const std = @import("std"); const Allocator = std.mem.Allocator; const Target = std.Target; const log = std.log.scoped(.codegen); const assert = std.debug.assert; const spec = @import("spirv/spec.zig"); const Opcode = spec.Opcode; const Module = @import("../Module.zig"); const Decl = Module.Decl; const Type = @import("../type.zig").Type; const Value = @import("../value.zig").Value; const LazySrcLoc = Module.LazySrcLoc; const ir = @import("../air.zig"); const Inst = ir.Inst; pub const Word = u32; pub const ResultId = u32; pub const TypeMap = std.HashMap(Type, u32, Type.HashContext, std.hash_map.default_max_load_percentage); pub const InstMap = std.AutoHashMap(*Inst, ResultId); const IncomingBlock = struct { src_label_id: ResultId, break_value_id: ResultId, }; pub const BlockMap = std.AutoHashMap(*Inst.Block, struct { label_id: ResultId, incoming_blocks: *std.ArrayListUnmanaged(IncomingBlock), }); pub fn writeOpcode(code: *std.ArrayList(Word), opcode: Opcode, arg_count: u16) !void { const word_count: Word = arg_count + 1; try code.append((word_count << 16) | @enumToInt(opcode)); } pub fn writeInstruction(code: *std.ArrayList(Word), opcode: Opcode, args: []const Word) !void { try writeOpcode(code, opcode, @intCast(u16, args.len)); try code.appendSlice(args); } pub fn writeInstructionWithString(code: *std.ArrayList(Word), opcode: Opcode, args: []const Word, str: []const u8) !void { // Str needs to be written zero-terminated, so we need to add one to the length. const zero_terminated_len = str.len + 1; const str_words = (zero_terminated_len + @sizeOf(Word) - 1) / @sizeOf(Word); try writeOpcode(code, opcode, @intCast(u16, args.len + str_words)); try code.ensureUnusedCapacity(args.len + str_words); code.appendSliceAssumeCapacity(args); // TODO: Not actually sure whether this is correct for big-endian. // See https://www.khronos.org/registry/spir-v/specs/unified1/SPIRV.html#Literal var i: usize = 0; while (i < zero_terminated_len) : (i += @sizeOf(Word)) { var word: Word = 0; var j: usize = 0; while (j < @sizeOf(Word) and i + j < str.len) : (j += 1) { word |= @as(Word, str[i + j]) << @intCast(std.math.Log2Int(Word), j * std.meta.bitCount(u8)); } code.appendAssumeCapacity(word); } } /// This structure represents a SPIR-V (binary) module being compiled, and keeps track of all relevant information. /// That includes the actual instructions, the current result-id bound, and data structures for querying result-id's /// of data which needs to be persistent over different calls to Decl code generation. pub const SPIRVModule = struct { /// A general-purpose allocator which may be used to allocate temporary resources required for compilation. gpa: *Allocator, /// The parent module. module: *Module, /// SPIR-V instructions return result-ids. This variable holds the module-wide counter for these. next_result_id: ResultId, /// Code of the actual SPIR-V binary, divided into the relevant logical sections. /// Note: To save some bytes, these could also be unmanaged, but since there is only one instance of SPIRVModule /// and this removes some clutter in the rest of the backend, it's fine like this. binary: struct { /// OpCapability and OpExtension instructions (in that order). capabilities_and_extensions: std.ArrayList(Word), /// OpString, OpSourceExtension, OpSource, OpSourceContinued. debug_strings: std.ArrayList(Word), /// Type declaration instructions, constant instructions, global variable declarations, OpUndef instructions. types_globals_constants: std.ArrayList(Word), /// Regular functions. fn_decls: std.ArrayList(Word), }, /// Global type cache to reduce the amount of generated types. types: TypeMap, /// Cache for results of OpString instructions for module file names fed to OpSource. /// Since OpString is pretty much only used for those, we don't need to keep track of all strings, /// just the ones for OpLine. Note that OpLine needs the result of OpString, and not that of OpSource. file_names: std.StringHashMap(ResultId), pub fn init(gpa: *Allocator, module: *Module) SPIRVModule { return .{ .gpa = gpa, .module = module, .next_result_id = 1, // 0 is an invalid SPIR-V result ID. .binary = .{ .capabilities_and_extensions = std.ArrayList(Word).init(gpa), .debug_strings = std.ArrayList(Word).init(gpa), .types_globals_constants = std.ArrayList(Word).init(gpa), .fn_decls = std.ArrayList(Word).init(gpa), }, .types = TypeMap.init(gpa), .file_names = std.StringHashMap(ResultId).init(gpa), }; } pub fn deinit(self: *SPIRVModule) void { self.file_names.deinit(); self.types.deinit(); self.binary.fn_decls.deinit(); self.binary.types_globals_constants.deinit(); self.binary.debug_strings.deinit(); self.binary.capabilities_and_extensions.deinit(); } pub fn allocResultId(self: *SPIRVModule) Word { defer self.next_result_id += 1; return self.next_result_id; } pub fn resultIdBound(self: *SPIRVModule) Word { return self.next_result_id; } fn resolveSourceFileName(self: *SPIRVModule, decl: *Decl) !ResultId { const path = decl.namespace.file_scope.sub_file_path; const result = try self.file_names.getOrPut(path); if (!result.found_existing) { result.value_ptr.* = self.allocResultId(); try writeInstructionWithString(&self.binary.debug_strings, .OpString, &[_]Word{result.value_ptr.*}, path); try writeInstruction(&self.binary.debug_strings, .OpSource, &[_]Word{ @enumToInt(spec.SourceLanguage.Unknown), // TODO: Register Zig source language. 0, // TODO: Zig version as u32? result.value_ptr.*, }); } return result.value_ptr.*; } }; /// This structure is used to compile a declaration, and contains all relevant meta-information to deal with that. pub const DeclGen = struct { /// The SPIR-V module code should be put in. spv: *SPIRVModule, /// An array of function argument result-ids. Each index corresponds with the function argument of the same index. args: std.ArrayList(ResultId), /// A counter to keep track of how many `arg` instructions we've seen yet. next_arg_index: u32, /// A map keeping track of which instruction generated which result-id. inst_results: InstMap, /// We need to keep track of result ids for block labels, as well as the 'incoming' blocks for a block. blocks: BlockMap, /// The label of the SPIR-V block we are currently generating. current_block_label_id: ResultId, /// The actual instructions for this function. We need to declare all locals in the first block, and because we don't /// know which locals there are going to be, we're just going to generate everything after the locals-section in this array. /// Note: It will not contain OpFunction, OpFunctionParameter, OpVariable and the initial OpLabel. These will be generated /// into spv.binary.fn_decls directly. code: std.ArrayList(Word), /// The decl we are currently generating code for. decl: *Decl, /// If `gen` returned `Error.AnalysisFail`, this contains an explanatory message. Memory is owned by /// `module.gpa`. error_msg: ?*Module.ErrorMsg, /// Possible errors the `gen` function may return. const Error = error{ AnalysisFail, OutOfMemory }; /// This structure is used to return information about a type typically used for arithmetic operations. /// These types may either be integers, floats, or a vector of these. Most scalar operations also work on vectors, /// so we can easily represent those as arithmetic types. /// If the type is a scalar, 'inner type' refers to the scalar type. Otherwise, if its a vector, it refers /// to the vector's element type. const ArithmeticTypeInfo = struct { /// A classification of the inner type. const Class = enum { /// A boolean. bool, /// A regular, **native**, integer. /// This is only returned when the backend supports this int as a native type (when /// the relevant capability is enabled). integer, /// A regular float. These are all required to be natively supported. Floating points for /// which the relevant capability is not enabled are not emulated. float, /// An integer of a 'strange' size (which' bit size is not the same as its backing type. **Note**: this /// may **also** include power-of-2 integers for which the relevant capability is not enabled), but still /// within the limits of the largest natively supported integer type. strange_integer, /// An integer with more bits than the largest natively supported integer type. composite_integer, }; /// The number of bits in the inner type. /// Note: this is the actual number of bits of the type, not the size of the backing integer. bits: u16, /// Whether the type is a vector. is_vector: bool, /// Whether the inner type is signed. Only relevant for integers. signedness: std.builtin.Signedness, /// A classification of the inner type. These scenarios /// will all have to be handled slightly different. class: Class, }; /// Initialize the common resources of a DeclGen. Some fields are left uninitialized, only set when `gen` is called. pub fn init(spv: *SPIRVModule) DeclGen { return .{ .spv = spv, .args = std.ArrayList(ResultId).init(spv.gpa), .next_arg_index = undefined, .inst_results = InstMap.init(spv.gpa), .blocks = BlockMap.init(spv.gpa), .current_block_label_id = undefined, .code = std.ArrayList(Word).init(spv.gpa), .decl = undefined, .error_msg = undefined, }; } /// Generate the code for `decl`. If a reportable error occured during code generation, /// a message is returned by this function. Callee owns the memory. If this function returns such /// a reportable error, it is valid to be called again for a different decl. pub fn gen(self: *DeclGen, decl: *Decl) !?*Module.ErrorMsg { // Reset internal resources, we don't want to re-allocate these. self.args.items.len = 0; self.next_arg_index = 0; self.inst_results.clearRetainingCapacity(); self.blocks.clearRetainingCapacity(); self.current_block_label_id = undefined; self.code.items.len = 0; self.decl = decl; self.error_msg = null; try self.genDecl(); return self.error_msg; } /// Free resources owned by the DeclGen. pub fn deinit(self: *DeclGen) void { self.args.deinit(); self.inst_results.deinit(); self.blocks.deinit(); self.code.deinit(); } fn getTarget(self: *DeclGen) std.Target { return self.spv.module.getTarget(); } fn fail(self: *DeclGen, src: LazySrcLoc, comptime format: []const u8, args: anytype) Error { @setCold(true); const src_loc = src.toSrcLocWithDecl(self.decl); self.error_msg = try Module.ErrorMsg.create(self.spv.module.gpa, src_loc, format, args); return error.AnalysisFail; } fn resolve(self: *DeclGen, inst: *Inst) !ResultId { if (inst.value()) |val| { return self.genConstant(inst.src, inst.ty, val); } return self.inst_results.get(inst).?; // Instruction does not dominate all uses! } fn beginSPIRVBlock(self: *DeclGen, label_id: ResultId) !void { try writeInstruction(&self.code, .OpLabel, &[_]Word{label_id}); self.current_block_label_id = label_id; } /// SPIR-V requires enabling specific integer sizes through capabilities, and so if they are not enabled, we need /// to emulate them in other instructions/types. This function returns, given an integer bit width (signed or unsigned, sign /// included), the width of the underlying type which represents it, given the enabled features for the current target. /// If the result is `null`, the largest type the target platform supports natively is not able to perform computations using /// that size. In this case, multiple elements of the largest type should be used. /// The backing type will be chosen as the smallest supported integer larger or equal to it in number of bits. /// The result is valid to be used with OpTypeInt. /// TODO: The extension SPV_INTEL_arbitrary_precision_integers allows any integer size (at least up to 32 bits). /// TODO: This probably needs an ABI-version as well (especially in combination with SPV_INTEL_arbitrary_precision_integers). /// TODO: Should the result of this function be cached? fn backingIntBits(self: *DeclGen, bits: u16) ?u16 { const target = self.getTarget(); // The backend will never be asked to compiler a 0-bit integer, so we won't have to handle those in this function. std.debug.assert(bits != 0); // 8, 16 and 64-bit integers require the Int8, Int16 and Inr64 capabilities respectively. // 32-bit integers are always supported (see spec, 2.16.1, Data rules). const ints = [_]struct { bits: u16, feature: ?Target.spirv.Feature }{ .{ .bits = 8, .feature = .Int8 }, .{ .bits = 16, .feature = .Int16 }, .{ .bits = 32, .feature = null }, .{ .bits = 64, .feature = .Int64 }, }; for (ints) |int| { const has_feature = if (int.feature) |feature| Target.spirv.featureSetHas(target.cpu.features, feature) else true; if (bits <= int.bits and has_feature) { return int.bits; } } return null; } /// Return the amount of bits in the largest supported integer type. This is either 32 (always supported), or 64 (if /// the Int64 capability is enabled). /// Note: The extension SPV_INTEL_arbitrary_precision_integers allows any integer size (at least up to 32 bits). /// In theory that could also be used, but since the spec says that it only guarantees support up to 32-bit ints there /// is no way of knowing whether those are actually supported. /// TODO: Maybe this should be cached? fn largestSupportedIntBits(self: *DeclGen) u16 { const target = self.getTarget(); return if (Target.spirv.featureSetHas(target.cpu.features, .Int64)) 64 else 32; } /// Checks whether the type is "composite int", an integer consisting of multiple native integers. These are represented by /// arrays of largestSupportedIntBits(). /// Asserts `ty` is an integer. fn isCompositeInt(self: *DeclGen, ty: Type) bool { return self.backingIntBits(ty) == null; } fn arithmeticTypeInfo(self: *DeclGen, ty: Type) !ArithmeticTypeInfo { const target = self.getTarget(); return switch (ty.zigTypeTag()) { .Bool => ArithmeticTypeInfo{ .bits = 1, // Doesn't matter for this class. .is_vector = false, .signedness = .unsigned, // Technically, but doesn't matter for this class. .class = .bool, }, .Float => ArithmeticTypeInfo{ .bits = ty.floatBits(target), .is_vector = false, .signedness = .signed, // Technically, but doesn't matter for this class. .class = .float, }, .Int => blk: { const int_info = ty.intInfo(target); // TODO: Maybe it's useful to also return this value. const maybe_backing_bits = self.backingIntBits(int_info.bits); break :blk ArithmeticTypeInfo{ .bits = int_info.bits, .is_vector = false, .signedness = int_info.signedness, .class = if (maybe_backing_bits) |backing_bits| if (backing_bits == int_info.bits) ArithmeticTypeInfo.Class.integer else ArithmeticTypeInfo.Class.strange_integer else .composite_integer }; }, // As of yet, there is no vector support in the self-hosted compiler. .Vector => self.fail(.{ .node_offset = 0 }, "TODO: SPIR-V backend: implement arithmeticTypeInfo for Vector", .{}), // TODO: For which types is this the case? else => self.fail(.{ .node_offset = 0 }, "TODO: SPIR-V backend: implement arithmeticTypeInfo for {}", .{ty}), }; } /// Generate a constant representing `val`. /// TODO: Deduplication? fn genConstant(self: *DeclGen, src: LazySrcLoc, ty: Type, val: Value) Error!ResultId { const target = self.getTarget(); const code = &self.spv.binary.types_globals_constants; const result_id = self.spv.allocResultId(); const result_type_id = try self.genType(src, ty); if (val.isUndef()) { try writeInstruction(code, .OpUndef, &[_]Word{ result_type_id, result_id }); return result_id; } switch (ty.zigTypeTag()) { .Int => { const int_info = ty.intInfo(target); const backing_bits = self.backingIntBits(int_info.bits) orelse { // Integers too big for any native type are represented as "composite integers": An array of largestSupportedIntBits. return self.fail(src, "TODO: SPIR-V backend: implement composite int constants for {}", .{ty}); }; // We can just use toSignedInt/toUnsignedInt here as it returns u64 - a type large enough to hold any // SPIR-V native type (up to i/u64 with Int64). If SPIR-V ever supports native ints of a larger size, this // might need to be updated. std.debug.assert(self.largestSupportedIntBits() <= std.meta.bitCount(u64)); var int_bits = if (ty.isSignedInt()) @bitCast(u64, val.toSignedInt()) else val.toUnsignedInt(); // Mask the low bits which make up the actual integer. This is to make sure that negative values // only use the actual bits of the type. // TODO: Should this be the backing type bits or the actual type bits? int_bits &= (@as(u64, 1) << @intCast(u6, backing_bits)) - 1; switch (backing_bits) { 0 => unreachable, 1...32 => try writeInstruction(code, .OpConstant, &[_]Word{ result_type_id, result_id, @truncate(u32, int_bits), }), 33...64 => try writeInstruction(code, .OpConstant, &[_]Word{ result_type_id, result_id, @truncate(u32, int_bits), @truncate(u32, int_bits >> @bitSizeOf(u32)), }), else => unreachable, // backing_bits is bounded by largestSupportedIntBits. } }, .Bool => { const opcode: Opcode = if (val.toBool()) .OpConstantTrue else .OpConstantFalse; try writeInstruction(code, opcode, &[_]Word{ result_type_id, result_id }); }, .Float => { // At this point we are guaranteed that the target floating point type is supported, otherwise the function // would have exited at genType(ty). // f16 and f32 require one word of storage. f64 requires 2, low-order first. switch (ty.floatBits(target)) { 16 => try writeInstruction(code, .OpConstant, &[_]Word{ result_type_id, result_id, @bitCast(u16, val.toFloat(f16)) }), 32 => try writeInstruction(code, .OpConstant, &[_]Word{ result_type_id, result_id, @bitCast(u32, val.toFloat(f32)) }), 64 => { const float_bits = @bitCast(u64, val.toFloat(f64)); try writeInstruction(code, .OpConstant, &[_]Word{ result_type_id, result_id, @truncate(u32, float_bits), @truncate(u32, float_bits >> @bitSizeOf(u32)), }); }, 128 => unreachable, // Filtered out in the call to genType. // TODO: Insert case for long double when the layout for that is determined. else => unreachable, } }, .Void => unreachable, else => return self.fail(src, "TODO: SPIR-V backend: constant generation of type {}", .{ty}), } return result_id; } fn genType(self: *DeclGen, src: LazySrcLoc, ty: Type) Error!ResultId { // We can't use getOrPut here so we can recursively generate types. if (self.spv.types.get(ty)) |already_generated| { return already_generated; } const target = self.getTarget(); const code = &self.spv.binary.types_globals_constants; const result_id = self.spv.allocResultId(); switch (ty.zigTypeTag()) { .Void => try writeInstruction(code, .OpTypeVoid, &[_]Word{result_id}), .Bool => try writeInstruction(code, .OpTypeBool, &[_]Word{result_id}), .Int => { const int_info = ty.intInfo(target); const backing_bits = self.backingIntBits(int_info.bits) orelse { // Integers too big for any native type are represented as "composite integers": An array of largestSupportedIntBits. return self.fail(src, "TODO: SPIR-V backend: implement composite int {}", .{ty}); }; // TODO: If backing_bits != int_info.bits, a duplicate type might be generated here. try writeInstruction(code, .OpTypeInt, &[_]Word{ result_id, backing_bits, switch (int_info.signedness) { .unsigned => 0, .signed => 1, }, }); }, .Float => { // We can (and want) not really emulate floating points with other floating point types like with the integer types, // so if the float is not supported, just return an error. const bits = ty.floatBits(target); const supported = switch (bits) { 16 => Target.spirv.featureSetHas(target.cpu.features, .Float16), // 32-bit floats are always supported (see spec, 2.16.1, Data rules). 32 => true, 64 => Target.spirv.featureSetHas(target.cpu.features, .Float64), else => false, }; if (!supported) { return self.fail(src, "Floating point width of {} bits is not supported for the current SPIR-V feature set", .{bits}); } try writeInstruction(code, .OpTypeFloat, &[_]Word{ result_id, bits }); }, .Fn => { // We only support zig-calling-convention functions, no varargs. if (ty.fnCallingConvention() != .Unspecified) return self.fail(src, "Unsupported calling convention for SPIR-V", .{}); if (ty.fnIsVarArgs()) return self.fail(src, "VarArgs unsupported for SPIR-V", .{}); // In order to avoid a temporary here, first generate all the required types and then simply look them up // when generating the function type. const params = ty.fnParamLen(); var i: usize = 0; while (i < params) : (i += 1) { _ = try self.genType(src, ty.fnParamType(i)); } const return_type_id = try self.genType(src, ty.fnReturnType()); // result id + result type id + parameter type ids. try writeOpcode(code, .OpTypeFunction, 2 + @intCast(u16, ty.fnParamLen())); try code.appendSlice(&.{ result_id, return_type_id }); i = 0; while (i < params) : (i += 1) { const param_type_id = self.spv.types.get(ty.fnParamType(i)).?; try code.append(param_type_id); } }, // When recursively generating a type, we cannot infer the pointer's storage class. See genPointerType. .Pointer => return self.fail(src, "Cannot create pointer with unkown storage class", .{}), .Vector => { // Although not 100% the same, Zig vectors map quite neatly to SPIR-V vectors (including many integer and float operations // which work on them), so simply use those. // Note: SPIR-V vectors only support bools, ints and floats, so pointer vectors need to be supported another way. // "composite integers" (larger than the largest supported native type) can probably be represented by an array of vectors. // TODO: The SPIR-V spec mentions that vector sizes may be quite restricted! look into which we can use, and whether OpTypeVector // is adequate at all for this. // TODO: Vectors are not yet supported by the self-hosted compiler itself it seems. return self.fail(src, "TODO: SPIR-V backend: implement type Vector", .{}); }, .Null, .Undefined, .EnumLiteral, .ComptimeFloat, .ComptimeInt, .Type, => unreachable, // Must be const or comptime. .BoundFn => unreachable, // this type will be deleted from the language. else => |tag| return self.fail(src, "TODO: SPIR-V backend: implement type {}s", .{tag}), } try self.spv.types.putNoClobber(ty, result_id); return result_id; } /// SPIR-V requires pointers to have a storage class (address space), and so we have a special function for that. /// TODO: The result of this needs to be cached. fn genPointerType(self: *DeclGen, src: LazySrcLoc, ty: Type, storage_class: spec.StorageClass) !ResultId { std.debug.assert(ty.zigTypeTag() == .Pointer); const code = &self.spv.binary.types_globals_constants; const result_id = self.spv.allocResultId(); // TODO: There are many constraints which are ignored for now: We may only create pointers to certain types, and to other types // if more capabilities are enabled. For example, we may only create pointers to f16 if Float16Buffer is enabled. // These also relates to the pointer's address space. const child_id = try self.genType(src, ty.elemType()); try writeInstruction(code, .OpTypePointer, &[_]Word{ result_id, @enumToInt(storage_class), child_id }); return result_id; } fn genDecl(self: *DeclGen) !void { const decl = self.decl; const result_id = decl.fn_link.spirv.id; if (decl.val.castTag(.function)) |func_payload| { std.debug.assert(decl.ty.zigTypeTag() == .Fn); const prototype_id = try self.genType(.{ .node_offset = 0 }, decl.ty); try writeInstruction(&self.spv.binary.fn_decls, .OpFunction, &[_]Word{ self.spv.types.get(decl.ty.fnReturnType()).?, // This type should be generated along with the prototype. result_id, @bitCast(Word, spec.FunctionControl{}), // TODO: We can set inline here if the type requires it. prototype_id, }); const params = decl.ty.fnParamLen(); var i: usize = 0; try self.args.ensureCapacity(params); while (i < params) : (i += 1) { const param_type_id = self.spv.types.get(decl.ty.fnParamType(i)).?; const arg_result_id = self.spv.allocResultId(); try writeInstruction(&self.spv.binary.fn_decls, .OpFunctionParameter, &[_]Word{ param_type_id, arg_result_id }); self.args.appendAssumeCapacity(arg_result_id); } // TODO: This could probably be done in a better way... const root_block_id = self.spv.allocResultId(); // We need to generate the label directly in the fn_decls here because we're going to write the local variables after // here. Since we're not generating in self.code, we're just going to bypass self.beginSPIRVBlock here. try writeInstruction(&self.spv.binary.fn_decls, .OpLabel, &[_]Word{root_block_id}); self.current_block_label_id = root_block_id; try self.genBody(func_payload.data.body); // Append the actual code into the fn_decls section. try self.spv.binary.fn_decls.appendSlice(self.code.items); try writeInstruction(&self.spv.binary.fn_decls, .OpFunctionEnd, &[_]Word{}); } else { return self.fail(.{ .node_offset = 0 }, "TODO: SPIR-V backend: generate decl type {}", .{decl.ty.zigTypeTag()}); } } fn genBody(self: *DeclGen, body: ir.Body) Error!void { for (body.instructions) |inst| { try self.genInst(inst); } } fn genInst(self: *DeclGen, inst: *Inst) !void { const result_id = switch (inst.tag) { .add, .addwrap => try self.genBinOp(inst.castTag(.add).?), .sub, .subwrap => try self.genBinOp(inst.castTag(.sub).?), .mul, .mulwrap => try self.genBinOp(inst.castTag(.mul).?), .div => try self.genBinOp(inst.castTag(.div).?), .bit_and => try self.genBinOp(inst.castTag(.bit_and).?), .bit_or => try self.genBinOp(inst.castTag(.bit_or).?), .xor => try self.genBinOp(inst.castTag(.xor).?), .cmp_eq => try self.genCmp(inst.castTag(.cmp_eq).?), .cmp_neq => try self.genCmp(inst.castTag(.cmp_neq).?), .cmp_gt => try self.genCmp(inst.castTag(.cmp_gt).?), .cmp_gte => try self.genCmp(inst.castTag(.cmp_gte).?), .cmp_lt => try self.genCmp(inst.castTag(.cmp_lt).?), .cmp_lte => try self.genCmp(inst.castTag(.cmp_lte).?), .bool_and => try self.genBinOp(inst.castTag(.bool_and).?), .bool_or => try self.genBinOp(inst.castTag(.bool_or).?), .not => try self.genUnOp(inst.castTag(.not).?), .alloc => try self.genAlloc(inst.castTag(.alloc).?), .arg => self.genArg(), .block => (try self.genBlock(inst.castTag(.block).?)) orelse return, .br => return try self.genBr(inst.castTag(.br).?), .br_void => return try self.genBrVoid(inst.castTag(.br_void).?), // TODO: Breakpoints won't be supported in SPIR-V, but the compiler seems to insert them // throughout the IR. .breakpoint => return, .condbr => return try self.genCondBr(inst.castTag(.condbr).?), .constant => unreachable, .dbg_stmt => return try self.genDbgStmt(inst.castTag(.dbg_stmt).?), .load => try self.genLoad(inst.castTag(.load).?), .loop => return try self.genLoop(inst.castTag(.loop).?), .ret => return try self.genRet(inst.castTag(.ret).?), .retvoid => return try self.genRetVoid(), .store => return try self.genStore(inst.castTag(.store).?), .unreach => return try self.genUnreach(), else => return self.fail(inst.src, "TODO: SPIR-V backend: implement inst {s}", .{@tagName(inst.tag)}), }; try self.inst_results.putNoClobber(inst, result_id); } fn genBinOp(self: *DeclGen, inst: *Inst.BinOp) !ResultId { // TODO: Will lhs and rhs have the same type? const lhs_id = try self.resolve(inst.lhs); const rhs_id = try self.resolve(inst.rhs); const result_id = self.spv.allocResultId(); const result_type_id = try self.genType(inst.base.src, inst.base.ty); // TODO: Is the result the same as the argument types? // This is supposed to be the case for SPIR-V. std.debug.assert(inst.rhs.ty.eql(inst.lhs.ty)); std.debug.assert(inst.base.ty.tag() == .bool or inst.base.ty.eql(inst.lhs.ty)); // Binary operations are generally applicable to both scalar and vector operations in SPIR-V, but int and float // versions of operations require different opcodes. // For operations which produce bools, the information of inst.base.ty is not useful, so just pick either operand // instead. const info = try self.arithmeticTypeInfo(inst.lhs.ty); if (info.class == .composite_integer) { return self.fail(inst.base.src, "TODO: SPIR-V backend: binary operations for composite integers", .{}); } else if (info.class == .strange_integer) { return self.fail(inst.base.src, "TODO: SPIR-V backend: binary operations for strange integers", .{}); } const is_bool = info.class == .bool; const is_float = info.class == .float; const is_signed = info.signedness == .signed; // **Note**: All these operations must be valid for vectors as well! const opcode = switch (inst.base.tag) { // The regular integer operations are all defined for wrapping. Since theyre only relevant for integers, // we can just switch on both cases here. .add, .addwrap => if (is_float) Opcode.OpFAdd else Opcode.OpIAdd, .sub, .subwrap => if (is_float) Opcode.OpFSub else Opcode.OpISub, .mul, .mulwrap => if (is_float) Opcode.OpFMul else Opcode.OpIMul, // TODO: Trap if divisor is 0? // TODO: Figure out of OpSDiv for unsigned/OpUDiv for signed does anything useful. // => Those are probably for divTrunc and divFloor, though the compiler does not yet generate those. // => TODO: Figure out how those work on the SPIR-V side. // => TODO: Test these. .div => if (is_float) Opcode.OpFDiv else if (is_signed) Opcode.OpSDiv else Opcode.OpUDiv, // Only integer versions for these. .bit_and => Opcode.OpBitwiseAnd, .bit_or => Opcode.OpBitwiseOr, .xor => Opcode.OpBitwiseXor, // Bool -> bool operations. .bool_and => Opcode.OpLogicalAnd, .bool_or => Opcode.OpLogicalOr, else => unreachable, }; try writeInstruction(&self.code, opcode, &[_]Word{ result_type_id, result_id, lhs_id, rhs_id }); // TODO: Trap on overflow? Probably going to be annoying. // TODO: Look into SPV_KHR_no_integer_wrap_decoration which provides NoSignedWrap/NoUnsignedWrap. if (info.class != .strange_integer) return result_id; return self.fail(inst.base.src, "TODO: SPIR-V backend: strange integer operation mask", .{}); } fn genCmp(self: *DeclGen, inst: *Inst.BinOp) !ResultId { const lhs_id = try self.resolve(inst.lhs); const rhs_id = try self.resolve(inst.rhs); const result_id = self.spv.allocResultId(); const result_type_id = try self.genType(inst.base.src, inst.base.ty); // All of these operations should be 2 equal types -> bool std.debug.assert(inst.rhs.ty.eql(inst.lhs.ty)); std.debug.assert(inst.base.ty.tag() == .bool); // Comparisons are generally applicable to both scalar and vector operations in SPIR-V, but int and float // versions of operations require different opcodes. // Since inst.base.ty is always bool and so not very useful, and because both arguments must be the same, just get the info // from either of the operands. const info = try self.arithmeticTypeInfo(inst.lhs.ty); if (info.class == .composite_integer) { return self.fail(inst.base.src, "TODO: SPIR-V backend: binary operations for composite integers", .{}); } else if (info.class == .strange_integer) { return self.fail(inst.base.src, "TODO: SPIR-V backend: comparison for strange integers", .{}); } const is_bool = info.class == .bool; const is_float = info.class == .float; const is_signed = info.signedness == .signed; // **Note**: All these operations must be valid for vectors as well! // For floating points, we generally want ordered operations (which return false if either operand is nan). const opcode = switch (inst.base.tag) { .cmp_eq => if (is_float) Opcode.OpFOrdEqual else if (is_bool) Opcode.OpLogicalEqual else Opcode.OpIEqual, .cmp_neq => if (is_float) Opcode.OpFOrdNotEqual else if (is_bool) Opcode.OpLogicalNotEqual else Opcode.OpINotEqual, // TODO: Verify that these OpFOrd type operations produce the right value. // TODO: Is there a more fundamental difference between OpU and OpS operations here than just the type? .cmp_gt => if (is_float) Opcode.OpFOrdGreaterThan else if (is_signed) Opcode.OpSGreaterThan else Opcode.OpUGreaterThan, .cmp_gte => if (is_float) Opcode.OpFOrdGreaterThanEqual else if (is_signed) Opcode.OpSGreaterThanEqual else Opcode.OpUGreaterThanEqual, .cmp_lt => if (is_float) Opcode.OpFOrdLessThan else if (is_signed) Opcode.OpSLessThan else Opcode.OpULessThan, .cmp_lte => if (is_float) Opcode.OpFOrdLessThanEqual else if (is_signed) Opcode.OpSLessThanEqual else Opcode.OpULessThanEqual, else => unreachable, }; try writeInstruction(&self.code, opcode, &[_]Word{ result_type_id, result_id, lhs_id, rhs_id }); return result_id; } fn genUnOp(self: *DeclGen, inst: *Inst.UnOp) !ResultId { const operand_id = try self.resolve(inst.operand); const result_id = self.spv.allocResultId(); const result_type_id = try self.genType(inst.base.src, inst.base.ty); const info = try self.arithmeticTypeInfo(inst.operand.ty); const opcode = switch (inst.base.tag) { // Bool -> bool .not => Opcode.OpLogicalNot, else => unreachable, }; try writeInstruction(&self.code, opcode, &[_]Word{ result_type_id, result_id, operand_id }); return result_id; } fn genAlloc(self: *DeclGen, inst: *Inst.NoOp) !ResultId { const storage_class = spec.StorageClass.Function; const result_type_id = try self.genPointerType(inst.base.src, inst.base.ty, storage_class); const result_id = self.spv.allocResultId(); // Rather than generating into code here, we're just going to generate directly into the fn_decls section so that // variable declarations appear in the first block of the function. try writeInstruction(&self.spv.binary.fn_decls, .OpVariable, &[_]Word{ result_type_id, result_id, @enumToInt(storage_class) }); return result_id; } fn genArg(self: *DeclGen) ResultId { defer self.next_arg_index += 1; return self.args.items[self.next_arg_index]; } fn genBlock(self: *DeclGen, inst: *Inst.Block) !?ResultId { // In IR, a block doesn't really define an entry point like a block, but more like a scope that breaks can jump out of and // "return" a value from. This cannot be directly modelled in SPIR-V, so in a block instruction, we're going to split up // the current block by first generating the code of the block, then a label, and then generate the rest of the current // ir.Block in a different SPIR-V block. const label_id = self.spv.allocResultId(); // 4 chosen as arbitrary initial capacity. var incoming_blocks = try std.ArrayListUnmanaged(IncomingBlock).initCapacity(self.spv.gpa, 4); try self.blocks.putNoClobber(inst, .{ .label_id = label_id, .incoming_blocks = &incoming_blocks, }); defer { assert(self.blocks.remove(inst)); incoming_blocks.deinit(self.spv.gpa); } try self.genBody(inst.body); try self.beginSPIRVBlock(label_id); // If this block didn't produce a value, simply return here. if (!inst.base.ty.hasCodeGenBits()) return null; // Combine the result from the blocks using the Phi instruction. const result_id = self.spv.allocResultId(); // TODO: OpPhi is limited in the types that it may produce, such as pointers. Figure out which other types // are not allowed to be created from a phi node, and throw an error for those. For now, genType already throws // an error for pointers. const result_type_id = try self.genType(inst.base.src, inst.base.ty); try writeOpcode(&self.code, .OpPhi, 2 + @intCast(u16, incoming_blocks.items.len * 2)); // result type + result + variable/parent... for (incoming_blocks.items) |incoming| { try self.code.appendSlice(&[_]Word{ incoming.break_value_id, incoming.src_label_id }); } return result_id; } fn genBr(self: *DeclGen, inst: *Inst.Br) !void { // TODO: This instruction needs to be the last in a block. Is that guaranteed? const target = self.blocks.get(inst.block).?; // TODO: For some reason, br is emitted with void parameters. if (inst.operand.ty.hasCodeGenBits()) { const operand_id = try self.resolve(inst.operand); // current_block_label_id should not be undefined here, lest there is a br or br_void in the function's body. try target.incoming_blocks.append(self.spv.gpa, .{ .src_label_id = self.current_block_label_id, .break_value_id = operand_id }); } try writeInstruction(&self.code, .OpBranch, &[_]Word{target.label_id}); } fn genBrVoid(self: *DeclGen, inst: *Inst.BrVoid) !void { // TODO: This instruction needs to be the last in a block. Is that guaranteed? const target = self.blocks.get(inst.block).?; // Don't need to add this to the incoming block list, as there is no value to insert in the phi node anyway. try writeInstruction(&self.code, .OpBranch, &[_]Word{target.label_id}); } fn genCondBr(self: *DeclGen, inst: *Inst.CondBr) !void { // TODO: This instruction needs to be the last in a block. Is that guaranteed? const condition_id = try self.resolve(inst.condition); // These will always generate a new SPIR-V block, since they are ir.Body and not ir.Block. const then_label_id = self.spv.allocResultId(); const else_label_id = self.spv.allocResultId(); // TODO: We can generate OpSelectionMerge here if we know the target block that both of these will resolve to, // but i don't know if those will always resolve to the same block. try writeInstruction(&self.code, .OpBranchConditional, &[_]Word{ condition_id, then_label_id, else_label_id, }); try self.beginSPIRVBlock(then_label_id); try self.genBody(inst.then_body); try self.beginSPIRVBlock(else_label_id); try self.genBody(inst.else_body); } fn genDbgStmt(self: *DeclGen, inst: *Inst.DbgStmt) !void { const src_fname_id = try self.spv.resolveSourceFileName(self.decl); try writeInstruction(&self.code, .OpLine, &[_]Word{ src_fname_id, inst.line, inst.column }); } fn genLoad(self: *DeclGen, inst: *Inst.UnOp) !ResultId { const operand_id = try self.resolve(inst.operand); const result_type_id = try self.genType(inst.base.src, inst.base.ty); const result_id = self.spv.allocResultId(); const operands = if (inst.base.ty.isVolatilePtr()) &[_]Word{ result_type_id, result_id, operand_id, @bitCast(u32, spec.MemoryAccess{.Volatile = true}) } else &[_]Word{ result_type_id, result_id, operand_id}; try writeInstruction(&self.code, .OpLoad, operands); return result_id; } fn genLoop(self: *DeclGen, inst: *Inst.Loop) !void { // TODO: This instruction needs to be the last in a block. Is that guaranteed? const loop_label_id = self.spv.allocResultId(); // Jump to the loop entry point try writeInstruction(&self.code, .OpBranch, &[_]Word{ loop_label_id }); // TODO: Look into OpLoopMerge. try self.beginSPIRVBlock(loop_label_id); try self.genBody(inst.body); try writeInstruction(&self.code, .OpBranch, &[_]Word{ loop_label_id }); } fn genRet(self: *DeclGen, inst: *Inst.UnOp) !void { const operand_id = try self.resolve(inst.operand); // TODO: This instruction needs to be the last in a block. Is that guaranteed? try writeInstruction(&self.code, .OpReturnValue, &[_]Word{operand_id}); } fn genRetVoid(self: *DeclGen) !void { // TODO: This instruction needs to be the last in a block. Is that guaranteed? try writeInstruction(&self.code, .OpReturn, &[_]Word{}); } fn genStore(self: *DeclGen, inst: *Inst.BinOp) !void { const dst_ptr_id = try self.resolve(inst.lhs); const src_val_id = try self.resolve(inst.rhs); const operands = if (inst.lhs.ty.isVolatilePtr()) &[_]Word{ dst_ptr_id, src_val_id, @bitCast(u32, spec.MemoryAccess{.Volatile = true}) } else &[_]Word{ dst_ptr_id, src_val_id }; try writeInstruction(&self.code, .OpStore, operands); } fn genUnreach(self: *DeclGen) !void { // TODO: This instruction needs to be the last in a block. Is that guaranteed? try writeInstruction(&self.code, .OpUnreachable, &[_]Word{}); } };