const Encoding = @This(); const std = @import("std"); const assert = std.debug.assert; const math = std.math; const bits = @import("bits.zig"); const encoder = @import("encoder.zig"); const Instruction = encoder.Instruction; const Operand = Instruction.Operand; const Prefix = Instruction.Prefix; const Register = bits.Register; const Rex = encoder.Rex; const LegacyPrefixes = encoder.LegacyPrefixes; mnemonic: Mnemonic, data: Data, const Data = struct { op_en: OpEn, ops: [4]Op, opc_len: u3, opc: [7]u8, modrm_ext: u3, mode: Mode, feature: Feature, }; pub fn findByMnemonic( prefix: Instruction.Prefix, mnemonic: Mnemonic, ops: []const Instruction.Operand, ) !?Encoding { var input_ops = [1]Op{.none} ** 4; for (input_ops[0..ops.len], ops) |*input_op, op| input_op.* = Op.fromOperand(op); const rex_required = for (ops) |op| switch (op) { .reg => |r| switch (r) { .spl, .bpl, .sil, .dil => break true, else => {}, }, else => {}, } else false; const rex_invalid = for (ops) |op| switch (op) { .reg => |r| switch (r) { .ah, .bh, .ch, .dh => break true, else => {}, }, else => {}, } else false; const rex_extended = for (ops) |op| { if (op.isBaseExtended() or op.isIndexExtended()) break true; } else false; if ((rex_required or rex_extended) and rex_invalid) return error.CannotEncode; var shortest_enc: ?Encoding = null; var shortest_len: ?usize = null; next: for (mnemonic_to_encodings_map[@intFromEnum(mnemonic)]) |data| { switch (data.mode) { .none, .short => if (rex_required) continue, .rex, .rex_short => if (!rex_required) continue, else => {}, } for (input_ops, data.ops) |input_op, data_op| if (!input_op.isSubset(data_op)) continue :next; const enc = Encoding{ .mnemonic = mnemonic, .data = data }; if (shortest_enc) |previous_shortest_enc| { const len = estimateInstructionLength(prefix, enc, ops); const previous_shortest_len = shortest_len orelse estimateInstructionLength(prefix, previous_shortest_enc, ops); if (len < previous_shortest_len) { shortest_enc = enc; shortest_len = len; } else shortest_len = previous_shortest_len; } else shortest_enc = enc; } return shortest_enc; } /// Returns first matching encoding by opcode. pub fn findByOpcode(opc: []const u8, prefixes: struct { legacy: LegacyPrefixes, rex: Rex, }, modrm_ext: ?u3) ?Encoding { for (mnemonic_to_encodings_map, 0..) |encs, mnemonic_int| for (encs) |data| { const enc = Encoding{ .mnemonic = @as(Mnemonic, @enumFromInt(mnemonic_int)), .data = data }; if (modrm_ext) |ext| if (ext != data.modrm_ext) continue; if (!std.mem.eql(u8, opc, enc.opcode())) continue; if (prefixes.rex.w) { if (!data.mode.isLong()) continue; } else if (prefixes.rex.present and !prefixes.rex.isSet()) { if (!data.mode.isRex()) continue; } else if (prefixes.legacy.prefix_66) { if (!data.mode.isShort()) continue; } else { if (data.mode.isShort()) continue; } return enc; }; return null; } pub fn opcode(encoding: *const Encoding) []const u8 { return encoding.data.opc[0..encoding.data.opc_len]; } pub fn mandatoryPrefix(encoding: *const Encoding) ?u8 { const prefix = encoding.data.opc[0]; return switch (prefix) { 0x66, 0xf2, 0xf3 => prefix, else => null, }; } pub fn modRmExt(encoding: Encoding) u3 { return switch (encoding.data.op_en) { .m, .mi, .m1, .mc, .vmi => encoding.data.modrm_ext, else => unreachable, }; } pub fn format( encoding: Encoding, comptime fmt: []const u8, options: std.fmt.FormatOptions, writer: anytype, ) !void { _ = options; _ = fmt; var opc = encoding.opcode(); if (encoding.data.mode.isVex()) { try writer.writeAll("VEX."); try writer.writeAll(switch (encoding.data.mode) { .vex_128_w0, .vex_128_w1, .vex_128_wig => "128", .vex_256_w0, .vex_256_w1, .vex_256_wig => "256", .vex_lig_w0, .vex_lig_w1, .vex_lig_wig => "LIG", .vex_lz_w0, .vex_lz_w1, .vex_lz_wig => "LZ", else => unreachable, }); switch (opc[0]) { else => {}, 0x66, 0xf3, 0xf2 => { try writer.print(".{X:0>2}", .{opc[0]}); opc = opc[1..]; }, } try writer.print(".{}", .{std.fmt.fmtSliceHexUpper(opc[0 .. opc.len - 1])}); opc = opc[opc.len - 1 ..]; try writer.writeAll(".W"); try writer.writeAll(switch (encoding.data.mode) { .vex_128_w0, .vex_256_w0, .vex_lig_w0, .vex_lz_w0 => "0", .vex_128_w1, .vex_256_w1, .vex_lig_w1, .vex_lz_w1 => "1", .vex_128_wig, .vex_256_wig, .vex_lig_wig, .vex_lz_wig => "IG", else => unreachable, }); try writer.writeByte(' '); } else if (encoding.data.mode.isLong()) try writer.writeAll("REX.W + "); for (opc) |byte| try writer.print("{x:0>2} ", .{byte}); switch (encoding.data.op_en) { .np, .fd, .td, .i, .zi, .d => {}, .o, .oi => { const tag = switch (encoding.data.ops[0]) { .r8 => "rb", .r16 => "rw", .r32 => "rd", .r64 => "rd", else => unreachable, }; try writer.print("+{s} ", .{tag}); }, .m, .mi, .m1, .mc, .vmi => try writer.print("/{d} ", .{encoding.modRmExt()}), .mr, .rm, .rmi, .mri, .mrc, .rm0, .rvm, .rvmr, .rvmi, .mvr => try writer.writeAll("/r "), } switch (encoding.data.op_en) { .i, .d, .zi, .oi, .mi, .rmi, .mri, .vmi, .rvmi => { const op = switch (encoding.data.op_en) { .i, .d => encoding.data.ops[0], .zi, .oi, .mi => encoding.data.ops[1], .rmi, .mri, .vmi => encoding.data.ops[2], .rvmi => encoding.data.ops[3], else => unreachable, }; const tag = switch (op) { .imm8, .imm8s => "ib", .imm16, .imm16s => "iw", .imm32, .imm32s => "id", .imm64 => "io", .rel8 => "cb", .rel16 => "cw", .rel32 => "cd", else => unreachable, }; try writer.print("{s} ", .{tag}); }, .rvmr => try writer.writeAll("/is4 "), .np, .fd, .td, .o, .m, .m1, .mc, .mr, .rm, .mrc, .rm0, .rvm, .mvr => {}, } try writer.print("{s} ", .{@tagName(encoding.mnemonic)}); for (encoding.data.ops) |op| switch (op) { .none, .o16, .o32, .o64 => break, else => try writer.print("{s} ", .{@tagName(op)}), }; const op_en = switch (encoding.data.op_en) { .zi => .i, else => |op_en| op_en, }; try writer.print("{s}", .{@tagName(op_en)}); } pub const Mnemonic = enum { // zig fmt: off // General-purpose adc, add, @"and", bsf, bsr, bswap, bt, btc, btr, bts, call, cbw, cdq, cdqe, cmova, cmovae, cmovb, cmovbe, cmovc, cmove, cmovg, cmovge, cmovl, cmovle, cmovna, cmovnae, cmovnb, cmovnbe, cmovnc, cmovne, cmovng, cmovnge, cmovnl, cmovnle, cmovno, cmovnp, cmovns, cmovnz, cmovo, cmovp, cmovpe, cmovpo, cmovs, cmovz, cmp, cmps, cmpsb, cmpsd, cmpsq, cmpsw, cmpxchg, cmpxchg8b, cmpxchg16b, cqo, cwd, cwde, div, idiv, imul, int3, ja, jae, jb, jbe, jc, jrcxz, je, jg, jge, jl, jle, jna, jnae, jnb, jnbe, jnc, jne, jng, jnge, jnl, jnle, jno, jnp, jns, jnz, jo, jp, jpe, jpo, js, jz, jmp, lea, lfence, lods, lodsb, lodsd, lodsq, lodsw, lzcnt, mfence, mov, movbe, movs, movsb, movsd, movsq, movsw, movsx, movsxd, movzx, mul, neg, nop, not, @"or", pop, popcnt, push, rcl, rcr, ret, rol, ror, sal, sar, sbb, scas, scasb, scasd, scasq, scasw, shl, shld, shr, shrd, sub, syscall, seta, setae, setb, setbe, setc, sete, setg, setge, setl, setle, setna, setnae, setnb, setnbe, setnc, setne, setng, setnge, setnl, setnle, setno, setnp, setns, setnz, seto, setp, setpe, setpo, sets, setz, sfence, stos, stosb, stosd, stosq, stosw, @"test", tzcnt, ud2, xadd, xchg, xor, // X87 fisttp, fld, // MMX movd, movq, packssdw, packsswb, packuswb, paddb, paddd, paddq, paddsb, paddsw, paddusb, paddusw, paddw, pand, pandn, por, pxor, pmulhw, pmullw, psubb, psubd, psubq, psubsb, psubsw, psubusb, psubusw, psubw, // SSE addps, addss, andps, andnps, cmpps, cmpss, cvtpi2ps, cvtps2pi, cvtsi2ss, cvtss2si, cvttps2pi, cvttss2si, divps, divss, maxps, maxss, minps, minss, movaps, movhlps, movlhps, movss, movups, mulps, mulss, orps, pextrw, pinsrw, pmaxsw, pmaxub, pminsw, pminub, shufps, sqrtps, sqrtss, subps, subss, ucomiss, xorps, // SSE2 addpd, addsd, andpd, andnpd, cmppd, //cmpsd, cvtdq2pd, cvtdq2ps, cvtpd2dq, cvtpd2pi, cvtpd2ps, cvtpi2pd, cvtps2dq, cvtps2pd, cvtsd2si, cvtsd2ss, cvtsi2sd, cvtss2sd, cvttpd2dq, cvttpd2pi, cvttps2dq, cvttsd2si, divpd, divsd, maxpd, maxsd, minpd, minsd, movapd, movdqa, movdqu, //movsd, movupd, mulpd, mulsd, orpd, pshufhw, pshuflw, psrld, psrlq, psrlw, punpckhbw, punpckhdq, punpckhqdq, punpckhwd, punpcklbw, punpckldq, punpcklqdq, punpcklwd, shufpd, sqrtpd, sqrtsd, subpd, subsd, ucomisd, xorpd, // SSE3 movddup, movshdup, movsldup, // SSE4.1 blendpd, blendps, blendvpd, blendvps, extractps, insertps, packusdw, pextrb, pextrd, pextrq, pinsrb, pinsrd, pinsrq, pmaxsb, pmaxsd, pmaxud, pmaxuw, pminsb, pminsd, pminud, pminuw, pmulld, roundpd, roundps, roundsd, roundss, // AVX vaddpd, vaddps, vaddsd, vaddss, vandnpd, vandnps, vandpd, vandps, vblendpd, vblendps, vblendvpd, vblendvps, vbroadcastf128, vbroadcastsd, vbroadcastss, vcmppd, vcmpps, vcmpsd, vcmpss, vcvtdq2pd, vcvtdq2ps, vcvtpd2dq, vcvtpd2ps, vcvtps2dq, vcvtps2pd, vcvtsd2si, vcvtsd2ss, vcvtsi2sd, vcvtsi2ss, vcvtss2sd, vcvtss2si, vcvttpd2dq, vcvttps2dq, vcvttsd2si, vcvttss2si, vdivpd, vdivps, vdivsd, vdivss, vextractf128, vextractps, vinsertf128, vinsertps, vmaxpd, vmaxps, vmaxsd, vmaxss, vminpd, vminps, vminsd, vminss, vmovapd, vmovaps, vmovd, vmovddup, vmovdqa, vmovdqu, vmovhlps, vmovlhps, vmovq, vmovsd, vmovshdup, vmovsldup, vmovss, vmovupd, vmovups, vmulpd, vmulps, vmulsd, vmulss, vorpd, vorps, vpackssdw, vpacksswb, vpackusdw, vpackuswb, vpaddb, vpaddd, vpaddq, vpaddsb, vpaddsw, vpaddusb, vpaddusw, vpaddw, vpand, vpandn, vpextrb, vpextrd, vpextrq, vpextrw, vpinsrb, vpinsrd, vpinsrq, vpinsrw, vpmaxsb, vpmaxsd, vpmaxsw, vpmaxub, vpmaxud, vpmaxuw, vpminsb, vpminsd, vpminsw, vpminub, vpminud, vpminuw, vpmulhw, vpmulld, vpmullw, vpor, vpshufhw, vpshuflw, vpsrld, vpsrlq, vpsrlw, vpsubb, vpsubd, vpsubq, vpsubsb, vpsubsw, vpsubusb, vpsubusw, vpsubw, vpunpckhbw, vpunpckhdq, vpunpckhqdq, vpunpckhwd, vpunpcklbw, vpunpckldq, vpunpcklqdq, vpunpcklwd, vpxor, vroundpd, vroundps, vroundsd, vroundss, vshufpd, vshufps, vsqrtpd, vsqrtps, vsqrtsd, vsqrtss, vsubpd, vsubps, vsubsd, vsubss, vxorpd, vxorps, // F16C vcvtph2ps, vcvtps2ph, // FMA vfmadd132pd, vfmadd213pd, vfmadd231pd, vfmadd132ps, vfmadd213ps, vfmadd231ps, vfmadd132sd, vfmadd213sd, vfmadd231sd, vfmadd132ss, vfmadd213ss, vfmadd231ss, // zig fmt: on }; pub const OpEn = enum { // zig fmt: off np, o, oi, i, zi, d, m, fd, td, m1, mc, mi, mr, rm, rmi, mri, mrc, rm0, vmi, rvm, rvmr, rvmi, mvr, // zig fmt: on }; pub const Op = enum { // zig fmt: off none, o16, o32, o64, unity, imm8, imm16, imm32, imm64, imm8s, imm16s, imm32s, al, ax, eax, rax, cl, r8, r16, r32, r64, rm8, rm16, rm32, rm64, r32_m8, r32_m16, r64_m16, m8, m16, m32, m64, m80, m128, m256, rel8, rel16, rel32, m, moffs, sreg, st, mm, mm_m64, xmm0, xmm, xmm_m32, xmm_m64, xmm_m128, ymm, ymm_m256, // zig fmt: on pub fn fromOperand(operand: Instruction.Operand) Op { return switch (operand) { .none => .none, .reg => |reg| switch (reg.class()) { .general_purpose => if (reg.to64() == .rax) switch (reg) { .al => .al, .ax => .ax, .eax => .eax, .rax => .rax, else => unreachable, } else if (reg == .cl) .cl else switch (reg.bitSize()) { 8 => .r8, 16 => .r16, 32 => .r32, 64 => .r64, else => unreachable, }, .segment => .sreg, .x87 => .st, .mmx => .mm, .sse => if (reg == .xmm0) .xmm0 else switch (reg.bitSize()) { 128 => .xmm, 256 => .ymm, else => unreachable, }, }, .mem => |mem| switch (mem) { .moffs => .moffs, .sib, .rip => switch (mem.bitSize()) { 8 => .m8, 16 => .m16, 32 => .m32, 64 => .m64, 80 => .m80, 128 => .m128, 256 => .m256, else => unreachable, }, }, .imm => |imm| switch (imm) { .signed => |x| if (x == 1) .unity else if (math.cast(i8, x)) |_| .imm8s else if (math.cast(i16, x)) |_| .imm16s else .imm32s, .unsigned => |x| if (x == 1) .unity else if (math.cast(i8, x)) |_| .imm8s else if (math.cast(u8, x)) |_| .imm8 else if (math.cast(i16, x)) |_| .imm16s else if (math.cast(u16, x)) |_| .imm16 else if (math.cast(i32, x)) |_| .imm32s else if (math.cast(u32, x)) |_| .imm32 else .imm64, }, }; } pub fn immBitSize(op: Op) u64 { return switch (op) { .none, .o16, .o32, .o64, .moffs, .m, .sreg => unreachable, .al, .cl, .r8, .rm8, .r32_m8 => unreachable, .ax, .r16, .rm16 => unreachable, .eax, .r32, .rm32, .r32_m16 => unreachable, .rax, .r64, .rm64, .r64_m16 => unreachable, .st, .mm, .mm_m64 => unreachable, .xmm0, .xmm, .xmm_m32, .xmm_m64, .xmm_m128 => unreachable, .ymm, .ymm_m256 => unreachable, .m8, .m16, .m32, .m64, .m80, .m128, .m256 => unreachable, .unity => 1, .imm8, .imm8s, .rel8 => 8, .imm16, .imm16s, .rel16 => 16, .imm32, .imm32s, .rel32 => 32, .imm64 => 64, }; } pub fn regBitSize(op: Op) u64 { return switch (op) { .none, .o16, .o32, .o64, .moffs, .m, .sreg => unreachable, .unity, .imm8, .imm8s, .imm16, .imm16s, .imm32, .imm32s, .imm64 => unreachable, .rel8, .rel16, .rel32 => unreachable, .m8, .m16, .m32, .m64, .m80, .m128, .m256 => unreachable, .al, .cl, .r8, .rm8 => 8, .ax, .r16, .rm16 => 16, .eax, .r32, .rm32, .r32_m8, .r32_m16 => 32, .rax, .r64, .rm64, .r64_m16, .mm, .mm_m64 => 64, .st => 80, .xmm0, .xmm, .xmm_m32, .xmm_m64, .xmm_m128 => 128, .ymm, .ymm_m256 => 256, }; } pub fn memBitSize(op: Op) u64 { return switch (op) { .none, .o16, .o32, .o64, .moffs, .m, .sreg => unreachable, .unity, .imm8, .imm8s, .imm16, .imm16s, .imm32, .imm32s, .imm64 => unreachable, .rel8, .rel16, .rel32 => unreachable, .al, .cl, .r8, .ax, .r16, .eax, .r32, .rax, .r64 => unreachable, .st, .mm, .xmm0, .xmm, .ymm => unreachable, .m8, .rm8, .r32_m8 => 8, .m16, .rm16, .r32_m16, .r64_m16 => 16, .m32, .rm32, .xmm_m32 => 32, .m64, .rm64, .mm_m64, .xmm_m64 => 64, .m80 => 80, .m128, .xmm_m128 => 128, .m256, .ymm_m256 => 256, }; } pub fn isSigned(op: Op) bool { return switch (op) { .unity, .imm8, .imm16, .imm32, .imm64 => false, .imm8s, .imm16s, .imm32s => true, else => unreachable, }; } pub fn isUnsigned(op: Op) bool { return !op.isSigned(); } pub fn isRegister(op: Op) bool { // zig fmt: off return switch (op) { .cl, .al, .ax, .eax, .rax, .r8, .r16, .r32, .r64, .rm8, .rm16, .rm32, .rm64, .r32_m8, .r32_m16, .r64_m16, .st, .mm, .mm_m64, .xmm0, .xmm, .xmm_m32, .xmm_m64, .xmm_m128, .ymm, .ymm_m256, => true, else => false, }; // zig fmt: on } pub fn isImmediate(op: Op) bool { // zig fmt: off return switch (op) { .imm8, .imm16, .imm32, .imm64, .imm8s, .imm16s, .imm32s, .rel8, .rel16, .rel32, .unity, => true, else => false, }; // zig fmt: on } pub fn isMemory(op: Op) bool { // zig fmt: off return switch (op) { .rm8, .rm16, .rm32, .rm64, .r32_m8, .r32_m16, .r64_m16, .m8, .m16, .m32, .m64, .m80, .m128, .m256, .m, .mm_m64, .xmm_m32, .xmm_m64, .xmm_m128, .ymm_m256, => true, else => false, }; // zig fmt: on } pub fn isSegmentRegister(op: Op) bool { return switch (op) { .moffs, .sreg => true, else => false, }; } pub fn class(op: Op) bits.Register.Class { return switch (op) { else => unreachable, .al, .ax, .eax, .rax, .cl => .general_purpose, .r8, .r16, .r32, .r64 => .general_purpose, .rm8, .rm16, .rm32, .rm64 => .general_purpose, .r32_m8, .r32_m16, .r64_m16 => .general_purpose, .sreg => .segment, .st => .x87, .mm, .mm_m64 => .mmx, .xmm0, .xmm, .xmm_m32, .xmm_m64, .xmm_m128 => .sse, .ymm, .ymm_m256 => .sse, }; } /// Given an operand `op` checks if `target` is a subset for the purposes of the encoding. pub fn isSubset(op: Op, target: Op) bool { switch (op) { .m, .o16, .o32, .o64 => unreachable, .moffs, .sreg => return op == target, .none => switch (target) { .o16, .o32, .o64, .none => return true, else => return false, }, else => { if (op.isRegister() and target.isRegister()) { return switch (target) { .cl, .al, .ax, .eax, .rax, .xmm0 => op == target, else => op.class() == target.class() and op.regBitSize() == target.regBitSize(), }; } if (op.isMemory() and target.isMemory()) { switch (target) { .m => return true, else => return op.memBitSize() == target.memBitSize(), } } if (op.isImmediate() and target.isImmediate()) { switch (target) { .imm64 => if (op.immBitSize() <= 64) return true, .imm32s, .rel32 => if (op.immBitSize() < 32 or (op.immBitSize() == 32 and op.isSigned())) return true, .imm32 => if (op.immBitSize() <= 32) return true, .imm16s, .rel16 => if (op.immBitSize() < 16 or (op.immBitSize() == 16 and op.isSigned())) return true, .imm16 => if (op.immBitSize() <= 16) return true, .imm8s, .rel8 => if (op.immBitSize() < 8 or (op.immBitSize() == 8 and op.isSigned())) return true, .imm8 => if (op.immBitSize() <= 8) return true, else => {}, } return op == target; } return false; }, } } }; pub const Mode = enum { // zig fmt: off none, short, long, rex, rex_short, vex_128_w0, vex_128_w1, vex_128_wig, vex_256_w0, vex_256_w1, vex_256_wig, vex_lig_w0, vex_lig_w1, vex_lig_wig, vex_lz_w0, vex_lz_w1, vex_lz_wig, // zig fmt: on pub fn isShort(mode: Mode) bool { return switch (mode) { .short, .rex_short => true, else => false, }; } pub fn isLong(mode: Mode) bool { return switch (mode) { .long, .vex_128_w1, .vex_256_w1, .vex_lig_w1, .vex_lz_w1, => true, else => false, }; } pub fn isRex(mode: Mode) bool { return switch (mode) { else => false, .rex, .rex_short => true, }; } pub fn isVex(mode: Mode) bool { return switch (mode) { // zig fmt: off else => false, .vex_128_w0, .vex_128_w1, .vex_128_wig, .vex_256_w0, .vex_256_w1, .vex_256_wig, .vex_lig_w0, .vex_lig_w1, .vex_lig_wig, .vex_lz_w0, .vex_lz_w1, .vex_lz_wig, => true, // zig fmt: on }; } pub fn isVecLong(mode: Mode) bool { return switch (mode) { // zig fmt: off else => unreachable, .vex_128_w0, .vex_128_w1, .vex_128_wig, .vex_lig_w0, .vex_lig_w1, .vex_lig_wig, .vex_lz_w0, .vex_lz_w1, .vex_lz_wig, => false, .vex_256_w0, .vex_256_w1, .vex_256_wig, => true, // zig fmt: on }; } }; pub const Feature = enum { none, avx, avx2, bmi, f16c, fma, lzcnt, movbe, popcnt, sse, sse2, sse3, sse4_1, x87, }; fn estimateInstructionLength(prefix: Prefix, encoding: Encoding, ops: []const Operand) usize { var inst = Instruction{ .prefix = prefix, .encoding = encoding, .ops = [1]Operand{.none} ** 4, }; @memcpy(inst.ops[0..ops.len], ops); var cwriter = std.io.countingWriter(std.io.null_writer); inst.encode(cwriter.writer(), .{ .allow_frame_loc = true }) catch unreachable; // Not allowed to fail here unless OOM. return @as(usize, @intCast(cwriter.bytes_written)); } const mnemonic_to_encodings_map = init: { @setEvalBranchQuota(50_000); const encodings = @import("encodings.zig"); var entries = encodings.table; std.mem.sort(encodings.Entry, &entries, {}, struct { fn lessThan(_: void, lhs: encodings.Entry, rhs: encodings.Entry) bool { return @intFromEnum(lhs[0]) < @intFromEnum(rhs[0]); } }.lessThan); var data_storage: [entries.len]Data = undefined; var mnemonic_map: [@typeInfo(Mnemonic).Enum.fields.len][]const Data = undefined; var mnemonic_int = 0; var mnemonic_start = 0; for (&data_storage, entries, 0..) |*data, entry, data_index| { data.* = .{ .op_en = entry[1], .ops = undefined, .opc_len = entry[3].len, .opc = undefined, .modrm_ext = entry[4], .mode = entry[5], .feature = entry[6], }; // TODO: use `@memcpy` for these. When I did that, I got a false positive // compile error for this copy happening at compile time. std.mem.copyForwards(Op, &data.ops, entry[2]); std.mem.copyForwards(u8, &data.opc, entry[3]); while (mnemonic_int < @intFromEnum(entry[0])) : (mnemonic_int += 1) { mnemonic_map[mnemonic_int] = data_storage[mnemonic_start..data_index]; mnemonic_start = data_index; } } while (mnemonic_int < mnemonic_map.len) : (mnemonic_int += 1) { mnemonic_map[mnemonic_int] = data_storage[mnemonic_start..]; mnemonic_start = data_storage.len; } break :init mnemonic_map; };