aboutsummaryrefslogtreecommitdiff
path: root/NorthstarDedicatedTest/include/protobuf/io/coded_stream.h
blob: 99844c697854f9e4dd756eddbe6e7704827bdb31 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc.  All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// Author: kenton@google.com (Kenton Varda)
//  Based on original Protocol Buffers design by
//  Sanjay Ghemawat, Jeff Dean, and others.
//
// This file contains the CodedInputStream and CodedOutputStream classes,
// which wrap a ZeroCopyInputStream or ZeroCopyOutputStream, respectively,
// and allow you to read or write individual pieces of data in various
// formats.  In particular, these implement the varint encoding for
// integers, a simple variable-length encoding in which smaller numbers
// take fewer bytes.
//
// Typically these classes will only be used internally by the protocol
// buffer library in order to encode and decode protocol buffers.  Clients
// of the library only need to know about this class if they wish to write
// custom message parsing or serialization procedures.
//
// CodedOutputStream example:
//   // Write some data to "myfile".  First we write a 4-byte "magic number"
//   // to identify the file type, then write a length-delimited string.  The
//   // string is composed of a varint giving the length followed by the raw
//   // bytes.
//   int fd = open("myfile", O_CREAT | O_WRONLY);
//   ZeroCopyOutputStream* raw_output = new FileOutputStream(fd);
//   CodedOutputStream* coded_output = new CodedOutputStream(raw_output);
//
//   int magic_number = 1234;
//   char text[] = "Hello world!";
//   coded_output->WriteLittleEndian32(magic_number);
//   coded_output->WriteVarint32(strlen(text));
//   coded_output->WriteRaw(text, strlen(text));
//
//   delete coded_output;
//   delete raw_output;
//   close(fd);
//
// CodedInputStream example:
//   // Read a file created by the above code.
//   int fd = open("myfile", O_RDONLY);
//   ZeroCopyInputStream* raw_input = new FileInputStream(fd);
//   CodedInputStream* coded_input = new CodedInputStream(raw_input);
//
//   coded_input->ReadLittleEndian32(&magic_number);
//   if (magic_number != 1234) {
//     cerr << "File not in expected format." << endl;
//     return;
//   }
//
//   uint32_t size;
//   coded_input->ReadVarint32(&size);
//
//   char* text = new char[size + 1];
//   coded_input->ReadRaw(buffer, size);
//   text[size] = '\0';
//
//   delete coded_input;
//   delete raw_input;
//   close(fd);
//
//   cout << "Text is: " << text << endl;
//   delete [] text;
//
// For those who are interested, varint encoding is defined as follows:
//
// The encoding operates on unsigned integers of up to 64 bits in length.
// Each byte of the encoded value has the format:
// * bits 0-6: Seven bits of the number being encoded.
// * bit 7: Zero if this is the last byte in the encoding (in which
//   case all remaining bits of the number are zero) or 1 if
//   more bytes follow.
// The first byte contains the least-significant 7 bits of the number, the
// second byte (if present) contains the next-least-significant 7 bits,
// and so on.  So, the binary number 1011000101011 would be encoded in two
// bytes as "10101011 00101100".
//
// In theory, varint could be used to encode integers of any length.
// However, for practicality we set a limit at 64 bits.  The maximum encoded
// length of a number is thus 10 bytes.

#ifndef GOOGLE_PROTOBUF_IO_CODED_STREAM_H__
#define GOOGLE_PROTOBUF_IO_CODED_STREAM_H__


#include <assert.h>

#include <atomic>
#include <climits>
#include <cstddef>
#include <cstring>
#include <limits>
#include <string>
#include <type_traits>
#include <utility>

#ifdef _WIN32
// Assuming windows is always little-endian.
#if !defined(PROTOBUF_DISABLE_LITTLE_ENDIAN_OPT_FOR_TEST)
#define PROTOBUF_LITTLE_ENDIAN 1
#endif
#if defined(_MSC_VER) && _MSC_VER >= 1300 && !defined(__INTEL_COMPILER)
// If MSVC has "/RTCc" set, it will complain about truncating casts at
// runtime.  This file contains some intentional truncating casts.
#pragma runtime_checks("c", off)
#endif
#else
#ifdef __APPLE__
#include <machine/endian.h>  // __BYTE_ORDER
#elif defined(__FreeBSD__)
#include <sys/endian.h>  // __BYTE_ORDER
#elif (defined(sun) || defined(__sun)) && (defined(__SVR4) || defined(__svr4__))
#include <sys/isa_defs.h>  // __BYTE_ORDER
#elif defined(_AIX) || defined(__TOS_AIX__)
#include <sys/machine.h>  // BYTE_ORDER
#else
#if !defined(__QNX__)
#include <endian.h>  // __BYTE_ORDER
#endif
#endif
#if ((defined(__LITTLE_ENDIAN__) && !defined(__BIG_ENDIAN__)) ||    \
     (defined(__BYTE_ORDER) && __BYTE_ORDER == __LITTLE_ENDIAN)) && \
    !defined(PROTOBUF_DISABLE_LITTLE_ENDIAN_OPT_FOR_TEST)
#define PROTOBUF_LITTLE_ENDIAN 1
#endif
#endif
#include <stubs/common.h>
#include <stubs/logging.h>
#include <stubs/strutil.h>
#include <port.h>
#include <stubs/port.h>


#include <port_def.inc>

namespace google {
namespace protobuf {

class DescriptorPool;
class MessageFactory;
class ZeroCopyCodedInputStream;

namespace internal {
void MapTestForceDeterministic();
class EpsCopyByteStream;
}  // namespace internal

namespace io {

// Defined in this file.
class CodedInputStream;
class CodedOutputStream;

// Defined in other files.
class ZeroCopyInputStream;   // zero_copy_stream.h
class ZeroCopyOutputStream;  // zero_copy_stream.h

// Class which reads and decodes binary data which is composed of varint-
// encoded integers and fixed-width pieces.  Wraps a ZeroCopyInputStream.
// Most users will not need to deal with CodedInputStream.
//
// Most methods of CodedInputStream that return a bool return false if an
// underlying I/O error occurs or if the data is malformed.  Once such a
// failure occurs, the CodedInputStream is broken and is no longer useful.
// After a failure, callers also should assume writes to "out" args may have
// occurred, though nothing useful can be determined from those writes.
class PROTOBUF_EXPORT CodedInputStream {
 public:
  // Create a CodedInputStream that reads from the given ZeroCopyInputStream.
  explicit CodedInputStream(ZeroCopyInputStream* input);

  // Create a CodedInputStream that reads from the given flat array.  This is
  // faster than using an ArrayInputStream.  PushLimit(size) is implied by
  // this constructor.
  explicit CodedInputStream(const uint8_t* buffer, int size);

  // Destroy the CodedInputStream and position the underlying
  // ZeroCopyInputStream at the first unread byte.  If an error occurred while
  // reading (causing a method to return false), then the exact position of
  // the input stream may be anywhere between the last value that was read
  // successfully and the stream's byte limit.
  ~CodedInputStream();

  // Return true if this CodedInputStream reads from a flat array instead of
  // a ZeroCopyInputStream.
  inline bool IsFlat() const;

  // Skips a number of bytes.  Returns false if an underlying read error
  // occurs.
  inline bool Skip(int count);

  // Sets *data to point directly at the unread part of the CodedInputStream's
  // underlying buffer, and *size to the size of that buffer, but does not
  // advance the stream's current position.  This will always either produce
  // a non-empty buffer or return false.  If the caller consumes any of
  // this data, it should then call Skip() to skip over the consumed bytes.
  // This may be useful for implementing external fast parsing routines for
  // types of data not covered by the CodedInputStream interface.
  bool GetDirectBufferPointer(const void** data, int* size);

  // Like GetDirectBufferPointer, but this method is inlined, and does not
  // attempt to Refresh() if the buffer is currently empty.
  PROTOBUF_ALWAYS_INLINE
  void GetDirectBufferPointerInline(const void** data, int* size);

  // Read raw bytes, copying them into the given buffer.
  bool ReadRaw(void* buffer, int size);

  // Like ReadRaw, but reads into a string.
  bool ReadString(std::string* buffer, int size);


  // Read a 32-bit little-endian integer.
  bool ReadLittleEndian32(uint32_t* value);
  // Read a 64-bit little-endian integer.
  bool ReadLittleEndian64(uint64_t* value);

  // These methods read from an externally provided buffer. The caller is
  // responsible for ensuring that the buffer has sufficient space.
  // Read a 32-bit little-endian integer.
  static const uint8_t* ReadLittleEndian32FromArray(const uint8_t* buffer,
                                                    uint32_t* value);
  // Read a 64-bit little-endian integer.
  static const uint8_t* ReadLittleEndian64FromArray(const uint8_t* buffer,
                                                    uint64_t* value);

  // Read an unsigned integer with Varint encoding, truncating to 32 bits.
  // Reading a 32-bit value is equivalent to reading a 64-bit one and casting
  // it to uint32_t, but may be more efficient.
  bool ReadVarint32(uint32_t* value);
  // Read an unsigned integer with Varint encoding.
  bool ReadVarint64(uint64_t* value);

  // Reads a varint off the wire into an "int". This should be used for reading
  // sizes off the wire (sizes of strings, submessages, bytes fields, etc).
  //
  // The value from the wire is interpreted as unsigned.  If its value exceeds
  // the representable value of an integer on this platform, instead of
  // truncating we return false. Truncating (as performed by ReadVarint32()
  // above) is an acceptable approach for fields representing an integer, but
  // when we are parsing a size from the wire, truncating the value would result
  // in us misparsing the payload.
  bool ReadVarintSizeAsInt(int* value);

  // Read a tag.  This calls ReadVarint32() and returns the result, or returns
  // zero (which is not a valid tag) if ReadVarint32() fails.  Also, ReadTag
  // (but not ReadTagNoLastTag) updates the last tag value, which can be checked
  // with LastTagWas().
  //
  // Always inline because this is only called in one place per parse loop
  // but it is called for every iteration of said loop, so it should be fast.
  // GCC doesn't want to inline this by default.
  PROTOBUF_ALWAYS_INLINE uint32_t ReadTag() {
    return last_tag_ = ReadTagNoLastTag();
  }

  PROTOBUF_ALWAYS_INLINE uint32_t ReadTagNoLastTag();

  // This usually a faster alternative to ReadTag() when cutoff is a manifest
  // constant.  It does particularly well for cutoff >= 127.  The first part
  // of the return value is the tag that was read, though it can also be 0 in
  // the cases where ReadTag() would return 0.  If the second part is true
  // then the tag is known to be in [0, cutoff].  If not, the tag either is
  // above cutoff or is 0.  (There's intentional wiggle room when tag is 0,
  // because that can arise in several ways, and for best performance we want
  // to avoid an extra "is tag == 0?" check here.)
  PROTOBUF_ALWAYS_INLINE
  std::pair<uint32_t, bool> ReadTagWithCutoff(uint32_t cutoff) {
    std::pair<uint32_t, bool> result = ReadTagWithCutoffNoLastTag(cutoff);
    last_tag_ = result.first;
    return result;
  }

  PROTOBUF_ALWAYS_INLINE
  std::pair<uint32_t, bool> ReadTagWithCutoffNoLastTag(uint32_t cutoff);

  // Usually returns true if calling ReadVarint32() now would produce the given
  // value.  Will always return false if ReadVarint32() would not return the
  // given value.  If ExpectTag() returns true, it also advances past
  // the varint.  For best performance, use a compile-time constant as the
  // parameter.
  // Always inline because this collapses to a small number of instructions
  // when given a constant parameter, but GCC doesn't want to inline by default.
  PROTOBUF_ALWAYS_INLINE bool ExpectTag(uint32_t expected);

  // Like above, except this reads from the specified buffer. The caller is
  // responsible for ensuring that the buffer is large enough to read a varint
  // of the expected size. For best performance, use a compile-time constant as
  // the expected tag parameter.
  //
  // Returns a pointer beyond the expected tag if it was found, or NULL if it
  // was not.
  PROTOBUF_ALWAYS_INLINE
  static const uint8_t* ExpectTagFromArray(const uint8_t* buffer,
                                           uint32_t expected);

  // Usually returns true if no more bytes can be read.  Always returns false
  // if more bytes can be read.  If ExpectAtEnd() returns true, a subsequent
  // call to LastTagWas() will act as if ReadTag() had been called and returned
  // zero, and ConsumedEntireMessage() will return true.
  bool ExpectAtEnd();

  // If the last call to ReadTag() or ReadTagWithCutoff() returned the given
  // value, returns true.  Otherwise, returns false.
  // ReadTagNoLastTag/ReadTagWithCutoffNoLastTag do not preserve the last
  // returned value.
  //
  // This is needed because parsers for some types of embedded messages
  // (with field type TYPE_GROUP) don't actually know that they've reached the
  // end of a message until they see an ENDGROUP tag, which was actually part
  // of the enclosing message.  The enclosing message would like to check that
  // tag to make sure it had the right number, so it calls LastTagWas() on
  // return from the embedded parser to check.
  bool LastTagWas(uint32_t expected);
  void SetLastTag(uint32_t tag) { last_tag_ = tag; }

  // When parsing message (but NOT a group), this method must be called
  // immediately after MergeFromCodedStream() returns (if it returns true)
  // to further verify that the message ended in a legitimate way.  For
  // example, this verifies that parsing did not end on an end-group tag.
  // It also checks for some cases where, due to optimizations,
  // MergeFromCodedStream() can incorrectly return true.
  bool ConsumedEntireMessage();
  void SetConsumed() { legitimate_message_end_ = true; }

  // Limits ----------------------------------------------------------
  // Limits are used when parsing length-delimited embedded messages.
  // After the message's length is read, PushLimit() is used to prevent
  // the CodedInputStream from reading beyond that length.  Once the
  // embedded message has been parsed, PopLimit() is called to undo the
  // limit.

  // Opaque type used with PushLimit() and PopLimit().  Do not modify
  // values of this type yourself.  The only reason that this isn't a
  // struct with private internals is for efficiency.
  typedef int Limit;

  // Places a limit on the number of bytes that the stream may read,
  // starting from the current position.  Once the stream hits this limit,
  // it will act like the end of the input has been reached until PopLimit()
  // is called.
  //
  // As the names imply, the stream conceptually has a stack of limits.  The
  // shortest limit on the stack is always enforced, even if it is not the
  // top limit.
  //
  // The value returned by PushLimit() is opaque to the caller, and must
  // be passed unchanged to the corresponding call to PopLimit().
  Limit PushLimit(int byte_limit);

  // Pops the last limit pushed by PushLimit().  The input must be the value
  // returned by that call to PushLimit().
  void PopLimit(Limit limit);

  // Returns the number of bytes left until the nearest limit on the
  // stack is hit, or -1 if no limits are in place.
  int BytesUntilLimit() const;

  // Returns current position relative to the beginning of the input stream.
  int CurrentPosition() const;

  // Total Bytes Limit -----------------------------------------------
  // To prevent malicious users from sending excessively large messages
  // and causing memory exhaustion, CodedInputStream imposes a hard limit on
  // the total number of bytes it will read.

  // Sets the maximum number of bytes that this CodedInputStream will read
  // before refusing to continue.  To prevent servers from allocating enormous
  // amounts of memory to hold parsed messages, the maximum message length
  // should be limited to the shortest length that will not harm usability.
  // The default limit is INT_MAX (~2GB) and apps should set shorter limits
  // if possible. An error will always be printed to stderr if the limit is
  // reached.
  //
  // Note: setting a limit less than the current read position is interpreted
  // as a limit on the current position.
  //
  // This is unrelated to PushLimit()/PopLimit().
  void SetTotalBytesLimit(int total_bytes_limit);

  // The Total Bytes Limit minus the Current Position, or -1 if the total bytes
  // limit is INT_MAX.
  int BytesUntilTotalBytesLimit() const;

  // Recursion Limit -------------------------------------------------
  // To prevent corrupt or malicious messages from causing stack overflows,
  // we must keep track of the depth of recursion when parsing embedded
  // messages and groups.  CodedInputStream keeps track of this because it
  // is the only object that is passed down the stack during parsing.

  // Sets the maximum recursion depth.  The default is 100.
  void SetRecursionLimit(int limit);
  int RecursionBudget() { return recursion_budget_; }

  static int GetDefaultRecursionLimit() { return default_recursion_limit_; }

  // Increments the current recursion depth.  Returns true if the depth is
  // under the limit, false if it has gone over.
  bool IncrementRecursionDepth();

  // Decrements the recursion depth if possible.
  void DecrementRecursionDepth();

  // Decrements the recursion depth blindly.  This is faster than
  // DecrementRecursionDepth().  It should be used only if all previous
  // increments to recursion depth were successful.
  void UnsafeDecrementRecursionDepth();

  // Shorthand for make_pair(PushLimit(byte_limit), --recursion_budget_).
  // Using this can reduce code size and complexity in some cases.  The caller
  // is expected to check that the second part of the result is non-negative (to
  // bail out if the depth of recursion is too high) and, if all is well, to
  // later pass the first part of the result to PopLimit() or similar.
  std::pair<CodedInputStream::Limit, int> IncrementRecursionDepthAndPushLimit(
      int byte_limit);

  // Shorthand for PushLimit(ReadVarint32(&length) ? length : 0).
  Limit ReadLengthAndPushLimit();

  // Helper that is equivalent to: {
  //  bool result = ConsumedEntireMessage();
  //  PopLimit(limit);
  //  UnsafeDecrementRecursionDepth();
  //  return result; }
  // Using this can reduce code size and complexity in some cases.
  // Do not use unless the current recursion depth is greater than zero.
  bool DecrementRecursionDepthAndPopLimit(Limit limit);

  // Helper that is equivalent to: {
  //  bool result = ConsumedEntireMessage();
  //  PopLimit(limit);
  //  return result; }
  // Using this can reduce code size and complexity in some cases.
  bool CheckEntireMessageConsumedAndPopLimit(Limit limit);

  // Extension Registry ----------------------------------------------
  // ADVANCED USAGE:  99.9% of people can ignore this section.
  //
  // By default, when parsing extensions, the parser looks for extension
  // definitions in the pool which owns the outer message's Descriptor.
  // However, you may call SetExtensionRegistry() to provide an alternative
  // pool instead.  This makes it possible, for example, to parse a message
  // using a generated class, but represent some extensions using
  // DynamicMessage.

  // Set the pool used to look up extensions.  Most users do not need to call
  // this as the correct pool will be chosen automatically.
  //
  // WARNING:  It is very easy to misuse this.  Carefully read the requirements
  //   below.  Do not use this unless you are sure you need it.  Almost no one
  //   does.
  //
  // Let's say you are parsing a message into message object m, and you want
  // to take advantage of SetExtensionRegistry().  You must follow these
  // requirements:
  //
  // The given DescriptorPool must contain m->GetDescriptor().  It is not
  // sufficient for it to simply contain a descriptor that has the same name
  // and content -- it must be the *exact object*.  In other words:
  //   assert(pool->FindMessageTypeByName(m->GetDescriptor()->full_name()) ==
  //          m->GetDescriptor());
  // There are two ways to satisfy this requirement:
  // 1) Use m->GetDescriptor()->pool() as the pool.  This is generally useless
  //    because this is the pool that would be used anyway if you didn't call
  //    SetExtensionRegistry() at all.
  // 2) Use a DescriptorPool which has m->GetDescriptor()->pool() as an
  //    "underlay".  Read the documentation for DescriptorPool for more
  //    information about underlays.
  //
  // You must also provide a MessageFactory.  This factory will be used to
  // construct Message objects representing extensions.  The factory's
  // GetPrototype() MUST return non-NULL for any Descriptor which can be found
  // through the provided pool.
  //
  // If the provided factory might return instances of protocol-compiler-
  // generated (i.e. compiled-in) types, or if the outer message object m is
  // a generated type, then the given factory MUST have this property:  If
  // GetPrototype() is given a Descriptor which resides in
  // DescriptorPool::generated_pool(), the factory MUST return the same
  // prototype which MessageFactory::generated_factory() would return.  That
  // is, given a descriptor for a generated type, the factory must return an
  // instance of the generated class (NOT DynamicMessage).  However, when
  // given a descriptor for a type that is NOT in generated_pool, the factory
  // is free to return any implementation.
  //
  // The reason for this requirement is that generated sub-objects may be
  // accessed via the standard (non-reflection) extension accessor methods,
  // and these methods will down-cast the object to the generated class type.
  // If the object is not actually of that type, the results would be undefined.
  // On the other hand, if an extension is not compiled in, then there is no
  // way the code could end up accessing it via the standard accessors -- the
  // only way to access the extension is via reflection.  When using reflection,
  // DynamicMessage and generated messages are indistinguishable, so it's fine
  // if these objects are represented using DynamicMessage.
  //
  // Using DynamicMessageFactory on which you have called
  // SetDelegateToGeneratedFactory(true) should be sufficient to satisfy the
  // above requirement.
  //
  // If either pool or factory is NULL, both must be NULL.
  //
  // Note that this feature is ignored when parsing "lite" messages as they do
  // not have descriptors.
  void SetExtensionRegistry(const DescriptorPool* pool,
                            MessageFactory* factory);

  // Get the DescriptorPool set via SetExtensionRegistry(), or NULL if no pool
  // has been provided.
  const DescriptorPool* GetExtensionPool();

  // Get the MessageFactory set via SetExtensionRegistry(), or NULL if no
  // factory has been provided.
  MessageFactory* GetExtensionFactory();

 private:
  GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(CodedInputStream);

  const uint8_t* buffer_;
  const uint8_t* buffer_end_;  // pointer to the end of the buffer.
  ZeroCopyInputStream* input_;
  int total_bytes_read_;  // total bytes read from input_, including
                          // the current buffer

  // If total_bytes_read_ surpasses INT_MAX, we record the extra bytes here
  // so that we can BackUp() on destruction.
  int overflow_bytes_;

  // LastTagWas() stuff.
  uint32_t last_tag_;  // result of last ReadTag() or ReadTagWithCutoff().

  // This is set true by ReadTag{Fallback/Slow}() if it is called when exactly
  // at EOF, or by ExpectAtEnd() when it returns true.  This happens when we
  // reach the end of a message and attempt to read another tag.
  bool legitimate_message_end_;

  // See EnableAliasing().
  bool aliasing_enabled_;

  // Limits
  Limit current_limit_;  // if position = -1, no limit is applied

  // For simplicity, if the current buffer crosses a limit (either a normal
  // limit created by PushLimit() or the total bytes limit), buffer_size_
  // only tracks the number of bytes before that limit.  This field
  // contains the number of bytes after it.  Note that this implies that if
  // buffer_size_ == 0 and buffer_size_after_limit_ > 0, we know we've
  // hit a limit.  However, if both are zero, it doesn't necessarily mean
  // we aren't at a limit -- the buffer may have ended exactly at the limit.
  int buffer_size_after_limit_;

  // Maximum number of bytes to read, period.  This is unrelated to
  // current_limit_.  Set using SetTotalBytesLimit().
  int total_bytes_limit_;

  // Current recursion budget, controlled by IncrementRecursionDepth() and
  // similar.  Starts at recursion_limit_ and goes down: if this reaches
  // -1 we are over budget.
  int recursion_budget_;
  // Recursion depth limit, set by SetRecursionLimit().
  int recursion_limit_;

  // See SetExtensionRegistry().
  const DescriptorPool* extension_pool_;
  MessageFactory* extension_factory_;

  // Private member functions.

  // Fallback when Skip() goes past the end of the current buffer.
  bool SkipFallback(int count, int original_buffer_size);

  // Advance the buffer by a given number of bytes.
  void Advance(int amount);

  // Back up input_ to the current buffer position.
  void BackUpInputToCurrentPosition();

  // Recomputes the value of buffer_size_after_limit_.  Must be called after
  // current_limit_ or total_bytes_limit_ changes.
  void RecomputeBufferLimits();

  // Writes an error message saying that we hit total_bytes_limit_.
  void PrintTotalBytesLimitError();

  // Called when the buffer runs out to request more data.  Implies an
  // Advance(BufferSize()).
  bool Refresh();

  // When parsing varints, we optimize for the common case of small values, and
  // then optimize for the case when the varint fits within the current buffer
  // piece. The Fallback method is used when we can't use the one-byte
  // optimization. The Slow method is yet another fallback when the buffer is
  // not large enough. Making the slow path out-of-line speeds up the common
  // case by 10-15%. The slow path is fairly uncommon: it only triggers when a
  // message crosses multiple buffers.  Note: ReadVarint32Fallback() and
  // ReadVarint64Fallback() are called frequently and generally not inlined, so
  // they have been optimized to avoid "out" parameters.  The former returns -1
  // if it fails and the uint32_t it read otherwise.  The latter has a bool
  // indicating success or failure as part of its return type.
  int64_t ReadVarint32Fallback(uint32_t first_byte_or_zero);
  int ReadVarintSizeAsIntFallback();
  std::pair<uint64_t, bool> ReadVarint64Fallback();
  bool ReadVarint32Slow(uint32_t* value);
  bool ReadVarint64Slow(uint64_t* value);
  int ReadVarintSizeAsIntSlow();
  bool ReadLittleEndian32Fallback(uint32_t* value);
  bool ReadLittleEndian64Fallback(uint64_t* value);

  // Fallback/slow methods for reading tags. These do not update last_tag_,
  // but will set legitimate_message_end_ if we are at the end of the input
  // stream.
  uint32_t ReadTagFallback(uint32_t first_byte_or_zero);
  uint32_t ReadTagSlow();
  bool ReadStringFallback(std::string* buffer, int size);

  // Return the size of the buffer.
  int BufferSize() const;

  static const int kDefaultTotalBytesLimit = INT_MAX;

  static int default_recursion_limit_;  // 100 by default.

  friend class google::protobuf::ZeroCopyCodedInputStream;
  friend class google::protobuf::internal::EpsCopyByteStream;
};

// EpsCopyOutputStream wraps a ZeroCopyOutputStream and exposes a new stream,
// which has the property you can write kSlopBytes (16 bytes) from the current
// position without bounds checks. The cursor into the stream is managed by
// the user of the class and is an explicit parameter in the methods. Careful
// use of this class, ie. keep ptr a local variable, eliminates the need to
// for the compiler to sync the ptr value between register and memory.
class PROTOBUF_EXPORT EpsCopyOutputStream {
 public:
  enum { kSlopBytes = 16 };

  // Initialize from a stream.
  EpsCopyOutputStream(ZeroCopyOutputStream* stream, bool deterministic,
                      uint8_t** pp)
      : end_(buffer_),
        stream_(stream),
        is_serialization_deterministic_(deterministic) {
    *pp = buffer_;
  }

  // Only for array serialization. No overflow protection, end_ will be the
  // pointed to the end of the array. When using this the total size is already
  // known, so no need to maintain the slop region.
  EpsCopyOutputStream(void* data, int size, bool deterministic)
      : end_(static_cast<uint8_t*>(data) + size),
        buffer_end_(nullptr),
        stream_(nullptr),
        is_serialization_deterministic_(deterministic) {}

  // Initialize from stream but with the first buffer already given (eager).
  EpsCopyOutputStream(void* data, int size, ZeroCopyOutputStream* stream,
                      bool deterministic, uint8_t** pp)
      : stream_(stream), is_serialization_deterministic_(deterministic) {
    *pp = SetInitialBuffer(data, size);
  }

  // Flush everything that's written into the underlying ZeroCopyOutputStream
  // and trims the underlying stream to the location of ptr.
  uint8_t* Trim(uint8_t* ptr);

  // After this it's guaranteed you can safely write kSlopBytes to ptr. This
  // will never fail! The underlying stream can produce an error. Use HadError
  // to check for errors.
  PROTOBUF_NODISCARD uint8_t* EnsureSpace(uint8_t* ptr) {
    if (PROTOBUF_PREDICT_FALSE(ptr >= end_)) {
      return EnsureSpaceFallback(ptr);
    }
    return ptr;
  }

  uint8_t* WriteRaw(const void* data, int size, uint8_t* ptr) {
    if (PROTOBUF_PREDICT_FALSE(end_ - ptr < size)) {
      return WriteRawFallback(data, size, ptr);
    }
    std::memcpy(ptr, data, size);
    return ptr + size;
  }
  // Writes the buffer specified by data, size to the stream. Possibly by
  // aliasing the buffer (ie. not copying the data). The caller is responsible
  // to make sure the buffer is alive for the duration of the
  // ZeroCopyOutputStream.
#ifndef NDEBUG
  PROTOBUF_NOINLINE
#endif
  uint8_t* WriteRawMaybeAliased(const void* data, int size, uint8_t* ptr) {
    if (aliasing_enabled_) {
      return WriteAliasedRaw(data, size, ptr);
    } else {
      return WriteRaw(data, size, ptr);
    }
  }


#ifndef NDEBUG
  PROTOBUF_NOINLINE
#endif
  uint8_t* WriteStringMaybeAliased(uint32_t num, const std::string& s,
                                   uint8_t* ptr) {
    std::ptrdiff_t size = s.size();
    if (PROTOBUF_PREDICT_FALSE(
            size >= 128 || end_ - ptr + 16 - TagSize(num << 3) - 1 < size)) {
      return WriteStringMaybeAliasedOutline(num, s, ptr);
    }
    ptr = UnsafeVarint((num << 3) | 2, ptr);
    *ptr++ = static_cast<uint8_t>(size);
    std::memcpy(ptr, s.data(), size);
    return ptr + size;
  }
  uint8_t* WriteBytesMaybeAliased(uint32_t num, const std::string& s,
                                  uint8_t* ptr) {
    return WriteStringMaybeAliased(num, s, ptr);
  }

  template <typename T>
  PROTOBUF_ALWAYS_INLINE uint8_t* WriteString(uint32_t num, const T& s,
                                              uint8_t* ptr) {
    std::ptrdiff_t size = s.size();
    if (PROTOBUF_PREDICT_FALSE(
            size >= 128 || end_ - ptr + 16 - TagSize(num << 3) - 1 < size)) {
      return WriteStringOutline(num, s, ptr);
    }
    ptr = UnsafeVarint((num << 3) | 2, ptr);
    *ptr++ = static_cast<uint8_t>(size);
    std::memcpy(ptr, s.data(), size);
    return ptr + size;
  }
  template <typename T>
#ifndef NDEBUG
  PROTOBUF_NOINLINE
#endif
  uint8_t* WriteBytes(uint32_t num, const T& s, uint8_t* ptr) {
    return WriteString(num, s, ptr);
  }

  template <typename T>
  PROTOBUF_ALWAYS_INLINE uint8_t* WriteInt32Packed(int num, const T& r,
                                                   int size, uint8_t* ptr) {
    return WriteVarintPacked(num, r, size, ptr, Encode64);
  }
  template <typename T>
  PROTOBUF_ALWAYS_INLINE uint8_t* WriteUInt32Packed(int num, const T& r,
                                                    int size, uint8_t* ptr) {
    return WriteVarintPacked(num, r, size, ptr, Encode32);
  }
  template <typename T>
  PROTOBUF_ALWAYS_INLINE uint8_t* WriteSInt32Packed(int num, const T& r,
                                                    int size, uint8_t* ptr) {
    return WriteVarintPacked(num, r, size, ptr, ZigZagEncode32);
  }
  template <typename T>
  PROTOBUF_ALWAYS_INLINE uint8_t* WriteInt64Packed(int num, const T& r,
                                                   int size, uint8_t* ptr) {
    return WriteVarintPacked(num, r, size, ptr, Encode64);
  }
  template <typename T>
  PROTOBUF_ALWAYS_INLINE uint8_t* WriteUInt64Packed(int num, const T& r,
                                                    int size, uint8_t* ptr) {
    return WriteVarintPacked(num, r, size, ptr, Encode64);
  }
  template <typename T>
  PROTOBUF_ALWAYS_INLINE uint8_t* WriteSInt64Packed(int num, const T& r,
                                                    int size, uint8_t* ptr) {
    return WriteVarintPacked(num, r, size, ptr, ZigZagEncode64);
  }
  template <typename T>
  PROTOBUF_ALWAYS_INLINE uint8_t* WriteEnumPacked(int num, const T& r, int size,
                                                  uint8_t* ptr) {
    return WriteVarintPacked(num, r, size, ptr, Encode64);
  }

  template <typename T>
  PROTOBUF_ALWAYS_INLINE uint8_t* WriteFixedPacked(int num, const T& r,
                                                   uint8_t* ptr) {
    ptr = EnsureSpace(ptr);
    constexpr auto element_size = sizeof(typename T::value_type);
    auto size = r.size() * element_size;
    ptr = WriteLengthDelim(num, size, ptr);
    return WriteRawLittleEndian<element_size>(r.data(), static_cast<int>(size),
                                              ptr);
  }

  // Returns true if there was an underlying I/O error since this object was
  // created.
  bool HadError() const { return had_error_; }

  // Instructs the EpsCopyOutputStream to allow the underlying
  // ZeroCopyOutputStream to hold pointers to the original structure instead of
  // copying, if it supports it (i.e. output->AllowsAliasing() is true).  If the
  // underlying stream does not support aliasing, then enabling it has no
  // affect.  For now, this only affects the behavior of
  // WriteRawMaybeAliased().
  //
  // NOTE: It is caller's responsibility to ensure that the chunk of memory
  // remains live until all of the data has been consumed from the stream.
  void EnableAliasing(bool enabled);

  // See documentation on CodedOutputStream::SetSerializationDeterministic.
  void SetSerializationDeterministic(bool value) {
    is_serialization_deterministic_ = value;
  }

  // See documentation on CodedOutputStream::IsSerializationDeterministic.
  bool IsSerializationDeterministic() const {
    return is_serialization_deterministic_;
  }

  // The number of bytes written to the stream at position ptr, relative to the
  // stream's overall position.
  int64_t ByteCount(uint8_t* ptr) const;


 private:
  uint8_t* end_;
  uint8_t* buffer_end_ = buffer_;
  uint8_t buffer_[2 * kSlopBytes];
  ZeroCopyOutputStream* stream_;
  bool had_error_ = false;
  bool aliasing_enabled_ = false;  // See EnableAliasing().
  bool is_serialization_deterministic_;

  uint8_t* EnsureSpaceFallback(uint8_t* ptr);
  inline uint8_t* Next();
  int Flush(uint8_t* ptr);
  std::ptrdiff_t GetSize(uint8_t* ptr) const {
    GOOGLE_DCHECK(ptr <= end_ + kSlopBytes);  // NOLINT
    return end_ + kSlopBytes - ptr;
  }

  uint8_t* Error() {
    had_error_ = true;
    // We use the patch buffer to always guarantee space to write to.
    end_ = buffer_ + kSlopBytes;
    return buffer_;
  }

  static constexpr int TagSize(uint32_t tag) {
    return (tag < (1 << 7))    ? 1
           : (tag < (1 << 14)) ? 2
           : (tag < (1 << 21)) ? 3
           : (tag < (1 << 28)) ? 4
                               : 5;
  }

  PROTOBUF_ALWAYS_INLINE uint8_t* WriteTag(uint32_t num, uint32_t wt,
                                           uint8_t* ptr) {
    GOOGLE_DCHECK(ptr < end_);  // NOLINT
    return UnsafeVarint((num << 3) | wt, ptr);
  }

  PROTOBUF_ALWAYS_INLINE uint8_t* WriteLengthDelim(int num, uint32_t size,
                                                   uint8_t* ptr) {
    ptr = WriteTag(num, 2, ptr);
    return UnsafeWriteSize(size, ptr);
  }

  uint8_t* WriteRawFallback(const void* data, int size, uint8_t* ptr);

  uint8_t* WriteAliasedRaw(const void* data, int size, uint8_t* ptr);

  uint8_t* WriteStringMaybeAliasedOutline(uint32_t num, const std::string& s,
                                          uint8_t* ptr);
  uint8_t* WriteStringOutline(uint32_t num, const std::string& s, uint8_t* ptr);

  template <typename T, typename E>
  PROTOBUF_ALWAYS_INLINE uint8_t* WriteVarintPacked(int num, const T& r,
                                                    int size, uint8_t* ptr,
                                                    const E& encode) {
    ptr = EnsureSpace(ptr);
    ptr = WriteLengthDelim(num, size, ptr);
    auto it = r.data();
    auto end = it + r.size();
    do {
      ptr = EnsureSpace(ptr);
      ptr = UnsafeVarint(encode(*it++), ptr);
    } while (it < end);
    return ptr;
  }

  static uint32_t Encode32(uint32_t v) { return v; }
  static uint64_t Encode64(uint64_t v) { return v; }
  static uint32_t ZigZagEncode32(int32_t v) {
    return (static_cast<uint32_t>(v) << 1) ^ static_cast<uint32_t>(v >> 31);
  }
  static uint64_t ZigZagEncode64(int64_t v) {
    return (static_cast<uint64_t>(v) << 1) ^ static_cast<uint64_t>(v >> 63);
  }

  template <typename T>
  PROTOBUF_ALWAYS_INLINE static uint8_t* UnsafeVarint(T value, uint8_t* ptr) {
    static_assert(std::is_unsigned<T>::value,
                  "Varint serialization must be unsigned");
    ptr[0] = static_cast<uint8_t>(value);
    if (value < 0x80) {
      return ptr + 1;
    }
    // Turn on continuation bit in the byte we just wrote.
    ptr[0] |= static_cast<uint8_t>(0x80);
    value >>= 7;
    ptr[1] = static_cast<uint8_t>(value);
    if (value < 0x80) {
      return ptr + 2;
    }
    ptr += 2;
    do {
      // Turn on continuation bit in the byte we just wrote.
      ptr[-1] |= static_cast<uint8_t>(0x80);
      value >>= 7;
      *ptr = static_cast<uint8_t>(value);
      ++ptr;
    } while (value >= 0x80);
    return ptr;
  }

  PROTOBUF_ALWAYS_INLINE static uint8_t* UnsafeWriteSize(uint32_t value,
                                                         uint8_t* ptr) {
    while (PROTOBUF_PREDICT_FALSE(value >= 0x80)) {
      *ptr = static_cast<uint8_t>(value | 0x80);
      value >>= 7;
      ++ptr;
    }
    *ptr++ = static_cast<uint8_t>(value);
    return ptr;
  }

  template <int S>
  uint8_t* WriteRawLittleEndian(const void* data, int size, uint8_t* ptr);
#ifndef PROTOBUF_LITTLE_ENDIAN
  uint8_t* WriteRawLittleEndian32(const void* data, int size, uint8_t* ptr);
  uint8_t* WriteRawLittleEndian64(const void* data, int size, uint8_t* ptr);
#endif

  // These methods are for CodedOutputStream. Ideally they should be private
  // but to match current behavior of CodedOutputStream as close as possible
  // we allow it some functionality.
 public:
  uint8_t* SetInitialBuffer(void* data, int size) {
    auto ptr = static_cast<uint8_t*>(data);
    if (size > kSlopBytes) {
      end_ = ptr + size - kSlopBytes;
      buffer_end_ = nullptr;
      return ptr;
    } else {
      end_ = buffer_ + size;
      buffer_end_ = ptr;
      return buffer_;
    }
  }

 private:
  // Needed by CodedOutputStream HadError. HadError needs to flush the patch
  // buffers to ensure there is no error as of yet.
  uint8_t* FlushAndResetBuffer(uint8_t*);

  // The following functions mimic the old CodedOutputStream behavior as close
  // as possible. They flush the current state to the stream, behave as
  // the old CodedOutputStream and then return to normal operation.
  bool Skip(int count, uint8_t** pp);
  bool GetDirectBufferPointer(void** data, int* size, uint8_t** pp);
  uint8_t* GetDirectBufferForNBytesAndAdvance(int size, uint8_t** pp);

  friend class CodedOutputStream;
};

template <>
inline uint8_t* EpsCopyOutputStream::WriteRawLittleEndian<1>(const void* data,
                                                             int size,
                                                             uint8_t* ptr) {
  return WriteRaw(data, size, ptr);
}
template <>
inline uint8_t* EpsCopyOutputStream::WriteRawLittleEndian<4>(const void* data,
                                                             int size,
                                                             uint8_t* ptr) {
#ifdef PROTOBUF_LITTLE_ENDIAN
  return WriteRaw(data, size, ptr);
#else
  return WriteRawLittleEndian32(data, size, ptr);
#endif
}
template <>
inline uint8_t* EpsCopyOutputStream::WriteRawLittleEndian<8>(const void* data,
                                                             int size,
                                                             uint8_t* ptr) {
#ifdef PROTOBUF_LITTLE_ENDIAN
  return WriteRaw(data, size, ptr);
#else
  return WriteRawLittleEndian64(data, size, ptr);
#endif
}

// Class which encodes and writes binary data which is composed of varint-
// encoded integers and fixed-width pieces.  Wraps a ZeroCopyOutputStream.
// Most users will not need to deal with CodedOutputStream.
//
// Most methods of CodedOutputStream which return a bool return false if an
// underlying I/O error occurs.  Once such a failure occurs, the
// CodedOutputStream is broken and is no longer useful. The Write* methods do
// not return the stream status, but will invalidate the stream if an error
// occurs. The client can probe HadError() to determine the status.
//
// Note that every method of CodedOutputStream which writes some data has
// a corresponding static "ToArray" version. These versions write directly
// to the provided buffer, returning a pointer past the last written byte.
// They require that the buffer has sufficient capacity for the encoded data.
// This allows an optimization where we check if an output stream has enough
// space for an entire message before we start writing and, if there is, we
// call only the ToArray methods to avoid doing bound checks for each
// individual value.
// i.e., in the example above:
//
//   CodedOutputStream* coded_output = new CodedOutputStream(raw_output);
//   int magic_number = 1234;
//   char text[] = "Hello world!";
//
//   int coded_size = sizeof(magic_number) +
//                    CodedOutputStream::VarintSize32(strlen(text)) +
//                    strlen(text);
//
//   uint8_t* buffer =
//       coded_output->GetDirectBufferForNBytesAndAdvance(coded_size);
//   if (buffer != nullptr) {
//     // The output stream has enough space in the buffer: write directly to
//     // the array.
//     buffer = CodedOutputStream::WriteLittleEndian32ToArray(magic_number,
//                                                            buffer);
//     buffer = CodedOutputStream::WriteVarint32ToArray(strlen(text), buffer);
//     buffer = CodedOutputStream::WriteRawToArray(text, strlen(text), buffer);
//   } else {
//     // Make bound-checked writes, which will ask the underlying stream for
//     // more space as needed.
//     coded_output->WriteLittleEndian32(magic_number);
//     coded_output->WriteVarint32(strlen(text));
//     coded_output->WriteRaw(text, strlen(text));
//   }
//
//   delete coded_output;
class PROTOBUF_EXPORT CodedOutputStream {
 public:
  // Create an CodedOutputStream that writes to the given ZeroCopyOutputStream.
  explicit CodedOutputStream(ZeroCopyOutputStream* stream)
      : CodedOutputStream(stream, true) {}
  CodedOutputStream(ZeroCopyOutputStream* stream, bool do_eager_refresh);

  // Destroy the CodedOutputStream and position the underlying
  // ZeroCopyOutputStream immediately after the last byte written.
  ~CodedOutputStream();

  // Returns true if there was an underlying I/O error since this object was
  // created. On should call Trim before this function in order to catch all
  // errors.
  bool HadError() {
    cur_ = impl_.FlushAndResetBuffer(cur_);
    GOOGLE_DCHECK(cur_);
    return impl_.HadError();
  }

  // Trims any unused space in the underlying buffer so that its size matches
  // the number of bytes written by this stream. The underlying buffer will
  // automatically be trimmed when this stream is destroyed; this call is only
  // necessary if the underlying buffer is accessed *before* the stream is
  // destroyed.
  void Trim() { cur_ = impl_.Trim(cur_); }

  // Skips a number of bytes, leaving the bytes unmodified in the underlying
  // buffer.  Returns false if an underlying write error occurs.  This is
  // mainly useful with GetDirectBufferPointer().
  // Note of caution, the skipped bytes may contain uninitialized data. The
  // caller must make sure that the skipped bytes are properly initialized,
  // otherwise you might leak bytes from your heap.
  bool Skip(int count) { return impl_.Skip(count, &cur_); }

  // Sets *data to point directly at the unwritten part of the
  // CodedOutputStream's underlying buffer, and *size to the size of that
  // buffer, but does not advance the stream's current position.  This will
  // always either produce a non-empty buffer or return false.  If the caller
  // writes any data to this buffer, it should then call Skip() to skip over
  // the consumed bytes.  This may be useful for implementing external fast
  // serialization routines for types of data not covered by the
  // CodedOutputStream interface.
  bool GetDirectBufferPointer(void** data, int* size) {
    return impl_.GetDirectBufferPointer(data, size, &cur_);
  }

  // If there are at least "size" bytes available in the current buffer,
  // returns a pointer directly into the buffer and advances over these bytes.
  // The caller may then write directly into this buffer (e.g. using the
  // *ToArray static methods) rather than go through CodedOutputStream.  If
  // there are not enough bytes available, returns NULL.  The return pointer is
  // invalidated as soon as any other non-const method of CodedOutputStream
  // is called.
  inline uint8_t* GetDirectBufferForNBytesAndAdvance(int size) {
    return impl_.GetDirectBufferForNBytesAndAdvance(size, &cur_);
  }

  // Write raw bytes, copying them from the given buffer.
  void WriteRaw(const void* buffer, int size) {
    cur_ = impl_.WriteRaw(buffer, size, cur_);
  }
  // Like WriteRaw()  but will try to write aliased data if aliasing is
  // turned on.
  void WriteRawMaybeAliased(const void* data, int size);
  // Like WriteRaw()  but writing directly to the target array.
  // This is _not_ inlined, as the compiler often optimizes memcpy into inline
  // copy loops. Since this gets called by every field with string or bytes
  // type, inlining may lead to a significant amount of code bloat, with only a
  // minor performance gain.
  static uint8_t* WriteRawToArray(const void* buffer, int size,
                                  uint8_t* target);

  // Equivalent to WriteRaw(str.data(), str.size()).
  void WriteString(const std::string& str);
  // Like WriteString()  but writing directly to the target array.
  static uint8_t* WriteStringToArray(const std::string& str, uint8_t* target);
  // Write the varint-encoded size of str followed by str.
  static uint8_t* WriteStringWithSizeToArray(const std::string& str,
                                             uint8_t* target);


  // Write a 32-bit little-endian integer.
  void WriteLittleEndian32(uint32_t value) {
    cur_ = impl_.EnsureSpace(cur_);
    SetCur(WriteLittleEndian32ToArray(value, Cur()));
  }
  // Like WriteLittleEndian32()  but writing directly to the target array.
  static uint8_t* WriteLittleEndian32ToArray(uint32_t value, uint8_t* target);
  // Write a 64-bit little-endian integer.
  void WriteLittleEndian64(uint64_t value) {
    cur_ = impl_.EnsureSpace(cur_);
    SetCur(WriteLittleEndian64ToArray(value, Cur()));
  }
  // Like WriteLittleEndian64()  but writing directly to the target array.
  static uint8_t* WriteLittleEndian64ToArray(uint64_t value, uint8_t* target);

  // Write an unsigned integer with Varint encoding.  Writing a 32-bit value
  // is equivalent to casting it to uint64_t and writing it as a 64-bit value,
  // but may be more efficient.
  void WriteVarint32(uint32_t value);
  // Like WriteVarint32()  but writing directly to the target array.
  static uint8_t* WriteVarint32ToArray(uint32_t value, uint8_t* target);
  // Like WriteVarint32()  but writing directly to the target array, and with
  // the less common-case paths being out of line rather than inlined.
  static uint8_t* WriteVarint32ToArrayOutOfLine(uint32_t value,
                                                uint8_t* target);
  // Write an unsigned integer with Varint encoding.
  void WriteVarint64(uint64_t value);
  // Like WriteVarint64()  but writing directly to the target array.
  static uint8_t* WriteVarint64ToArray(uint64_t value, uint8_t* target);

  // Equivalent to WriteVarint32() except when the value is negative,
  // in which case it must be sign-extended to a full 10 bytes.
  void WriteVarint32SignExtended(int32_t value);
  // Like WriteVarint32SignExtended()  but writing directly to the target array.
  static uint8_t* WriteVarint32SignExtendedToArray(int32_t value,
                                                   uint8_t* target);

  // This is identical to WriteVarint32(), but optimized for writing tags.
  // In particular, if the input is a compile-time constant, this method
  // compiles down to a couple instructions.
  // Always inline because otherwise the aforementioned optimization can't work,
  // but GCC by default doesn't want to inline this.
  void WriteTag(uint32_t value);
  // Like WriteTag()  but writing directly to the target array.
  PROTOBUF_ALWAYS_INLINE
  static uint8_t* WriteTagToArray(uint32_t value, uint8_t* target);

  // Returns the number of bytes needed to encode the given value as a varint.
  static size_t VarintSize32(uint32_t value);
  // Returns the number of bytes needed to encode the given value as a varint.
  static size_t VarintSize64(uint64_t value);

  // If negative, 10 bytes.  Otherwise, same as VarintSize32().
  static size_t VarintSize32SignExtended(int32_t value);

  // Same as above, plus one.  The additional one comes at no compute cost.
  static size_t VarintSize32PlusOne(uint32_t value);
  static size_t VarintSize64PlusOne(uint64_t value);
  static size_t VarintSize32SignExtendedPlusOne(int32_t value);

  // Compile-time equivalent of VarintSize32().
  template <uint32_t Value>
  struct StaticVarintSize32 {
    static const size_t value = (Value < (1 << 7))    ? 1
                                : (Value < (1 << 14)) ? 2
                                : (Value < (1 << 21)) ? 3
                                : (Value < (1 << 28)) ? 4
                                                      : 5;
  };

  // Returns the total number of bytes written since this object was created.
  int ByteCount() const {
    return static_cast<int>(impl_.ByteCount(cur_) - start_count_);
  }

  // Instructs the CodedOutputStream to allow the underlying
  // ZeroCopyOutputStream to hold pointers to the original structure instead of
  // copying, if it supports it (i.e. output->AllowsAliasing() is true).  If the
  // underlying stream does not support aliasing, then enabling it has no
  // affect.  For now, this only affects the behavior of
  // WriteRawMaybeAliased().
  //
  // NOTE: It is caller's responsibility to ensure that the chunk of memory
  // remains live until all of the data has been consumed from the stream.
  void EnableAliasing(bool enabled) { impl_.EnableAliasing(enabled); }

  // Indicate to the serializer whether the user wants derministic
  // serialization. The default when this is not called comes from the global
  // default, controlled by SetDefaultSerializationDeterministic.
  //
  // What deterministic serialization means is entirely up to the driver of the
  // serialization process (i.e. the caller of methods like WriteVarint32). In
  // the case of serializing a proto buffer message using one of the methods of
  // MessageLite, this means that for a given binary equal messages will always
  // be serialized to the same bytes. This implies:
  //
  //   * Repeated serialization of a message will return the same bytes.
  //
  //   * Different processes running the same binary (including on different
  //     machines) will serialize equal messages to the same bytes.
  //
  // Note that this is *not* canonical across languages. It is also unstable
  // across different builds with intervening message definition changes, due to
  // unknown fields. Users who need canonical serialization (e.g. persistent
  // storage in a canonical form, fingerprinting) should define their own
  // canonicalization specification and implement the serializer using
  // reflection APIs rather than relying on this API.
  void SetSerializationDeterministic(bool value) {
    impl_.SetSerializationDeterministic(value);
  }

  // Return whether the user wants deterministic serialization. See above.
  bool IsSerializationDeterministic() const {
    return impl_.IsSerializationDeterministic();
  }

  static bool IsDefaultSerializationDeterministic() {
    return default_serialization_deterministic_.load(
               std::memory_order_relaxed) != 0;
  }

  template <typename Func>
  void Serialize(const Func& func);

  uint8_t* Cur() const { return cur_; }
  void SetCur(uint8_t* ptr) { cur_ = ptr; }
  EpsCopyOutputStream* EpsCopy() { return &impl_; }

 private:
  EpsCopyOutputStream impl_;
  uint8_t* cur_;
  int64_t start_count_;
  static std::atomic<bool> default_serialization_deterministic_;

  // See above.  Other projects may use "friend" to allow them to call this.
  // After SetDefaultSerializationDeterministic() completes, all protocol
  // buffer serializations will be deterministic by default.  Thread safe.
  // However, the meaning of "after" is subtle here: to be safe, each thread
  // that wants deterministic serialization by default needs to call
  // SetDefaultSerializationDeterministic() or ensure on its own that another
  // thread has done so.
  friend void internal::MapTestForceDeterministic();
  static void SetDefaultSerializationDeterministic() {
    default_serialization_deterministic_.store(true, std::memory_order_relaxed);
  }
  // REQUIRES: value >= 0x80, and that (value & 7f) has been written to *target.
  static uint8_t* WriteVarint32ToArrayOutOfLineHelper(uint32_t value,
                                                      uint8_t* target);
  GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(CodedOutputStream);
};

// inline methods ====================================================
// The vast majority of varints are only one byte.  These inline
// methods optimize for that case.

inline bool CodedInputStream::ReadVarint32(uint32_t* value) {
  uint32_t v = 0;
  if (PROTOBUF_PREDICT_TRUE(buffer_ < buffer_end_)) {
    v = *buffer_;
    if (v < 0x80) {
      *value = v;
      Advance(1);
      return true;
    }
  }
  int64_t result = ReadVarint32Fallback(v);
  *value = static_cast<uint32_t>(result);
  return result >= 0;
}

inline bool CodedInputStream::ReadVarint64(uint64_t* value) {
  if (PROTOBUF_PREDICT_TRUE(buffer_ < buffer_end_) && *buffer_ < 0x80) {
    *value = *buffer_;
    Advance(1);
    return true;
  }
  std::pair<uint64_t, bool> p = ReadVarint64Fallback();
  *value = p.first;
  return p.second;
}

inline bool CodedInputStream::ReadVarintSizeAsInt(int* value) {
  if (PROTOBUF_PREDICT_TRUE(buffer_ < buffer_end_)) {
    int v = *buffer_;
    if (v < 0x80) {
      *value = v;
      Advance(1);
      return true;
    }
  }
  *value = ReadVarintSizeAsIntFallback();
  return *value >= 0;
}

// static
inline const uint8_t* CodedInputStream::ReadLittleEndian32FromArray(
    const uint8_t* buffer, uint32_t* value) {
#if defined(PROTOBUF_LITTLE_ENDIAN)
  memcpy(value, buffer, sizeof(*value));
  return buffer + sizeof(*value);
#else
  *value = (static_cast<uint32_t>(buffer[0])) |
           (static_cast<uint32_t>(buffer[1]) << 8) |
           (static_cast<uint32_t>(buffer[2]) << 16) |
           (static_cast<uint32_t>(buffer[3]) << 24);
  return buffer + sizeof(*value);
#endif
}
// static
inline const uint8_t* CodedInputStream::ReadLittleEndian64FromArray(
    const uint8_t* buffer, uint64_t* value) {
#if defined(PROTOBUF_LITTLE_ENDIAN)
  memcpy(value, buffer, sizeof(*value));
  return buffer + sizeof(*value);
#else
  uint32_t part0 = (static_cast<uint32_t>(buffer[0])) |
                   (static_cast<uint32_t>(buffer[1]) << 8) |
                   (static_cast<uint32_t>(buffer[2]) << 16) |
                   (static_cast<uint32_t>(buffer[3]) << 24);
  uint32_t part1 = (static_cast<uint32_t>(buffer[4])) |
                   (static_cast<uint32_t>(buffer[5]) << 8) |
                   (static_cast<uint32_t>(buffer[6]) << 16) |
                   (static_cast<uint32_t>(buffer[7]) << 24);
  *value = static_cast<uint64_t>(part0) | (static_cast<uint64_t>(part1) << 32);
  return buffer + sizeof(*value);
#endif
}

inline bool CodedInputStream::ReadLittleEndian32(uint32_t* value) {
#if defined(PROTOBUF_LITTLE_ENDIAN)
  if (PROTOBUF_PREDICT_TRUE(BufferSize() >= static_cast<int>(sizeof(*value)))) {
    buffer_ = ReadLittleEndian32FromArray(buffer_, value);
    return true;
  } else {
    return ReadLittleEndian32Fallback(value);
  }
#else
  return ReadLittleEndian32Fallback(value);
#endif
}

inline bool CodedInputStream::ReadLittleEndian64(uint64_t* value) {
#if defined(PROTOBUF_LITTLE_ENDIAN)
  if (PROTOBUF_PREDICT_TRUE(BufferSize() >= static_cast<int>(sizeof(*value)))) {
    buffer_ = ReadLittleEndian64FromArray(buffer_, value);
    return true;
  } else {
    return ReadLittleEndian64Fallback(value);
  }
#else
  return ReadLittleEndian64Fallback(value);
#endif
}

inline uint32_t CodedInputStream::ReadTagNoLastTag() {
  uint32_t v = 0;
  if (PROTOBUF_PREDICT_TRUE(buffer_ < buffer_end_)) {
    v = *buffer_;
    if (v < 0x80) {
      Advance(1);
      return v;
    }
  }
  v = ReadTagFallback(v);
  return v;
}

inline std::pair<uint32_t, bool> CodedInputStream::ReadTagWithCutoffNoLastTag(
    uint32_t cutoff) {
  // In performance-sensitive code we can expect cutoff to be a compile-time
  // constant, and things like "cutoff >= kMax1ByteVarint" to be evaluated at
  // compile time.
  uint32_t first_byte_or_zero = 0;
  if (PROTOBUF_PREDICT_TRUE(buffer_ < buffer_end_)) {
    // Hot case: buffer_ non_empty, buffer_[0] in [1, 128).
    // TODO(gpike): Is it worth rearranging this? E.g., if the number of fields
    // is large enough then is it better to check for the two-byte case first?
    first_byte_or_zero = buffer_[0];
    if (static_cast<int8_t>(buffer_[0]) > 0) {
      const uint32_t kMax1ByteVarint = 0x7f;
      uint32_t tag = buffer_[0];
      Advance(1);
      return std::make_pair(tag, cutoff >= kMax1ByteVarint || tag <= cutoff);
    }
    // Other hot case: cutoff >= 0x80, buffer_ has at least two bytes available,
    // and tag is two bytes.  The latter is tested by bitwise-and-not of the
    // first byte and the second byte.
    if (cutoff >= 0x80 && PROTOBUF_PREDICT_TRUE(buffer_ + 1 < buffer_end_) &&
        PROTOBUF_PREDICT_TRUE((buffer_[0] & ~buffer_[1]) >= 0x80)) {
      const uint32_t kMax2ByteVarint = (0x7f << 7) + 0x7f;
      uint32_t tag = (1u << 7) * buffer_[1] + (buffer_[0] - 0x80);
      Advance(2);
      // It might make sense to test for tag == 0 now, but it is so rare that
      // that we don't bother.  A varint-encoded 0 should be one byte unless
      // the encoder lost its mind.  The second part of the return value of
      // this function is allowed to be either true or false if the tag is 0,
      // so we don't have to check for tag == 0.  We may need to check whether
      // it exceeds cutoff.
      bool at_or_below_cutoff = cutoff >= kMax2ByteVarint || tag <= cutoff;
      return std::make_pair(tag, at_or_below_cutoff);
    }
  }
  // Slow path
  const uint32_t tag = ReadTagFallback(first_byte_or_zero);
  return std::make_pair(tag, static_cast<uint32_t>(tag - 1) < cutoff);
}

inline bool CodedInputStream::LastTagWas(uint32_t expected) {
  return last_tag_ == expected;
}

inline bool CodedInputStream::ConsumedEntireMessage() {
  return legitimate_message_end_;
}

inline bool CodedInputStream::ExpectTag(uint32_t expected) {
  if (expected < (1 << 7)) {
    if (PROTOBUF_PREDICT_TRUE(buffer_ < buffer_end_) &&
        buffer_[0] == expected) {
      Advance(1);
      return true;
    } else {
      return false;
    }
  } else if (expected < (1 << 14)) {
    if (PROTOBUF_PREDICT_TRUE(BufferSize() >= 2) &&
        buffer_[0] == static_cast<uint8_t>(expected | 0x80) &&
        buffer_[1] == static_cast<uint8_t>(expected >> 7)) {
      Advance(2);
      return true;
    } else {
      return false;
    }
  } else {
    // Don't bother optimizing for larger values.
    return false;
  }
}

inline const uint8_t* CodedInputStream::ExpectTagFromArray(
    const uint8_t* buffer, uint32_t expected) {
  if (expected < (1 << 7)) {
    if (buffer[0] == expected) {
      return buffer + 1;
    }
  } else if (expected < (1 << 14)) {
    if (buffer[0] == static_cast<uint8_t>(expected | 0x80) &&
        buffer[1] == static_cast<uint8_t>(expected >> 7)) {
      return buffer + 2;
    }
  }
  return nullptr;
}

inline void CodedInputStream::GetDirectBufferPointerInline(const void** data,
                                                           int* size) {
  *data = buffer_;
  *size = static_cast<int>(buffer_end_ - buffer_);
}

inline bool CodedInputStream::ExpectAtEnd() {
  // If we are at a limit we know no more bytes can be read.  Otherwise, it's
  // hard to say without calling Refresh(), and we'd rather not do that.

  if (buffer_ == buffer_end_ && ((buffer_size_after_limit_ != 0) ||
                                 (total_bytes_read_ == current_limit_))) {
    last_tag_ = 0;                   // Pretend we called ReadTag()...
    legitimate_message_end_ = true;  // ... and it hit EOF.
    return true;
  } else {
    return false;
  }
}

inline int CodedInputStream::CurrentPosition() const {
  return total_bytes_read_ - (BufferSize() + buffer_size_after_limit_);
}

inline void CodedInputStream::Advance(int amount) { buffer_ += amount; }

inline void CodedInputStream::SetRecursionLimit(int limit) {
  recursion_budget_ += limit - recursion_limit_;
  recursion_limit_ = limit;
}

inline bool CodedInputStream::IncrementRecursionDepth() {
  --recursion_budget_;
  return recursion_budget_ >= 0;
}

inline void CodedInputStream::DecrementRecursionDepth() {
  if (recursion_budget_ < recursion_limit_) ++recursion_budget_;
}

inline void CodedInputStream::UnsafeDecrementRecursionDepth() {
  assert(recursion_budget_ < recursion_limit_);
  ++recursion_budget_;
}

inline void CodedInputStream::SetExtensionRegistry(const DescriptorPool* pool,
                                                   MessageFactory* factory) {
  extension_pool_ = pool;
  extension_factory_ = factory;
}

inline const DescriptorPool* CodedInputStream::GetExtensionPool() {
  return extension_pool_;
}

inline MessageFactory* CodedInputStream::GetExtensionFactory() {
  return extension_factory_;
}

inline int CodedInputStream::BufferSize() const {
  return static_cast<int>(buffer_end_ - buffer_);
}

inline CodedInputStream::CodedInputStream(ZeroCopyInputStream* input)
    : buffer_(nullptr),
      buffer_end_(nullptr),
      input_(input),
      total_bytes_read_(0),
      overflow_bytes_(0),
      last_tag_(0),
      legitimate_message_end_(false),
      aliasing_enabled_(false),
      current_limit_(std::numeric_limits<int32_t>::max()),
      buffer_size_after_limit_(0),
      total_bytes_limit_(kDefaultTotalBytesLimit),
      recursion_budget_(default_recursion_limit_),
      recursion_limit_(default_recursion_limit_),
      extension_pool_(nullptr),
      extension_factory_(nullptr) {
  // Eagerly Refresh() so buffer space is immediately available.
  Refresh();
}

inline CodedInputStream::CodedInputStream(const uint8_t* buffer, int size)
    : buffer_(buffer),
      buffer_end_(buffer + size),
      input_(nullptr),
      total_bytes_read_(size),
      overflow_bytes_(0),
      last_tag_(0),
      legitimate_message_end_(false),
      aliasing_enabled_(false),
      current_limit_(size),
      buffer_size_after_limit_(0),
      total_bytes_limit_(kDefaultTotalBytesLimit),
      recursion_budget_(default_recursion_limit_),
      recursion_limit_(default_recursion_limit_),
      extension_pool_(nullptr),
      extension_factory_(nullptr) {
  // Note that setting current_limit_ == size is important to prevent some
  // code paths from trying to access input_ and segfaulting.
}

inline bool CodedInputStream::IsFlat() const { return input_ == nullptr; }

inline bool CodedInputStream::Skip(int count) {
  if (count < 0) return false;  // security: count is often user-supplied

  const int original_buffer_size = BufferSize();

  if (count <= original_buffer_size) {
    // Just skipping within the current buffer.  Easy.
    Advance(count);
    return true;
  }

  return SkipFallback(count, original_buffer_size);
}

inline uint8_t* CodedOutputStream::WriteVarint32ToArray(uint32_t value,
                                                        uint8_t* target) {
  return EpsCopyOutputStream::UnsafeVarint(value, target);
}

inline uint8_t* CodedOutputStream::WriteVarint32ToArrayOutOfLine(
    uint32_t value, uint8_t* target) {
  target[0] = static_cast<uint8_t>(value);
  if (value < 0x80) {
    return target + 1;
  } else {
    return WriteVarint32ToArrayOutOfLineHelper(value, target);
  }
}

inline uint8_t* CodedOutputStream::WriteVarint64ToArray(uint64_t value,
                                                        uint8_t* target) {
  return EpsCopyOutputStream::UnsafeVarint(value, target);
}

inline void CodedOutputStream::WriteVarint32SignExtended(int32_t value) {
  WriteVarint64(static_cast<uint64_t>(value));
}

inline uint8_t* CodedOutputStream::WriteVarint32SignExtendedToArray(
    int32_t value, uint8_t* target) {
  return WriteVarint64ToArray(static_cast<uint64_t>(value), target);
}

inline uint8_t* CodedOutputStream::WriteLittleEndian32ToArray(uint32_t value,
                                                              uint8_t* target) {
#if defined(PROTOBUF_LITTLE_ENDIAN)
  memcpy(target, &value, sizeof(value));
#else
  target[0] = static_cast<uint8_t>(value);
  target[1] = static_cast<uint8_t>(value >> 8);
  target[2] = static_cast<uint8_t>(value >> 16);
  target[3] = static_cast<uint8_t>(value >> 24);
#endif
  return target + sizeof(value);
}

inline uint8_t* CodedOutputStream::WriteLittleEndian64ToArray(uint64_t value,
                                                              uint8_t* target) {
#if defined(PROTOBUF_LITTLE_ENDIAN)
  memcpy(target, &value, sizeof(value));
#else
  uint32_t part0 = static_cast<uint32_t>(value);
  uint32_t part1 = static_cast<uint32_t>(value >> 32);

  target[0] = static_cast<uint8_t>(part0);
  target[1] = static_cast<uint8_t>(part0 >> 8);
  target[2] = static_cast<uint8_t>(part0 >> 16);
  target[3] = static_cast<uint8_t>(part0 >> 24);
  target[4] = static_cast<uint8_t>(part1);
  target[5] = static_cast<uint8_t>(part1 >> 8);
  target[6] = static_cast<uint8_t>(part1 >> 16);
  target[7] = static_cast<uint8_t>(part1 >> 24);
#endif
  return target + sizeof(value);
}

inline void CodedOutputStream::WriteVarint32(uint32_t value) {
  cur_ = impl_.EnsureSpace(cur_);
  SetCur(WriteVarint32ToArray(value, Cur()));
}

inline void CodedOutputStream::WriteVarint64(uint64_t value) {
  cur_ = impl_.EnsureSpace(cur_);
  SetCur(WriteVarint64ToArray(value, Cur()));
}

inline void CodedOutputStream::WriteTag(uint32_t value) {
  WriteVarint32(value);
}

inline uint8_t* CodedOutputStream::WriteTagToArray(uint32_t value,
                                                   uint8_t* target) {
  return WriteVarint32ToArray(value, target);
}

inline size_t CodedOutputStream::VarintSize32(uint32_t value) {
  // This computes value == 0 ? 1 : floor(log2(value)) / 7 + 1
  // Use an explicit multiplication to implement the divide of
  // a number in the 1..31 range.
  // Explicit OR 0x1 to avoid calling Bits::Log2FloorNonZero(0), which is
  // undefined.
  uint32_t log2value = Bits::Log2FloorNonZero(value | 0x1);
  return static_cast<size_t>((log2value * 9 + 73) / 64);
}

inline size_t CodedOutputStream::VarintSize32PlusOne(uint32_t value) {
  // Same as above, but one more.
  uint32_t log2value = Bits::Log2FloorNonZero(value | 0x1);
  return static_cast<size_t>((log2value * 9 + 73 + 64) / 64);
}

inline size_t CodedOutputStream::VarintSize64(uint64_t value) {
  // This computes value == 0 ? 1 : floor(log2(value)) / 7 + 1
  // Use an explicit multiplication to implement the divide of
  // a number in the 1..63 range.
  // Explicit OR 0x1 to avoid calling Bits::Log2FloorNonZero(0), which is
  // undefined.
  uint32_t log2value = Bits::Log2FloorNonZero64(value | 0x1);
  return static_cast<size_t>((log2value * 9 + 73) / 64);
}

inline size_t CodedOutputStream::VarintSize64PlusOne(uint64_t value) {
  // Same as above, but one more.
  uint32_t log2value = Bits::Log2FloorNonZero64(value | 0x1);
  return static_cast<size_t>((log2value * 9 + 73 + 64) / 64);
}

inline size_t CodedOutputStream::VarintSize32SignExtended(int32_t value) {
  return VarintSize64(static_cast<uint64_t>(int64_t{value}));
}

inline size_t CodedOutputStream::VarintSize32SignExtendedPlusOne(
    int32_t value) {
  return VarintSize64PlusOne(static_cast<uint64_t>(int64_t{value}));
}

inline void CodedOutputStream::WriteString(const std::string& str) {
  WriteRaw(str.data(), static_cast<int>(str.size()));
}

inline void CodedOutputStream::WriteRawMaybeAliased(const void* data,
                                                    int size) {
  cur_ = impl_.WriteRawMaybeAliased(data, size, cur_);
}

inline uint8_t* CodedOutputStream::WriteRawToArray(const void* data, int size,
                                                   uint8_t* target) {
  memcpy(target, data, size);
  return target + size;
}

inline uint8_t* CodedOutputStream::WriteStringToArray(const std::string& str,
                                                      uint8_t* target) {
  return WriteRawToArray(str.data(), static_cast<int>(str.size()), target);
}

}  // namespace io
}  // namespace protobuf
}  // namespace google

#if defined(_MSC_VER) && _MSC_VER >= 1300 && !defined(__INTEL_COMPILER)
#pragma runtime_checks("c", restore)
#endif  // _MSC_VER && !defined(__INTEL_COMPILER)

#include <port_undef.inc>

#endif  // GOOGLE_PROTOBUF_IO_CODED_STREAM_H__