1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
|
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef GOOGLE_PROTOBUF_PARSE_CONTEXT_H__
#define GOOGLE_PROTOBUF_PARSE_CONTEXT_H__
#include <cstdint>
#include <cstring>
#include <string>
#include <io/coded_stream.h>
#include <io/zero_copy_stream.h>
#include <arena.h>
#include <arenastring.h>
#include <implicit_weak_message.h>
#include <inlined_string_field.h>
#include <metadata_lite.h>
#include <port.h>
#include <repeated_field.h>
#include <wire_format_lite.h>
#include <stubs/strutil.h>
#include <port_def.inc>
namespace google {
namespace protobuf {
class UnknownFieldSet;
class DescriptorPool;
class MessageFactory;
namespace internal {
// Template code below needs to know about the existence of these functions.
PROTOBUF_EXPORT void WriteVarint(uint32_t num, uint64_t val, std::string* s);
PROTOBUF_EXPORT void WriteLengthDelimited(uint32_t num, StringPiece val,
std::string* s);
// Inline because it is just forwarding to s->WriteVarint
inline void WriteVarint(uint32_t num, uint64_t val, UnknownFieldSet* s);
inline void WriteLengthDelimited(uint32_t num, StringPiece val,
UnknownFieldSet* s);
// The basic abstraction the parser is designed for is a slight modification
// of the ZeroCopyInputStream (ZCIS) abstraction. A ZCIS presents a serialized
// stream as a series of buffers that concatenate to the full stream.
// Pictorially a ZCIS presents a stream in chunks like so
// [---------------------------------------------------------------]
// [---------------------] chunk 1
// [----------------------------] chunk 2
// chunk 3 [--------------]
//
// Where the '-' represent the bytes which are vertically lined up with the
// bytes of the stream. The proto parser requires its input to be presented
// similarly with the extra
// property that each chunk has kSlopBytes past its end that overlaps with the
// first kSlopBytes of the next chunk, or if there is no next chunk at least its
// still valid to read those bytes. Again, pictorially, we now have
//
// [---------------------------------------------------------------]
// [-------------------....] chunk 1
// [------------------------....] chunk 2
// chunk 3 [------------------..**]
// chunk 4 [--****]
// Here '-' mean the bytes of the stream or chunk and '.' means bytes past the
// chunk that match up with the start of the next chunk. Above each chunk has
// 4 '.' after the chunk. In the case these 'overflow' bytes represents bytes
// past the stream, indicated by '*' above, their values are unspecified. It is
// still legal to read them (ie. should not segfault). Reading past the
// end should be detected by the user and indicated as an error.
//
// The reason for this, admittedly, unconventional invariant is to ruthlessly
// optimize the protobuf parser. Having an overlap helps in two important ways.
// Firstly it alleviates having to performing bounds checks if a piece of code
// is guaranteed to not read more than kSlopBytes. Secondly, and more
// importantly, the protobuf wireformat is such that reading a key/value pair is
// always less than 16 bytes. This removes the need to change to next buffer in
// the middle of reading primitive values. Hence there is no need to store and
// load the current position.
class PROTOBUF_EXPORT EpsCopyInputStream {
public:
enum { kSlopBytes = 16, kMaxCordBytesToCopy = 512 };
explicit EpsCopyInputStream(bool enable_aliasing)
: aliasing_(enable_aliasing ? kOnPatch : kNoAliasing) {}
void BackUp(const char* ptr) {
GOOGLE_DCHECK(ptr <= buffer_end_ + kSlopBytes);
int count;
if (next_chunk_ == buffer_) {
count = static_cast<int>(buffer_end_ + kSlopBytes - ptr);
} else {
count = size_ + static_cast<int>(buffer_end_ - ptr);
}
if (count > 0) StreamBackUp(count);
}
// If return value is negative it's an error
PROTOBUF_NODISCARD int PushLimit(const char* ptr, int limit) {
GOOGLE_DCHECK(limit >= 0 && limit <= INT_MAX - kSlopBytes);
// This add is safe due to the invariant above, because
// ptr - buffer_end_ <= kSlopBytes.
limit += static_cast<int>(ptr - buffer_end_);
limit_end_ = buffer_end_ + (std::min)(0, limit);
auto old_limit = limit_;
limit_ = limit;
return old_limit - limit;
}
PROTOBUF_NODISCARD bool PopLimit(int delta) {
if (PROTOBUF_PREDICT_FALSE(!EndedAtLimit())) return false;
limit_ = limit_ + delta;
// TODO(gerbens) We could remove this line and hoist the code to
// DoneFallback. Study the perf/bin-size effects.
limit_end_ = buffer_end_ + (std::min)(0, limit_);
return true;
}
PROTOBUF_NODISCARD const char* Skip(const char* ptr, int size) {
if (size <= buffer_end_ + kSlopBytes - ptr) {
return ptr + size;
}
return SkipFallback(ptr, size);
}
PROTOBUF_NODISCARD const char* ReadString(const char* ptr, int size,
std::string* s) {
if (size <= buffer_end_ + kSlopBytes - ptr) {
s->assign(ptr, size);
return ptr + size;
}
return ReadStringFallback(ptr, size, s);
}
PROTOBUF_NODISCARD const char* AppendString(const char* ptr, int size,
std::string* s) {
if (size <= buffer_end_ + kSlopBytes - ptr) {
s->append(ptr, size);
return ptr + size;
}
return AppendStringFallback(ptr, size, s);
}
// Implemented in arenastring.cc
PROTOBUF_NODISCARD const char* ReadArenaString(const char* ptr,
ArenaStringPtr* s,
Arena* arena);
template <typename Tag, typename T>
PROTOBUF_NODISCARD const char* ReadRepeatedFixed(const char* ptr,
Tag expected_tag,
RepeatedField<T>* out);
template <typename T>
PROTOBUF_NODISCARD const char* ReadPackedFixed(const char* ptr, int size,
RepeatedField<T>* out);
template <typename Add>
PROTOBUF_NODISCARD const char* ReadPackedVarint(const char* ptr, Add add);
uint32_t LastTag() const { return last_tag_minus_1_ + 1; }
bool ConsumeEndGroup(uint32_t start_tag) {
bool res = last_tag_minus_1_ == start_tag;
last_tag_minus_1_ = 0;
return res;
}
bool EndedAtLimit() const { return last_tag_minus_1_ == 0; }
bool EndedAtEndOfStream() const { return last_tag_minus_1_ == 1; }
void SetLastTag(uint32_t tag) { last_tag_minus_1_ = tag - 1; }
void SetEndOfStream() { last_tag_minus_1_ = 1; }
bool IsExceedingLimit(const char* ptr) {
return ptr > limit_end_ &&
(next_chunk_ == nullptr || ptr - buffer_end_ > limit_);
}
int BytesUntilLimit(const char* ptr) const {
return limit_ + static_cast<int>(buffer_end_ - ptr);
}
// Returns true if more data is available, if false is returned one has to
// call Done for further checks.
bool DataAvailable(const char* ptr) { return ptr < limit_end_; }
protected:
// Returns true is limit (either an explicit limit or end of stream) is
// reached. It aligns *ptr across buffer seams.
// If limit is exceeded it returns true and ptr is set to null.
bool DoneWithCheck(const char** ptr, int d) {
GOOGLE_DCHECK(*ptr);
if (PROTOBUF_PREDICT_TRUE(*ptr < limit_end_)) return false;
int overrun = static_cast<int>(*ptr - buffer_end_);
GOOGLE_DCHECK_LE(overrun, kSlopBytes); // Guaranteed by parse loop.
if (overrun ==
limit_) { // No need to flip buffers if we ended on a limit.
// If we actually overrun the buffer and next_chunk_ is null. It means
// the stream ended and we passed the stream end.
if (overrun > 0 && next_chunk_ == nullptr) *ptr = nullptr;
return true;
}
auto res = DoneFallback(overrun, d);
*ptr = res.first;
return res.second;
}
const char* InitFrom(StringPiece flat) {
overall_limit_ = 0;
if (flat.size() > kSlopBytes) {
limit_ = kSlopBytes;
limit_end_ = buffer_end_ = flat.data() + flat.size() - kSlopBytes;
next_chunk_ = buffer_;
if (aliasing_ == kOnPatch) aliasing_ = kNoDelta;
return flat.data();
} else {
std::memcpy(buffer_, flat.data(), flat.size());
limit_ = 0;
limit_end_ = buffer_end_ = buffer_ + flat.size();
next_chunk_ = nullptr;
if (aliasing_ == kOnPatch) {
aliasing_ = reinterpret_cast<std::uintptr_t>(flat.data()) -
reinterpret_cast<std::uintptr_t>(buffer_);
}
return buffer_;
}
}
const char* InitFrom(io::ZeroCopyInputStream* zcis);
const char* InitFrom(io::ZeroCopyInputStream* zcis, int limit) {
if (limit == -1) return InitFrom(zcis);
overall_limit_ = limit;
auto res = InitFrom(zcis);
limit_ = limit - static_cast<int>(buffer_end_ - res);
limit_end_ = buffer_end_ + (std::min)(0, limit_);
return res;
}
private:
const char* limit_end_; // buffer_end_ + min(limit_, 0)
const char* buffer_end_;
const char* next_chunk_;
int size_;
int limit_; // relative to buffer_end_;
io::ZeroCopyInputStream* zcis_ = nullptr;
char buffer_[2 * kSlopBytes] = {};
enum { kNoAliasing = 0, kOnPatch = 1, kNoDelta = 2 };
std::uintptr_t aliasing_ = kNoAliasing;
// This variable is used to communicate how the parse ended, in order to
// completely verify the parsed data. A wire-format parse can end because of
// one of the following conditions:
// 1) A parse can end on a pushed limit.
// 2) A parse can end on End Of Stream (EOS).
// 3) A parse can end on 0 tag (only valid for toplevel message).
// 4) A parse can end on an end-group tag.
// This variable should always be set to 0, which indicates case 1. If the
// parse terminated due to EOS (case 2), it's set to 1. In case the parse
// ended due to a terminating tag (case 3 and 4) it's set to (tag - 1).
// This var doesn't really belong in EpsCopyInputStream and should be part of
// the ParseContext, but case 2 is most easily and optimally implemented in
// DoneFallback.
uint32_t last_tag_minus_1_ = 0;
int overall_limit_ = INT_MAX; // Overall limit independent of pushed limits.
// Pretty random large number that seems like a safe allocation on most
// systems. TODO(gerbens) do we need to set this as build flag?
enum { kSafeStringSize = 50000000 };
// Advances to next buffer chunk returns a pointer to the same logical place
// in the stream as set by overrun. Overrun indicates the position in the slop
// region the parse was left (0 <= overrun <= kSlopBytes). Returns true if at
// limit, at which point the returned pointer maybe null if there was an
// error. The invariant of this function is that it's guaranteed that
// kSlopBytes bytes can be accessed from the returned ptr. This function might
// advance more buffers than one in the underlying ZeroCopyInputStream.
std::pair<const char*, bool> DoneFallback(int overrun, int depth);
// Advances to the next buffer, at most one call to Next() on the underlying
// ZeroCopyInputStream is made. This function DOES NOT match the returned
// pointer to where in the slop region the parse ends, hence no overrun
// parameter. This is useful for string operations where you always copy
// to the end of the buffer (including the slop region).
const char* Next();
// overrun is the location in the slop region the stream currently is
// (0 <= overrun <= kSlopBytes). To prevent flipping to the next buffer of
// the ZeroCopyInputStream in the case the parse will end in the last
// kSlopBytes of the current buffer. depth is the current depth of nested
// groups (or negative if the use case does not need careful tracking).
inline const char* NextBuffer(int overrun, int depth);
const char* SkipFallback(const char* ptr, int size);
const char* AppendStringFallback(const char* ptr, int size, std::string* str);
const char* ReadStringFallback(const char* ptr, int size, std::string* str);
bool StreamNext(const void** data) {
bool res = zcis_->Next(data, &size_);
if (res) overall_limit_ -= size_;
return res;
}
void StreamBackUp(int count) {
zcis_->BackUp(count);
overall_limit_ += count;
}
template <typename A>
const char* AppendSize(const char* ptr, int size, const A& append) {
int chunk_size = buffer_end_ + kSlopBytes - ptr;
do {
GOOGLE_DCHECK(size > chunk_size);
if (next_chunk_ == nullptr) return nullptr;
append(ptr, chunk_size);
ptr += chunk_size;
size -= chunk_size;
// TODO(gerbens) Next calls NextBuffer which generates buffers with
// overlap and thus incurs cost of copying the slop regions. This is not
// necessary for reading strings. We should just call Next buffers.
if (limit_ <= kSlopBytes) return nullptr;
ptr = Next();
if (ptr == nullptr) return nullptr; // passed the limit
ptr += kSlopBytes;
chunk_size = buffer_end_ + kSlopBytes - ptr;
} while (size > chunk_size);
append(ptr, size);
return ptr + size;
}
// AppendUntilEnd appends data until a limit (either a PushLimit or end of
// stream. Normal payloads are from length delimited fields which have an
// explicit size. Reading until limit only comes when the string takes
// the place of a protobuf, ie RawMessage/StringRawMessage, lazy fields and
// implicit weak messages. We keep these methods private and friend them.
template <typename A>
const char* AppendUntilEnd(const char* ptr, const A& append) {
if (ptr - buffer_end_ > limit_) return nullptr;
while (limit_ > kSlopBytes) {
size_t chunk_size = buffer_end_ + kSlopBytes - ptr;
append(ptr, chunk_size);
ptr = Next();
if (ptr == nullptr) return limit_end_;
ptr += kSlopBytes;
}
auto end = buffer_end_ + limit_;
GOOGLE_DCHECK(end >= ptr);
append(ptr, end - ptr);
return end;
}
PROTOBUF_NODISCARD const char* AppendString(const char* ptr,
std::string* str) {
return AppendUntilEnd(
ptr, [str](const char* p, ptrdiff_t s) { str->append(p, s); });
}
friend class ImplicitWeakMessage;
};
// ParseContext holds all data that is global to the entire parse. Most
// importantly it contains the input stream, but also recursion depth and also
// stores the end group tag, in case a parser ended on a endgroup, to verify
// matching start/end group tags.
class PROTOBUF_EXPORT ParseContext : public EpsCopyInputStream {
public:
struct Data {
const DescriptorPool* pool = nullptr;
MessageFactory* factory = nullptr;
Arena* arena = nullptr;
};
template <typename... T>
ParseContext(int depth, bool aliasing, const char** start, T&&... args)
: EpsCopyInputStream(aliasing), depth_(depth) {
*start = InitFrom(std::forward<T>(args)...);
}
void TrackCorrectEnding() { group_depth_ = 0; }
bool Done(const char** ptr) { return DoneWithCheck(ptr, group_depth_); }
int depth() const { return depth_; }
Data& data() { return data_; }
const Data& data() const { return data_; }
const char* ParseMessage(MessageLite* msg, const char* ptr);
// This overload supports those few cases where ParseMessage is called
// on a class that is not actually a proto message.
// TODO(jorg): Eliminate this use case.
template <typename T,
typename std::enable_if<!std::is_base_of<MessageLite, T>::value,
bool>::type = true>
PROTOBUF_NODISCARD const char* ParseMessage(T* msg, const char* ptr);
template <typename T>
PROTOBUF_NODISCARD PROTOBUF_NDEBUG_INLINE const char* ParseGroup(
T* msg, const char* ptr, uint32_t tag) {
if (--depth_ < 0) return nullptr;
group_depth_++;
ptr = msg->_InternalParse(ptr, this);
group_depth_--;
depth_++;
if (PROTOBUF_PREDICT_FALSE(!ConsumeEndGroup(tag))) return nullptr;
return ptr;
}
private:
// Out-of-line routine to save space in ParseContext::ParseMessage<T>
// int old;
// ptr = ReadSizeAndPushLimitAndDepth(ptr, &old)
// is equivalent to:
// int size = ReadSize(&ptr);
// if (!ptr) return nullptr;
// int old = PushLimit(ptr, size);
// if (--depth_ < 0) return nullptr;
PROTOBUF_NODISCARD const char* ReadSizeAndPushLimitAndDepth(const char* ptr,
int* old_limit);
// The context keeps an internal stack to keep track of the recursive
// part of the parse state.
// Current depth of the active parser, depth counts down.
// This is used to limit recursion depth (to prevent overflow on malicious
// data), but is also used to index in stack_ to store the current state.
int depth_;
// Unfortunately necessary for the fringe case of ending on 0 or end-group tag
// in the last kSlopBytes of a ZeroCopyInputStream chunk.
int group_depth_ = INT_MIN;
Data data_;
};
template <uint32_t tag>
bool ExpectTag(const char* ptr) {
if (tag < 128) {
return *ptr == static_cast<char>(tag);
} else {
static_assert(tag < 128 * 128, "We only expect tags for 1 or 2 bytes");
char buf[2] = {static_cast<char>(tag | 0x80), static_cast<char>(tag >> 7)};
return std::memcmp(ptr, buf, 2) == 0;
}
}
template <int>
struct EndianHelper;
template <>
struct EndianHelper<1> {
static uint8_t Load(const void* p) { return *static_cast<const uint8_t*>(p); }
};
template <>
struct EndianHelper<2> {
static uint16_t Load(const void* p) {
uint16_t tmp;
std::memcpy(&tmp, p, 2);
#ifndef PROTOBUF_LITTLE_ENDIAN
tmp = bswap_16(tmp);
#endif
return tmp;
}
};
template <>
struct EndianHelper<4> {
static uint32_t Load(const void* p) {
uint32_t tmp;
std::memcpy(&tmp, p, 4);
#ifndef PROTOBUF_LITTLE_ENDIAN
tmp = bswap_32(tmp);
#endif
return tmp;
}
};
template <>
struct EndianHelper<8> {
static uint64_t Load(const void* p) {
uint64_t tmp;
std::memcpy(&tmp, p, 8);
#ifndef PROTOBUF_LITTLE_ENDIAN
tmp = bswap_64(tmp);
#endif
return tmp;
}
};
template <typename T>
T UnalignedLoad(const char* p) {
auto tmp = EndianHelper<sizeof(T)>::Load(p);
T res;
memcpy(&res, &tmp, sizeof(T));
return res;
}
PROTOBUF_EXPORT
std::pair<const char*, uint32_t> VarintParseSlow32(const char* p, uint32_t res);
PROTOBUF_EXPORT
std::pair<const char*, uint64_t> VarintParseSlow64(const char* p, uint32_t res);
inline const char* VarintParseSlow(const char* p, uint32_t res, uint32_t* out) {
auto tmp = VarintParseSlow32(p, res);
*out = tmp.second;
return tmp.first;
}
inline const char* VarintParseSlow(const char* p, uint32_t res, uint64_t* out) {
auto tmp = VarintParseSlow64(p, res);
*out = tmp.second;
return tmp.first;
}
template <typename T>
PROTOBUF_NODISCARD const char* VarintParse(const char* p, T* out) {
auto ptr = reinterpret_cast<const uint8_t*>(p);
uint32_t res = ptr[0];
if (!(res & 0x80)) {
*out = res;
return p + 1;
}
uint32_t byte = ptr[1];
res += (byte - 1) << 7;
if (!(byte & 0x80)) {
*out = res;
return p + 2;
}
return VarintParseSlow(p, res, out);
}
// Used for tags, could read up to 5 bytes which must be available.
// Caller must ensure its safe to call.
PROTOBUF_EXPORT
std::pair<const char*, uint32_t> ReadTagFallback(const char* p, uint32_t res);
// Same as ParseVarint but only accept 5 bytes at most.
inline const char* ReadTag(const char* p, uint32_t* out,
uint32_t /*max_tag*/ = 0) {
uint32_t res = static_cast<uint8_t>(p[0]);
if (res < 128) {
*out = res;
return p + 1;
}
uint32_t second = static_cast<uint8_t>(p[1]);
res += (second - 1) << 7;
if (second < 128) {
*out = res;
return p + 2;
}
auto tmp = ReadTagFallback(p, res);
*out = tmp.second;
return tmp.first;
}
// Decode 2 consecutive bytes of a varint and returns the value, shifted left
// by 1. It simultaneous updates *ptr to *ptr + 1 or *ptr + 2 depending if the
// first byte's continuation bit is set.
// If bit 15 of return value is set (equivalent to the continuation bits of both
// bytes being set) the varint continues, otherwise the parse is done. On x86
// movsx eax, dil
// add edi, eax
// adc [rsi], 1
// add eax, eax
// and eax, edi
inline uint32_t DecodeTwoBytes(const char** ptr) {
uint32_t value = UnalignedLoad<uint16_t>(*ptr);
// Sign extend the low byte continuation bit
uint32_t x = static_cast<int8_t>(value);
// This add is an amazing operation, it cancels the low byte continuation bit
// from y transferring it to the carry. Simultaneously it also shifts the 7
// LSB left by one tightly against high byte varint bits. Hence value now
// contains the unpacked value shifted left by 1.
value += x;
// Use the carry to update the ptr appropriately.
*ptr += value < x ? 2 : 1;
return value & (x + x); // Mask out the high byte iff no continuation
}
// More efficient varint parsing for big varints
inline const char* ParseBigVarint(const char* p, uint64_t* out) {
auto pnew = p;
auto tmp = DecodeTwoBytes(&pnew);
uint64_t res = tmp >> 1;
if (PROTOBUF_PREDICT_TRUE(static_cast<std::int16_t>(tmp) >= 0)) {
*out = res;
return pnew;
}
for (std::uint32_t i = 1; i < 5; i++) {
pnew = p + 2 * i;
tmp = DecodeTwoBytes(&pnew);
res += (static_cast<std::uint64_t>(tmp) - 2) << (14 * i - 1);
if (PROTOBUF_PREDICT_TRUE(static_cast<std::int16_t>(tmp) >= 0)) {
*out = res;
return pnew;
}
}
return nullptr;
}
PROTOBUF_EXPORT
std::pair<const char*, int32_t> ReadSizeFallback(const char* p, uint32_t first);
// Used for tags, could read up to 5 bytes which must be available. Additionally
// it makes sure the unsigned value fits a int32_t, otherwise returns nullptr.
// Caller must ensure its safe to call.
inline uint32_t ReadSize(const char** pp) {
auto p = *pp;
uint32_t res = static_cast<uint8_t>(p[0]);
if (res < 128) {
*pp = p + 1;
return res;
}
auto x = ReadSizeFallback(p, res);
*pp = x.first;
return x.second;
}
// Some convenience functions to simplify the generated parse loop code.
// Returning the value and updating the buffer pointer allows for nicer
// function composition. We rely on the compiler to inline this.
// Also in debug compiles having local scoped variables tend to generated
// stack frames that scale as O(num fields).
inline uint64_t ReadVarint64(const char** p) {
uint64_t tmp;
*p = VarintParse(*p, &tmp);
return tmp;
}
inline uint32_t ReadVarint32(const char** p) {
uint32_t tmp;
*p = VarintParse(*p, &tmp);
return tmp;
}
inline int64_t ReadVarintZigZag64(const char** p) {
uint64_t tmp;
*p = VarintParse(*p, &tmp);
return WireFormatLite::ZigZagDecode64(tmp);
}
inline int32_t ReadVarintZigZag32(const char** p) {
uint64_t tmp;
*p = VarintParse(*p, &tmp);
return WireFormatLite::ZigZagDecode32(static_cast<uint32_t>(tmp));
}
template <typename T, typename std::enable_if<
!std::is_base_of<MessageLite, T>::value, bool>::type>
PROTOBUF_NODISCARD const char* ParseContext::ParseMessage(T* msg,
const char* ptr) {
int old;
ptr = ReadSizeAndPushLimitAndDepth(ptr, &old);
ptr = ptr ? msg->_InternalParse(ptr, this) : nullptr;
depth_++;
if (!PopLimit(old)) return nullptr;
return ptr;
}
template <typename Tag, typename T>
const char* EpsCopyInputStream::ReadRepeatedFixed(const char* ptr,
Tag expected_tag,
RepeatedField<T>* out) {
do {
out->Add(UnalignedLoad<T>(ptr));
ptr += sizeof(T);
if (PROTOBUF_PREDICT_FALSE(ptr >= limit_end_)) return ptr;
} while (UnalignedLoad<Tag>(ptr) == expected_tag && (ptr += sizeof(Tag)));
return ptr;
}
// Add any of the following lines to debug which parse function is failing.
#define GOOGLE_PROTOBUF_ASSERT_RETURN(predicate, ret) \
if (!(predicate)) { \
/* ::raise(SIGINT); */ \
/* GOOGLE_LOG(ERROR) << "Parse failure"; */ \
return ret; \
}
#define GOOGLE_PROTOBUF_PARSER_ASSERT(predicate) \
GOOGLE_PROTOBUF_ASSERT_RETURN(predicate, nullptr)
template <typename T>
const char* EpsCopyInputStream::ReadPackedFixed(const char* ptr, int size,
RepeatedField<T>* out) {
GOOGLE_PROTOBUF_PARSER_ASSERT(ptr);
int nbytes = buffer_end_ + kSlopBytes - ptr;
while (size > nbytes) {
int num = nbytes / sizeof(T);
int old_entries = out->size();
out->Reserve(old_entries + num);
int block_size = num * sizeof(T);
auto dst = out->AddNAlreadyReserved(num);
#ifdef PROTOBUF_LITTLE_ENDIAN
std::memcpy(dst, ptr, block_size);
#else
for (int i = 0; i < num; i++)
dst[i] = UnalignedLoad<T>(ptr + i * sizeof(T));
#endif
size -= block_size;
if (limit_ <= kSlopBytes) return nullptr;
ptr = Next();
if (ptr == nullptr) return nullptr;
ptr += kSlopBytes - (nbytes - block_size);
nbytes = buffer_end_ + kSlopBytes - ptr;
}
int num = size / sizeof(T);
int old_entries = out->size();
out->Reserve(old_entries + num);
int block_size = num * sizeof(T);
auto dst = out->AddNAlreadyReserved(num);
#ifdef PROTOBUF_LITTLE_ENDIAN
std::memcpy(dst, ptr, block_size);
#else
for (int i = 0; i < num; i++) dst[i] = UnalignedLoad<T>(ptr + i * sizeof(T));
#endif
ptr += block_size;
if (size != block_size) return nullptr;
return ptr;
}
template <typename Add>
const char* ReadPackedVarintArray(const char* ptr, const char* end, Add add) {
while (ptr < end) {
uint64_t varint;
ptr = VarintParse(ptr, &varint);
if (ptr == nullptr) return nullptr;
add(varint);
}
return ptr;
}
template <typename Add>
const char* EpsCopyInputStream::ReadPackedVarint(const char* ptr, Add add) {
int size = ReadSize(&ptr);
GOOGLE_PROTOBUF_PARSER_ASSERT(ptr);
int chunk_size = buffer_end_ - ptr;
while (size > chunk_size) {
ptr = ReadPackedVarintArray(ptr, buffer_end_, add);
if (ptr == nullptr) return nullptr;
int overrun = ptr - buffer_end_;
GOOGLE_DCHECK(overrun >= 0 && overrun <= kSlopBytes);
if (size - chunk_size <= kSlopBytes) {
// The current buffer contains all the information needed, we don't need
// to flip buffers. However we must parse from a buffer with enough space
// so we are not prone to a buffer overflow.
char buf[kSlopBytes + 10] = {};
std::memcpy(buf, buffer_end_, kSlopBytes);
GOOGLE_CHECK_LE(size - chunk_size, kSlopBytes);
auto end = buf + (size - chunk_size);
auto res = ReadPackedVarintArray(buf + overrun, end, add);
if (res == nullptr || res != end) return nullptr;
return buffer_end_ + (res - buf);
}
size -= overrun + chunk_size;
GOOGLE_DCHECK_GT(size, 0);
// We must flip buffers
if (limit_ <= kSlopBytes) return nullptr;
ptr = Next();
if (ptr == nullptr) return nullptr;
ptr += overrun;
chunk_size = buffer_end_ - ptr;
}
auto end = ptr + size;
ptr = ReadPackedVarintArray(ptr, end, add);
return end == ptr ? ptr : nullptr;
}
// Helper for verification of utf8
PROTOBUF_EXPORT
bool VerifyUTF8(StringPiece s, const char* field_name);
inline bool VerifyUTF8(const std::string* s, const char* field_name) {
return VerifyUTF8(*s, field_name);
}
// All the string parsers with or without UTF checking and for all CTypes.
PROTOBUF_EXPORT PROTOBUF_NODISCARD const char* InlineGreedyStringParser(
std::string* s, const char* ptr, ParseContext* ctx);
template <typename T>
PROTOBUF_NODISCARD const char* FieldParser(uint64_t tag, T& field_parser,
const char* ptr, ParseContext* ctx) {
uint32_t number = tag >> 3;
GOOGLE_PROTOBUF_PARSER_ASSERT(number != 0);
using WireType = internal::WireFormatLite::WireType;
switch (tag & 7) {
case WireType::WIRETYPE_VARINT: {
uint64_t value;
ptr = VarintParse(ptr, &value);
GOOGLE_PROTOBUF_PARSER_ASSERT(ptr);
field_parser.AddVarint(number, value);
break;
}
case WireType::WIRETYPE_FIXED64: {
uint64_t value = UnalignedLoad<uint64_t>(ptr);
ptr += 8;
field_parser.AddFixed64(number, value);
break;
}
case WireType::WIRETYPE_LENGTH_DELIMITED: {
ptr = field_parser.ParseLengthDelimited(number, ptr, ctx);
GOOGLE_PROTOBUF_PARSER_ASSERT(ptr);
break;
}
case WireType::WIRETYPE_START_GROUP: {
ptr = field_parser.ParseGroup(number, ptr, ctx);
GOOGLE_PROTOBUF_PARSER_ASSERT(ptr);
break;
}
case WireType::WIRETYPE_END_GROUP: {
GOOGLE_LOG(FATAL) << "Can't happen";
break;
}
case WireType::WIRETYPE_FIXED32: {
uint32_t value = UnalignedLoad<uint32_t>(ptr);
ptr += 4;
field_parser.AddFixed32(number, value);
break;
}
default:
return nullptr;
}
return ptr;
}
template <typename T>
PROTOBUF_NODISCARD const char* WireFormatParser(T& field_parser,
const char* ptr,
ParseContext* ctx) {
while (!ctx->Done(&ptr)) {
uint32_t tag;
ptr = ReadTag(ptr, &tag);
GOOGLE_PROTOBUF_PARSER_ASSERT(ptr != nullptr);
if (tag == 0 || (tag & 7) == 4) {
ctx->SetLastTag(tag);
return ptr;
}
ptr = FieldParser(tag, field_parser, ptr, ctx);
GOOGLE_PROTOBUF_PARSER_ASSERT(ptr != nullptr);
}
return ptr;
}
// The packed parsers parse repeated numeric primitives directly into the
// corresponding field
// These are packed varints
PROTOBUF_EXPORT PROTOBUF_NODISCARD const char* PackedInt32Parser(
void* object, const char* ptr, ParseContext* ctx);
PROTOBUF_EXPORT PROTOBUF_NODISCARD const char* PackedUInt32Parser(
void* object, const char* ptr, ParseContext* ctx);
PROTOBUF_EXPORT PROTOBUF_NODISCARD const char* PackedInt64Parser(
void* object, const char* ptr, ParseContext* ctx);
PROTOBUF_EXPORT PROTOBUF_NODISCARD const char* PackedUInt64Parser(
void* object, const char* ptr, ParseContext* ctx);
PROTOBUF_EXPORT PROTOBUF_NODISCARD const char* PackedSInt32Parser(
void* object, const char* ptr, ParseContext* ctx);
PROTOBUF_EXPORT PROTOBUF_NODISCARD const char* PackedSInt64Parser(
void* object, const char* ptr, ParseContext* ctx);
PROTOBUF_EXPORT PROTOBUF_NODISCARD const char* PackedEnumParser(
void* object, const char* ptr, ParseContext* ctx);
template <typename T>
PROTOBUF_NODISCARD const char* PackedEnumParser(void* object, const char* ptr,
ParseContext* ctx,
bool (*is_valid)(int),
InternalMetadata* metadata,
int field_num) {
return ctx->ReadPackedVarint(
ptr, [object, is_valid, metadata, field_num](uint64_t val) {
if (is_valid(val)) {
static_cast<RepeatedField<int>*>(object)->Add(val);
} else {
WriteVarint(field_num, val, metadata->mutable_unknown_fields<T>());
}
});
}
template <typename T>
PROTOBUF_NODISCARD const char* PackedEnumParserArg(
void* object, const char* ptr, ParseContext* ctx,
bool (*is_valid)(const void*, int), const void* data,
InternalMetadata* metadata, int field_num) {
return ctx->ReadPackedVarint(
ptr, [object, is_valid, data, metadata, field_num](uint64_t val) {
if (is_valid(data, val)) {
static_cast<RepeatedField<int>*>(object)->Add(val);
} else {
WriteVarint(field_num, val, metadata->mutable_unknown_fields<T>());
}
});
}
PROTOBUF_EXPORT PROTOBUF_NODISCARD const char* PackedBoolParser(
void* object, const char* ptr, ParseContext* ctx);
PROTOBUF_EXPORT PROTOBUF_NODISCARD const char* PackedFixed32Parser(
void* object, const char* ptr, ParseContext* ctx);
PROTOBUF_EXPORT PROTOBUF_NODISCARD const char* PackedSFixed32Parser(
void* object, const char* ptr, ParseContext* ctx);
PROTOBUF_EXPORT PROTOBUF_NODISCARD const char* PackedFixed64Parser(
void* object, const char* ptr, ParseContext* ctx);
PROTOBUF_EXPORT PROTOBUF_NODISCARD const char* PackedSFixed64Parser(
void* object, const char* ptr, ParseContext* ctx);
PROTOBUF_EXPORT PROTOBUF_NODISCARD const char* PackedFloatParser(
void* object, const char* ptr, ParseContext* ctx);
PROTOBUF_EXPORT PROTOBUF_NODISCARD const char* PackedDoubleParser(
void* object, const char* ptr, ParseContext* ctx);
// This is the only recursive parser.
PROTOBUF_EXPORT PROTOBUF_NODISCARD const char* UnknownGroupLiteParse(
std::string* unknown, const char* ptr, ParseContext* ctx);
// This is a helper to for the UnknownGroupLiteParse but is actually also
// useful in the generated code. It uses overload on std::string* vs
// UnknownFieldSet* to make the generated code isomorphic between full and lite.
PROTOBUF_EXPORT PROTOBUF_NODISCARD const char* UnknownFieldParse(
uint32_t tag, std::string* unknown, const char* ptr, ParseContext* ctx);
} // namespace internal
} // namespace protobuf
} // namespace google
#include <port_undef.inc>
#endif // GOOGLE_PROTOBUF_PARSE_CONTEXT_H__
|