 else 0o777; switch (options.effectiveOutputMode()) { .Lib => return switch (options.link_mode) { .Dynamic => executable_mode, .Static => fs.File.default_mode, }, .Exe => return executable_mode, .Obj => return fs.File.default_mode, } }