const std = @import("std"); const Allocator = std.mem.Allocator; const Target = std.Target; const log = std.log.scoped(.codegen); const assert = std.debug.assert; const Module = @import("../Module.zig"); const Decl = Module.Decl; const Type = @import("../type.zig").Type; const Value = @import("../value.zig").Value; const LazySrcLoc = Module.LazySrcLoc; const Air = @import("../Air.zig"); const Liveness = @import("../Liveness.zig"); const spec = @import("spirv/spec.zig"); const Opcode = spec.Opcode; const Word = spec.Word; const IdRef = spec.IdRef; const IdResult = spec.IdResult; const IdResultType = spec.IdResultType; const SpvModule = @import("spirv/Module.zig"); const SpvSection = @import("spirv/Section.zig"); const SpvType = @import("spirv/type.zig").Type; const InstMap = std.AutoHashMapUnmanaged(Air.Inst.Index, IdRef); const IncomingBlock = struct { src_label_id: IdRef, break_value_id: IdRef, }; pub const BlockMap = std.AutoHashMapUnmanaged(Air.Inst.Index, struct { label_id: IdRef, incoming_blocks: *std.ArrayListUnmanaged(IncomingBlock), }); /// This structure is used to compile a declaration, and contains all relevant meta-information to deal with that. pub const DeclGen = struct { /// The Zig module that we are generating decls for. module: *Module, /// The SPIR-V module code should be put in. spv: *SpvModule, /// The decl we are currently generating code for. decl: *Decl, /// The intermediate code of the declaration we are currently generating. Note: If /// the declaration is not a function, this value will be undefined! air: Air, /// The liveness analysis of the intermediate code for the declaration we are currently generating. /// Note: If the declaration is not a function, this value will be undefined! liveness: Liveness, /// An array of function argument result-ids. Each index corresponds with the /// function argument of the same index. args: std.ArrayListUnmanaged(IdRef) = .{}, /// A counter to keep track of how many `arg` instructions we've seen yet. next_arg_index: u32, /// A map keeping track of which instruction generated which result-id. inst_results: InstMap = .{}, /// We need to keep track of result ids for block labels, as well as the 'incoming' /// blocks for a block. blocks: BlockMap = .{}, /// The label of the SPIR-V block we are currently generating. current_block_label_id: IdRef, /// The actual instructions for this function. We need to declare all locals in /// the first block, and because we don't know which locals there are going to be, /// we're just going to generate everything after the locals-section in this array. /// Note: It will not contain OpFunction, OpFunctionParameter, OpVariable and the /// initial OpLabel. These will be generated into spv.sections.functions directly. code: SpvSection = .{}, /// If `gen` returned `Error.CodegenFail`, this contains an explanatory message. /// Memory is owned by `module.gpa`. error_msg: ?*Module.ErrorMsg, /// Possible errors the `gen` function may return. const Error = error{ CodegenFail, OutOfMemory }; /// This structure is used to return information about a type typically used for /// arithmetic operations. These types may either be integers, floats, or a vector /// of these. Most scalar operations also work on vectors, so we can easily represent /// those as arithmetic types. If the type is a scalar, 'inner type' refers to the /// scalar type. Otherwise, if its a vector, it refers to the vector's element type. const ArithmeticTypeInfo = struct { /// A classification of the inner type. const Class = enum { /// A boolean. bool, /// A regular, **native**, integer. /// This is only returned when the backend supports this int as a native type (when /// the relevant capability is enabled). integer, /// A regular float. These are all required to be natively supported. Floating points /// for which the relevant capability is not enabled are not emulated. float, /// An integer of a 'strange' size (which' bit size is not the same as its backing /// type. **Note**: this may **also** include power-of-2 integers for which the /// relevant capability is not enabled), but still within the limits of the largest /// natively supported integer type. strange_integer, /// An integer with more bits than the largest natively supported integer type. composite_integer, }; /// The number of bits in the inner type. /// This is the actual number of bits of the type, not the size of the backing integer. bits: u16, /// Whether the type is a vector. is_vector: bool, /// Whether the inner type is signed. Only relevant for integers. signedness: std.builtin.Signedness, /// A classification of the inner type. These scenarios /// will all have to be handled slightly different. class: Class, }; /// Initialize the common resources of a DeclGen. Some fields are left uninitialized, /// only set when `gen` is called. pub fn init(module: *Module, spv: *SpvModule) DeclGen { return .{ .module = module, .spv = spv, .decl = undefined, .air = undefined, .liveness = undefined, .next_arg_index = undefined, .current_block_label_id = undefined, .error_msg = undefined, }; } /// Generate the code for `decl`. If a reportable error occurred during code generation, /// a message is returned by this function. Callee owns the memory. If this function /// returns such a reportable error, it is valid to be called again for a different decl. pub fn gen(self: *DeclGen, decl: *Decl, air: Air, liveness: Liveness) !?*Module.ErrorMsg { // Reset internal resources, we don't want to re-allocate these. self.decl = decl; self.air = air; self.liveness = liveness; self.args.items.len = 0; self.next_arg_index = 0; self.inst_results.clearRetainingCapacity(); self.blocks.clearRetainingCapacity(); self.current_block_label_id = undefined; self.code.reset(); self.error_msg = null; self.genDecl() catch |err| switch (err) { error.CodegenFail => return self.error_msg, else => |others| return others, }; return null; } /// Free resources owned by the DeclGen. pub fn deinit(self: *DeclGen) void { self.args.deinit(self.spv.gpa); self.inst_results.deinit(self.spv.gpa); self.blocks.deinit(self.spv.gpa); self.code.deinit(self.spv.gpa); } /// Return the target which we are currently compiling for. fn getTarget(self: *DeclGen) std.Target { return self.module.getTarget(); } fn fail(self: *DeclGen, comptime format: []const u8, args: anytype) Error { @setCold(true); const src: LazySrcLoc = .{ .node_offset = 0 }; const src_loc = src.toSrcLoc(self.decl); assert(self.error_msg == null); self.error_msg = try Module.ErrorMsg.create(self.module.gpa, src_loc, format, args); return error.CodegenFail; } fn todo(self: *DeclGen, comptime format: []const u8, args: anytype) Error { @setCold(true); const src: LazySrcLoc = .{ .node_offset = 0 }; const src_loc = src.toSrcLoc(self.decl); assert(self.error_msg == null); self.error_msg = try Module.ErrorMsg.create(self.module.gpa, src_loc, "TODO (SPIR-V): " ++ format, args); return error.CodegenFail; } /// Fetch the result-id for a previously generated instruction or constant. fn resolve(self: *DeclGen, inst: Air.Inst.Ref) !IdRef { if (self.air.value(inst)) |val| { return self.genConstant(self.air.typeOf(inst), val); } const index = Air.refToIndex(inst).?; return self.inst_results.get(index).?; // Assertion means instruction does not dominate usage. } /// Start a new SPIR-V block, Emits the label of the new block, and stores which /// block we are currently generating. /// Note that there is no such thing as nested blocks like in ZIR or AIR, so we don't need to /// keep track of the previous block. fn beginSpvBlock(self: *DeclGen, label_id: IdResult) !void { try self.code.emit(self.spv.gpa, .OpLabel, .{ .id_result = label_id }); self.current_block_label_id = label_id.toRef(); } /// SPIR-V requires enabling specific integer sizes through capabilities, and so if they are not enabled, we need /// to emulate them in other instructions/types. This function returns, given an integer bit width (signed or unsigned, sign /// included), the width of the underlying type which represents it, given the enabled features for the current target. /// If the result is `null`, the largest type the target platform supports natively is not able to perform computations using /// that size. In this case, multiple elements of the largest type should be used. /// The backing type will be chosen as the smallest supported integer larger or equal to it in number of bits. /// The result is valid to be used with OpTypeInt. /// TODO: The extension SPV_INTEL_arbitrary_precision_integers allows any integer size (at least up to 32 bits). /// TODO: This probably needs an ABI-version as well (especially in combination with SPV_INTEL_arbitrary_precision_integers). /// TODO: Should the result of this function be cached? fn backingIntBits(self: *DeclGen, bits: u16) ?u16 { const target = self.getTarget(); // The backend will never be asked to compiler a 0-bit integer, so we won't have to handle those in this function. assert(bits != 0); // 8, 16 and 64-bit integers require the Int8, Int16 and Inr64 capabilities respectively. // 32-bit integers are always supported (see spec, 2.16.1, Data rules). const ints = [_]struct { bits: u16, feature: ?Target.spirv.Feature }{ .{ .bits = 8, .feature = .Int8 }, .{ .bits = 16, .feature = .Int16 }, .{ .bits = 32, .feature = null }, .{ .bits = 64, .feature = .Int64 }, }; for (ints) |int| { const has_feature = if (int.feature) |feature| Target.spirv.featureSetHas(target.cpu.features, feature) else true; if (bits <= int.bits and has_feature) { return int.bits; } } return null; } /// Return the amount of bits in the largest supported integer type. This is either 32 (always supported), or 64 (if /// the Int64 capability is enabled). /// Note: The extension SPV_INTEL_arbitrary_precision_integers allows any integer size (at least up to 32 bits). /// In theory that could also be used, but since the spec says that it only guarantees support up to 32-bit ints there /// is no way of knowing whether those are actually supported. /// TODO: Maybe this should be cached? fn largestSupportedIntBits(self: *DeclGen) u16 { const target = self.getTarget(); return if (Target.spirv.featureSetHas(target.cpu.features, .Int64)) 64 else 32; } /// Checks whether the type is "composite int", an integer consisting of multiple native integers. These are represented by /// arrays of largestSupportedIntBits(). /// Asserts `ty` is an integer. fn isCompositeInt(self: *DeclGen, ty: Type) bool { return self.backingIntBits(ty) == null; } fn arithmeticTypeInfo(self: *DeclGen, ty: Type) !ArithmeticTypeInfo { const target = self.getTarget(); return switch (ty.zigTypeTag()) { .Bool => ArithmeticTypeInfo{ .bits = 1, // Doesn't matter for this class. .is_vector = false, .signedness = .unsigned, // Technically, but doesn't matter for this class. .class = .bool, }, .Float => ArithmeticTypeInfo{ .bits = ty.floatBits(target), .is_vector = false, .signedness = .signed, // Technically, but doesn't matter for this class. .class = .float, }, .Int => blk: { const int_info = ty.intInfo(target); // TODO: Maybe it's useful to also return this value. const maybe_backing_bits = self.backingIntBits(int_info.bits); break :blk ArithmeticTypeInfo{ .bits = int_info.bits, .is_vector = false, .signedness = int_info.signedness, .class = if (maybe_backing_bits) |backing_bits| if (backing_bits == int_info.bits) ArithmeticTypeInfo.Class.integer else ArithmeticTypeInfo.Class.strange_integer else .composite_integer, }; }, // As of yet, there is no vector support in the self-hosted compiler. .Vector => self.todo("implement arithmeticTypeInfo for Vector", .{}), // TODO: For which types is this the case? else => self.todo("implement arithmeticTypeInfo for {}", .{ty}), }; } /// Generate a constant representing `val`. /// TODO: Deduplication? fn genConstant(self: *DeclGen, ty: Type, val: Value) Error!IdRef { const target = self.getTarget(); const section = &self.spv.sections.types_globals_constants; const result_id = self.spv.allocId(); const result_type_id = try self.resolveTypeId(ty); if (val.isUndef()) { try section.emit(self.spv.gpa, .OpUndef, .{ .id_result_type = result_type_id, .id_result = result_id }); return result_id.toRef(); } switch (ty.zigTypeTag()) { .Int => { const int_info = ty.intInfo(target); const backing_bits = self.backingIntBits(int_info.bits) orelse { // Integers too big for any native type are represented as "composite integers": An array of largestSupportedIntBits. return self.todo("implement composite int constants for {}", .{ty}); }; // We can just use toSignedInt/toUnsignedInt here as it returns u64 - a type large enough to hold any // SPIR-V native type (up to i/u64 with Int64). If SPIR-V ever supports native ints of a larger size, this // might need to be updated. assert(self.largestSupportedIntBits() <= std.meta.bitCount(u64)); // Note, value is required to be sign-extended, so we don't need to mask off the upper bits. // See https://www.khronos.org/registry/SPIR-V/specs/unified1/SPIRV.html#Literal var int_bits = if (ty.isSignedInt()) @bitCast(u64, val.toSignedInt()) else val.toUnsignedInt(); const value: spec.LiteralContextDependentNumber = switch (backing_bits) { 1...32 => .{ .uint32 = @truncate(u32, int_bits) }, 33...64 => .{ .uint64 = int_bits }, else => unreachable, }; try section.emit(self.spv.gpa, .OpConstant, .{ .id_result_type = result_type_id, .id_result = result_id, .value = value, }); }, .Bool => { const operands = .{ .id_result_type = result_type_id, .id_result = result_id }; if (val.toBool()) { try section.emit(self.spv.gpa, .OpConstantTrue, operands); } else { try section.emit(self.spv.gpa, .OpConstantFalse, operands); } }, .Float => { // At this point we are guaranteed that the target floating point type is supported, otherwise the function // would have exited at resolveTypeId(ty). const value: spec.LiteralContextDependentNumber = switch (ty.floatBits(target)) { // Prevent upcasting to f32 by bitcasting and writing as a uint32. 16 => .{ .uint32 = @bitCast(u16, val.toFloat(f16)) }, 32 => .{ .float32 = val.toFloat(f32) }, 64 => .{ .float64 = val.toFloat(f64) }, 128 => unreachable, // Filtered out in the call to resolveTypeId. // TODO: Insert case for long double when the layout for that is determined? else => unreachable, }; try section.emit(self.spv.gpa, .OpConstant, .{ .id_result_type = result_type_id, .id_result = result_id, .value = value, }); }, .Void => unreachable, else => return self.todo("constant generation of type {}", .{ty}), } return result_id.toRef(); } /// Turn a Zig type into a SPIR-V Type, and return its type result-id. fn resolveTypeId(self: *DeclGen, ty: Type) !IdResultType { return self.spv.typeResultId(try self.resolveType(ty)); } /// Turn a Zig type into a SPIR-V Type, and return a reference to it. fn resolveType(self: *DeclGen, ty: Type) Error!SpvType.Ref { const target = self.getTarget(); return switch (ty.zigTypeTag()) { .Void => try self.spv.resolveType(SpvType.initTag(.void)), .Bool => blk: { // TODO: SPIR-V booleans are opaque. For local variables this is fine, but for structs // members we want to use integer types instead. break :blk try self.spv.resolveType(SpvType.initTag(.bool)); }, .Int => blk: { const int_info = ty.intInfo(target); const backing_bits = self.backingIntBits(int_info.bits) orelse { // TODO: Integers too big for any native type are represented as "composite integers": // An array of largestSupportedIntBits. return self.todo("Implement composite int type {}", .{ty}); }; const payload = try self.spv.arena.create(SpvType.Payload.Int); payload.* = .{ .width = backing_bits, .signedness = int_info.signedness, }; break :blk try self.spv.resolveType(SpvType.initPayload(&payload.base)); }, .Float => blk: { // We can (and want) not really emulate floating points with other floating point types like with the integer types, // so if the float is not supported, just return an error. const bits = ty.floatBits(target); const supported = switch (bits) { 16 => Target.spirv.featureSetHas(target.cpu.features, .Float16), // 32-bit floats are always supported (see spec, 2.16.1, Data rules). 32 => true, 64 => Target.spirv.featureSetHas(target.cpu.features, .Float64), else => false, }; if (!supported) { return self.fail("Floating point width of {} bits is not supported for the current SPIR-V feature set", .{bits}); } const payload = try self.spv.arena.create(SpvType.Payload.Float); payload.* = .{ .width = bits, }; break :blk try self.spv.resolveType(SpvType.initPayload(&payload.base)); }, .Fn => blk: { // We only support zig-calling-convention functions, no varargs. if (ty.fnCallingConvention() != .Unspecified) return self.fail("Unsupported calling convention for SPIR-V", .{}); if (ty.fnIsVarArgs()) return self.fail("VarArgs functions are unsupported for SPIR-V", .{}); const param_types = try self.spv.arena.alloc(SpvType.Ref, ty.fnParamLen()); for (param_types) |*param, i| { param.* = try self.resolveType(ty.fnParamType(i)); } const return_type = try self.resolveType(ty.fnReturnType()); const payload = try self.spv.arena.create(SpvType.Payload.Function); payload.* = .{ .return_type = return_type, .parameters = param_types }; break :blk try self.spv.resolveType(SpvType.initPayload(&payload.base)); }, .Pointer => { // This type can now be properly implemented, but we still need to implement the storage classes as proper address spaces. return self.todo("Implement type Pointer properly", .{}); }, .Vector => { // Although not 100% the same, Zig vectors map quite neatly to SPIR-V vectors (including many integer and float operations // which work on them), so simply use those. // Note: SPIR-V vectors only support bools, ints and floats, so pointer vectors need to be supported another way. // "composite integers" (larger than the largest supported native type) can probably be represented by an array of vectors. // TODO: The SPIR-V spec mentions that vector sizes may be quite restricted! look into which we can use, and whether OpTypeVector // is adequate at all for this. // TODO: Vectors are not yet supported by the self-hosted compiler itself it seems. return self.todo("Implement type Vector", .{}); }, .Null, .Undefined, .EnumLiteral, .ComptimeFloat, .ComptimeInt, .Type, => unreachable, // Must be comptime. .BoundFn => unreachable, // this type will be deleted from the language. else => |tag| return self.todo("Implement zig type '{}'", .{tag}), }; } /// SPIR-V requires pointers to have a storage class (address space), and so we have a special function for that. /// TODO: The result of this needs to be cached. fn genPointerType(self: *DeclGen, ty: Type, storage_class: spec.StorageClass) !IdResultType { assert(ty.zigTypeTag() == .Pointer); const result_id = self.spv.allocId(); // TODO: There are many constraints which are ignored for now: We may only create pointers to certain types, and to other types // if more capabilities are enabled. For example, we may only create pointers to f16 if Float16Buffer is enabled. // These also relates to the pointer's address space. const child_id = try self.resolveTypeId(ty.elemType()); try self.spv.sections.types_globals_constants.emit(self.spv.gpa, .OpTypePointer, .{ .id_result = result_id, .storage_class = storage_class, .type = child_id.toRef(), }); return result_id.toResultType(); } fn genDecl(self: *DeclGen) !void { const decl = self.decl; const result_id = decl.fn_link.spirv.id; if (decl.val.castTag(.function)) |_| { assert(decl.ty.zigTypeTag() == .Fn); const prototype_id = try self.resolveTypeId(decl.ty); try self.spv.sections.functions.emit(self.spv.gpa, .OpFunction, .{ .id_result_type = try self.resolveTypeId(decl.ty.fnReturnType()), .id_result = result_id, .function_control = .{}, // TODO: We can set inline here if the type requires it. .function_type = prototype_id.toRef(), }); const params = decl.ty.fnParamLen(); var i: usize = 0; try self.args.ensureUnusedCapacity(self.spv.gpa, params); while (i < params) : (i += 1) { const param_type_id = try self.resolveTypeId(decl.ty.fnParamType(i)); const arg_result_id = self.spv.allocId(); try self.spv.sections.functions.emit(self.spv.gpa, .OpFunctionParameter, .{ .id_result_type = param_type_id, .id_result = arg_result_id, }); self.args.appendAssumeCapacity(arg_result_id.toRef()); } // TODO: This could probably be done in a better way... const root_block_id = self.spv.allocId(); // We need to generate the label directly in the functions section here because we're going to write the local variables after // here. Since we're not generating in self.code, we're just going to bypass self.beginSpvBlock here. try self.spv.sections.functions.emit(self.spv.gpa, .OpLabel, .{ .id_result = root_block_id, }); self.current_block_label_id = root_block_id.toRef(); const main_body = self.air.getMainBody(); try self.genBody(main_body); // Append the actual code into the functions section. try self.spv.sections.functions.append(self.spv.gpa, self.code); try self.spv.sections.functions.emit(self.spv.gpa, .OpFunctionEnd, {}); } else { // TODO // return self.todo("generate decl type {}", .{decl.ty.zigTypeTag()}); } } fn genBody(self: *DeclGen, body: []const Air.Inst.Index) Error!void { for (body) |inst| { try self.genInst(inst); } } fn genInst(self: *DeclGen, inst: Air.Inst.Index) !void { const air_tags = self.air.instructions.items(.tag); const result_id = switch (air_tags[inst]) { // zig fmt: off .add, .addwrap => try self.airArithOp(inst, .OpFAdd, .OpIAdd, .OpIAdd), .sub, .subwrap => try self.airArithOp(inst, .OpFSub, .OpISub, .OpISub), .mul, .mulwrap => try self.airArithOp(inst, .OpFMul, .OpIMul, .OpIMul), .bit_and => try self.airBinOpSimple(inst, .OpBitwiseAnd), .bit_or => try self.airBinOpSimple(inst, .OpBitwiseOr), .xor => try self.airBinOpSimple(inst, .OpBitwiseXor), .bool_and => try self.airBinOpSimple(inst, .OpLogicalAnd), .bool_or => try self.airBinOpSimple(inst, .OpLogicalOr), .not => try self.airNot(inst), .cmp_eq => try self.airCmp(inst, .OpFOrdEqual, .OpLogicalEqual, .OpIEqual), .cmp_neq => try self.airCmp(inst, .OpFOrdNotEqual, .OpLogicalNotEqual, .OpINotEqual), .cmp_gt => try self.airCmp(inst, .OpFOrdGreaterThan, .OpSGreaterThan, .OpUGreaterThan), .cmp_gte => try self.airCmp(inst, .OpFOrdGreaterThanEqual, .OpSGreaterThanEqual, .OpUGreaterThanEqual), .cmp_lt => try self.airCmp(inst, .OpFOrdLessThan, .OpSLessThan, .OpULessThan), .cmp_lte => try self.airCmp(inst, .OpFOrdLessThanEqual, .OpSLessThanEqual, .OpULessThanEqual), .arg => self.airArg(), .alloc => try self.airAlloc(inst), .block => (try self.airBlock(inst)) orelse return, .load => try self.airLoad(inst), .br => return self.airBr(inst), .breakpoint => return, .cond_br => return self.airCondBr(inst), .constant => unreachable, .dbg_stmt => return self.airDbgStmt(inst), .loop => return self.airLoop(inst), .ret => return self.airRet(inst), .store => return self.airStore(inst), .unreach => return self.airUnreach(), // zig fmt: on else => |tag| return self.todo("implement AIR tag {s}", .{ @tagName(tag), }), }; try self.inst_results.putNoClobber(self.spv.gpa, inst, result_id); } fn airBinOpSimple(self: *DeclGen, inst: Air.Inst.Index, comptime opcode: Opcode) !IdRef { const bin_op = self.air.instructions.items(.data)[inst].bin_op; const lhs_id = try self.resolve(bin_op.lhs); const rhs_id = try self.resolve(bin_op.rhs); const result_id = self.spv.allocId(); const result_type_id = try self.resolveTypeId(self.air.typeOfIndex(inst)); try self.code.emit(self.spv.gpa, opcode, .{ .id_result_type = result_type_id, .id_result = result_id, .operand_1 = lhs_id, .operand_2 = rhs_id, }); return result_id.toRef(); } fn airArithOp(self: *DeclGen, inst: Air.Inst.Index, comptime fop: Opcode, comptime sop: Opcode, comptime uop: Opcode) !IdRef { // LHS and RHS are guaranteed to have the same type, and AIR guarantees // the result to be the same as the LHS and RHS, which matches SPIR-V. const ty = self.air.typeOfIndex(inst); const bin_op = self.air.instructions.items(.data)[inst].bin_op; const lhs_id = try self.resolve(bin_op.lhs); const rhs_id = try self.resolve(bin_op.rhs); const result_id = self.spv.allocId(); const result_type_id = try self.resolveTypeId(ty); assert(self.air.typeOf(bin_op.lhs).eql(ty)); assert(self.air.typeOf(bin_op.rhs).eql(ty)); // Binary operations are generally applicable to both scalar and vector operations // in SPIR-V, but int and float versions of operations require different opcodes. const info = try self.arithmeticTypeInfo(ty); const opcode_index: usize = switch (info.class) { .composite_integer => { return self.todo("binary operations for composite integers", .{}); }, .strange_integer => { return self.todo("binary operations for strange integers", .{}); }, .integer => switch (info.signedness) { .signed => @as(usize, 1), .unsigned => @as(usize, 2), }, .float => 0, else => unreachable, }; const operands = .{ .id_result_type = result_type_id, .id_result = result_id, .operand_1 = lhs_id, .operand_2 = rhs_id, }; switch (opcode_index) { 0 => try self.code.emit(self.spv.gpa, fop, operands), 1 => try self.code.emit(self.spv.gpa, sop, operands), 2 => try self.code.emit(self.spv.gpa, uop, operands), else => unreachable, } // TODO: Trap on overflow? Probably going to be annoying. // TODO: Look into SPV_KHR_no_integer_wrap_decoration which provides NoSignedWrap/NoUnsignedWrap. return result_id.toRef(); } fn airCmp(self: *DeclGen, inst: Air.Inst.Index, comptime fop: Opcode, comptime sop: Opcode, comptime uop: Opcode) !IdRef { const bin_op = self.air.instructions.items(.data)[inst].bin_op; const lhs_id = try self.resolve(bin_op.lhs); const rhs_id = try self.resolve(bin_op.rhs); const result_id = self.spv.allocId(); const result_type_id = try self.resolveTypeId(Type.initTag(.bool)); const op_ty = self.air.typeOf(bin_op.lhs); assert(op_ty.eql(self.air.typeOf(bin_op.rhs))); // Comparisons are generally applicable to both scalar and vector operations in SPIR-V, // but int and float versions of operations require different opcodes. const info = try self.arithmeticTypeInfo(op_ty); const opcode_index: usize = switch (info.class) { .composite_integer => { return self.todo("binary operations for composite integers", .{}); }, .strange_integer => { return self.todo("comparison for strange integers", .{}); }, .float => 0, .bool => 1, .integer => switch (info.signedness) { .signed => @as(usize, 1), .unsigned => @as(usize, 2), }, }; const operands = .{ .id_result_type = result_type_id, .id_result = result_id, .operand_1 = lhs_id, .operand_2 = rhs_id, }; switch (opcode_index) { 0 => try self.code.emit(self.spv.gpa, fop, operands), 1 => try self.code.emit(self.spv.gpa, sop, operands), 2 => try self.code.emit(self.spv.gpa, uop, operands), else => unreachable, } return result_id.toRef(); } fn airNot(self: *DeclGen, inst: Air.Inst.Index) !IdRef { const ty_op = self.air.instructions.items(.data)[inst].ty_op; const operand_id = try self.resolve(ty_op.operand); const result_id = self.spv.allocId(); const result_type_id = try self.resolveTypeId(Type.initTag(.bool)); try self.code.emit(self.spv.gpa, .OpLogicalNot, .{ .id_result_type = result_type_id, .id_result = result_id, .operand = operand_id, }); return result_id.toRef(); } fn airAlloc(self: *DeclGen, inst: Air.Inst.Index) !IdRef { const ty = self.air.typeOfIndex(inst); const storage_class = spec.StorageClass.Function; const result_type_id = try self.genPointerType(ty, storage_class); const result_id = self.spv.allocId(); // Rather than generating into code here, we're just going to generate directly into the functions section so that // variable declarations appear in the first block of the function. try self.spv.sections.functions.emit(self.spv.gpa, .OpVariable, .{ .id_result_type = result_type_id, .id_result = result_id, .storage_class = storage_class, }); return result_id.toRef(); } fn airArg(self: *DeclGen) IdRef { defer self.next_arg_index += 1; return self.args.items[self.next_arg_index]; } fn airBlock(self: *DeclGen, inst: Air.Inst.Index) !?IdRef { // In AIR, a block doesn't really define an entry point like a block, but more like a scope that breaks can jump out of and // "return" a value from. This cannot be directly modelled in SPIR-V, so in a block instruction, we're going to split up // the current block by first generating the code of the block, then a label, and then generate the rest of the current // ir.Block in a different SPIR-V block. const label_id = self.spv.allocId(); // 4 chosen as arbitrary initial capacity. var incoming_blocks = try std.ArrayListUnmanaged(IncomingBlock).initCapacity(self.spv.gpa, 4); try self.blocks.putNoClobber(self.spv.gpa, inst, .{ .label_id = label_id.toRef(), .incoming_blocks = &incoming_blocks, }); defer { assert(self.blocks.remove(inst)); incoming_blocks.deinit(self.spv.gpa); } const ty = self.air.typeOfIndex(inst); const inst_datas = self.air.instructions.items(.data); const extra = self.air.extraData(Air.Block, inst_datas[inst].ty_pl.payload); const body = self.air.extra[extra.end..][0..extra.data.body_len]; try self.genBody(body); try self.beginSpvBlock(label_id); // If this block didn't produce a value, simply return here. if (!ty.hasRuntimeBits()) return null; // Combine the result from the blocks using the Phi instruction. const result_id = self.spv.allocId(); // TODO: OpPhi is limited in the types that it may produce, such as pointers. Figure out which other types // are not allowed to be created from a phi node, and throw an error for those. For now, resolveTypeId already throws // an error for pointers. const result_type_id = try self.resolveTypeId(ty); _ = result_type_id; try self.code.emitRaw(self.spv.gpa, .OpPhi, 2 + @intCast(u16, incoming_blocks.items.len * 2)); // result type + result + variable/parent... for (incoming_blocks.items) |incoming| { self.code.writeOperand(spec.PairIdRefIdRef, .{ incoming.break_value_id, incoming.src_label_id }); } return result_id.toRef(); } fn airBr(self: *DeclGen, inst: Air.Inst.Index) !void { const br = self.air.instructions.items(.data)[inst].br; const block = self.blocks.get(br.block_inst).?; const operand_ty = self.air.typeOf(br.operand); if (operand_ty.hasRuntimeBits()) { const operand_id = try self.resolve(br.operand); // current_block_label_id should not be undefined here, lest there is a br or br_void in the function's body. try block.incoming_blocks.append(self.spv.gpa, .{ .src_label_id = self.current_block_label_id, .break_value_id = operand_id }); } try self.code.emit(self.spv.gpa, .OpBranch, .{ .target_label = block.label_id }); } fn airCondBr(self: *DeclGen, inst: Air.Inst.Index) !void { const pl_op = self.air.instructions.items(.data)[inst].pl_op; const cond_br = self.air.extraData(Air.CondBr, pl_op.payload); const then_body = self.air.extra[cond_br.end..][0..cond_br.data.then_body_len]; const else_body = self.air.extra[cond_br.end + then_body.len ..][0..cond_br.data.else_body_len]; const condition_id = try self.resolve(pl_op.operand); // These will always generate a new SPIR-V block, since they are ir.Body and not ir.Block. const then_label_id = self.spv.allocId(); const else_label_id = self.spv.allocId(); // TODO: We can generate OpSelectionMerge here if we know the target block that both of these will resolve to, // but i don't know if those will always resolve to the same block. try self.code.emit(self.spv.gpa, .OpBranchConditional, .{ .condition = condition_id, .true_label = then_label_id.toRef(), .false_label = else_label_id.toRef(), }); try self.beginSpvBlock(then_label_id); try self.genBody(then_body); try self.beginSpvBlock(else_label_id); try self.genBody(else_body); } fn airDbgStmt(self: *DeclGen, inst: Air.Inst.Index) !void { const dbg_stmt = self.air.instructions.items(.data)[inst].dbg_stmt; const src_fname_id = try self.spv.resolveSourceFileName(self.decl); try self.code.emit(self.spv.gpa, .OpLine, .{ .file = src_fname_id, .line = dbg_stmt.line, .column = dbg_stmt.column, }); } fn airLoad(self: *DeclGen, inst: Air.Inst.Index) !IdRef { const ty_op = self.air.instructions.items(.data)[inst].ty_op; const operand_id = try self.resolve(ty_op.operand); const ty = self.air.typeOfIndex(inst); const result_type_id = try self.resolveTypeId(ty); const result_id = self.spv.allocId(); const access = spec.MemoryAccess.Extended{ .Volatile = ty.isVolatilePtr(), }; try self.code.emit(self.spv.gpa, .OpLoad, .{ .id_result_type = result_type_id, .id_result = result_id, .pointer = operand_id, .memory_access = access, }); return result_id.toRef(); } fn airLoop(self: *DeclGen, inst: Air.Inst.Index) !void { const ty_pl = self.air.instructions.items(.data)[inst].ty_pl; const loop = self.air.extraData(Air.Block, ty_pl.payload); const body = self.air.extra[loop.end..][0..loop.data.body_len]; const loop_label_id = self.spv.allocId(); // Jump to the loop entry point try self.code.emit(self.spv.gpa, .OpBranch, .{ .target_label = loop_label_id.toRef() }); // TODO: Look into OpLoopMerge. try self.beginSpvBlock(loop_label_id); try self.genBody(body); try self.code.emit(self.spv.gpa, .OpBranch, .{ .target_label = loop_label_id.toRef() }); } fn airRet(self: *DeclGen, inst: Air.Inst.Index) !void { const operand = self.air.instructions.items(.data)[inst].un_op; const operand_ty = self.air.typeOf(operand); if (operand_ty.hasRuntimeBits()) { const operand_id = try self.resolve(operand); try self.code.emit(self.spv.gpa, .OpReturnValue, .{ .value = operand_id }); } else { try self.code.emit(self.spv.gpa, .OpReturn, {}); } } fn airStore(self: *DeclGen, inst: Air.Inst.Index) !void { const bin_op = self.air.instructions.items(.data)[inst].bin_op; const dst_ptr_id = try self.resolve(bin_op.lhs); const src_val_id = try self.resolve(bin_op.rhs); const lhs_ty = self.air.typeOf(bin_op.lhs); const access = spec.MemoryAccess.Extended{ .Volatile = lhs_ty.isVolatilePtr(), }; try self.code.emit(self.spv.gpa, .OpStore, .{ .pointer = dst_ptr_id, .object = src_val_id, .memory_access = access, }); } fn airUnreach(self: *DeclGen) !void { try self.code.emit(self.spv.gpa, .OpUnreachable, {}); } };