aboutsummaryrefslogtreecommitdiff
path: root/NorthstarDedicatedTest/include/protobuf/generated_message_tctable_lite.cc
blob: 5f7f1f83cc1f66503d910628fc0d35e496eb0fe0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc.  All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include <cstdint>

#include <parse_context.h>
#include <extension_set.h>
#include <generated_message_tctable_decl.h>
#include <generated_message_tctable_impl.h>
#include <message_lite.h>
#include <wire_format_lite.h>

// clang-format off
#include <port_def.inc>
// clang-format on

namespace google {
namespace protobuf {
namespace internal {

#ifndef NDEBUG
template void AlignFail<4>(uintptr_t);
template void AlignFail<8>(uintptr_t);
#endif

const char* TcParser::GenericFallbackLite(PROTOBUF_TC_PARAM_DECL) {
  return GenericFallbackImpl<MessageLite, std::string>(PROTOBUF_TC_PARAM_PASS);
}

namespace {

// Offset returns the address `offset` bytes after `base`.
inline void* Offset(void* base, uint32_t offset) {
  return static_cast<uint8_t*>(base) + offset;
}

// InvertPacked changes tag bits from the given wire type to length
// delimited. This is the difference expected between packed and non-packed
// repeated fields.
template <WireFormatLite::WireType Wt>
inline PROTOBUF_ALWAYS_INLINE void InvertPacked(TcFieldData& data) {
  data.data ^= Wt ^ WireFormatLite::WIRETYPE_LENGTH_DELIMITED;
}

}  // namespace

//////////////////////////////////////////////////////////////////////////////
// Fixed fields
//////////////////////////////////////////////////////////////////////////////

template <typename LayoutType, typename TagType>
const char* TcParser::SingularFixed(PROTOBUF_TC_PARAM_DECL) {
  if (PROTOBUF_PREDICT_FALSE(data.coded_tag<TagType>() != 0)) {
    return table->fallback(PROTOBUF_TC_PARAM_PASS);
  }
  ptr += sizeof(TagType);  // Consume tag
  hasbits |= (uint64_t{1} << data.hasbit_idx());
  std::memcpy(Offset(msg, data.offset()), ptr, sizeof(LayoutType));
  ptr += sizeof(LayoutType);
  PROTOBUF_MUSTTAIL return ToTagDispatch(PROTOBUF_TC_PARAM_PASS);
}

template <typename LayoutType, typename TagType>
const char* TcParser::RepeatedFixed(PROTOBUF_TC_PARAM_DECL) {
  if (PROTOBUF_PREDICT_FALSE(data.coded_tag<TagType>() != 0)) {
    // Check if the field can be parsed as packed repeated:
    constexpr WireFormatLite::WireType fallback_wt =
        sizeof(LayoutType) == 4 ? WireFormatLite::WIRETYPE_FIXED32
                                : WireFormatLite::WIRETYPE_FIXED64;
    InvertPacked<fallback_wt>(data);
    if (data.coded_tag<TagType>() == 0) {
      return PackedFixed<LayoutType, TagType>(PROTOBUF_TC_PARAM_PASS);
    } else {
      return table->fallback(PROTOBUF_TC_PARAM_PASS);
    }
  }
  auto& field = RefAt<RepeatedField<LayoutType>>(msg, data.offset());
  int idx = field.size();
  auto elem = field.Add();
  int space = field.Capacity() - idx;
  idx = 0;
  auto expected_tag = UnalignedLoad<TagType>(ptr);
  do {
    ptr += sizeof(TagType);
    std::memcpy(elem + (idx++), ptr, sizeof(LayoutType));
    ptr += sizeof(LayoutType);
    if (idx >= space) break;
    if (!ctx->DataAvailable(ptr)) break;
  } while (UnalignedLoad<TagType>(ptr) == expected_tag);
  field.AddNAlreadyReserved(idx - 1);
  return ToParseLoop(PROTOBUF_TC_PARAM_PASS);
}

template <typename LayoutType, typename TagType>
const char* TcParser::PackedFixed(PROTOBUF_TC_PARAM_DECL) {
  if (PROTOBUF_PREDICT_FALSE(data.coded_tag<TagType>() != 0)) {
    // Try parsing as non-packed repeated:
    constexpr WireFormatLite::WireType fallback_wt =
        sizeof(LayoutType) == 4 ? WireFormatLite::WIRETYPE_FIXED32
                                : WireFormatLite::WIRETYPE_FIXED64;
    InvertPacked<fallback_wt>(data);
    if (data.coded_tag<TagType>() == 0) {
      return RepeatedFixed<LayoutType, TagType>(PROTOBUF_TC_PARAM_PASS);
    } else {
      return table->fallback(PROTOBUF_TC_PARAM_PASS);
    }
  }
  ptr += sizeof(TagType);
  // Since ctx->ReadPackedFixed does not use TailCall<> or Return<>, sync any
  // pending hasbits now:
  SyncHasbits(msg, hasbits, table);
  auto& field = RefAt<RepeatedField<LayoutType>>(msg, data.offset());
  int size = ReadSize(&ptr);
  // TODO(dlj): add a tailcalling variant of ReadPackedFixed.
  return ctx->ReadPackedFixed(ptr, size,
                              static_cast<RepeatedField<LayoutType>*>(&field));
}

//////////////////////////////////////////////////////////////////////////////
// Varint fields
//////////////////////////////////////////////////////////////////////////////

namespace {

inline PROTOBUF_ALWAYS_INLINE std::pair<const char*, uint64_t>
Parse64FallbackPair(const char* p, int64_t res1) {
  auto ptr = reinterpret_cast<const int8_t*>(p);

  // The algorithm relies on sign extension for each byte to set all high bits
  // when the varint continues. It also relies on asserting all of the lower
  // bits for each successive byte read. This allows the result to be aggregated
  // using a bitwise AND. For example:
  //
  //          8       1          64     57 ... 24     17  16      9  8       1
  // ptr[0] = 1aaa aaaa ; res1 = 1111 1111 ... 1111 1111  1111 1111  1aaa aaaa
  // ptr[1] = 1bbb bbbb ; res2 = 1111 1111 ... 1111 1111  11bb bbbb  b111 1111
  // ptr[2] = 1ccc cccc ; res3 = 0000 0000 ... 000c cccc  cc11 1111  1111 1111
  //                             ---------------------------------------------
  //        res1 & res2 & res3 = 0000 0000 ... 000c cccc  ccbb bbbb  baaa aaaa
  //
  // On x86-64, a shld from a single register filled with enough 1s in the high
  // bits can accomplish all this in one instruction. It so happens that res1
  // has 57 high bits of ones, which is enough for the largest shift done.
  GOOGLE_DCHECK_EQ(res1 >> 7, -1);
  uint64_t ones = res1;  // save the high 1 bits from res1 (input to SHLD)
  uint64_t byte;         // the "next" 7-bit chunk, shifted (result from SHLD)
  int64_t res2, res3;    // accumulated result chunks
#define SHLD(n) byte = ((byte << (n * 7)) | (ones >> (64 - (n * 7))))

  int sign_bit;
#if defined(__GCC_ASM_FLAG_OUTPUTS__) && defined(__x86_64__)
  // For the first two rounds (ptr[1] and ptr[2]), micro benchmarks show a
  // substantial improvement from capturing the sign from the condition code
  // register on x86-64.
#define SHLD_SIGN(n)                  \
  asm("shldq %3, %2, %1"              \
      : "=@ccs"(sign_bit), "+r"(byte) \
      : "r"(ones), "i"(n * 7))
#else
  // Generic fallback:
#define SHLD_SIGN(n)                           \
  do {                                         \
    SHLD(n);                                   \
    sign_bit = static_cast<int64_t>(byte) < 0; \
  } while (0)
#endif

  byte = ptr[1];
  SHLD_SIGN(1);
  res2 = byte;
  if (!sign_bit) goto done2;
  byte = ptr[2];
  SHLD_SIGN(2);
  res3 = byte;
  if (!sign_bit) goto done3;

#undef SHLD_SIGN

  // For the remainder of the chunks, check the sign of the AND result.
  byte = ptr[3];
  SHLD(3);
  res1 &= byte;
  if (res1 >= 0) goto done4;
  byte = ptr[4];
  SHLD(4);
  res2 &= byte;
  if (res2 >= 0) goto done5;
  byte = ptr[5];
  SHLD(5);
  res3 &= byte;
  if (res3 >= 0) goto done6;
  byte = ptr[6];
  SHLD(6);
  res1 &= byte;
  if (res1 >= 0) goto done7;
  byte = ptr[7];
  SHLD(7);
  res2 &= byte;
  if (res2 >= 0) goto done8;
  byte = ptr[8];
  SHLD(8);
  res3 &= byte;
  if (res3 >= 0) goto done9;

#undef SHLD

  // For valid 64bit varints, the 10th byte/ptr[9] should be exactly 1. In this
  // case, the continuation bit of ptr[8] already set the top bit of res3
  // correctly, so all we have to do is check that the expected case is true.
  byte = ptr[9];
  if (PROTOBUF_PREDICT_TRUE(byte == 1)) goto done10;

  // A value of 0, however, represents an over-serialized varint. This case
  // should not happen, but if does (say, due to a nonconforming serializer),
  // deassert the continuation bit that came from ptr[8].
  if (byte == 0) {
    res3 ^= static_cast<uint64_t>(1) << 63;
    goto done10;
  }

  // If the 10th byte/ptr[9] itself has any other value, then it is too big to
  // fit in 64 bits. If the continue bit is set, it is an unterminated varint.
  return {nullptr, 0};

#define DONE(n) done##n : return {p + n, res1 & res2 & res3};
done2:
  return {p + 2, res1 & res2};
  DONE(3)
  DONE(4)
  DONE(5)
  DONE(6)
  DONE(7)
  DONE(8)
  DONE(9)
  DONE(10)
#undef DONE
}

inline PROTOBUF_ALWAYS_INLINE const char* ParseVarint(const char* p,
                                                      uint64_t* value) {
  int64_t byte = static_cast<int8_t>(*p);
  if (PROTOBUF_PREDICT_TRUE(byte >= 0)) {
    *value = byte;
    return p + 1;
  } else {
    auto tmp = Parse64FallbackPair(p, byte);
    if (PROTOBUF_PREDICT_TRUE(tmp.first)) *value = tmp.second;
    return tmp.first;
  }
}

template <typename FieldType,
          TcParser::VarintDecode = TcParser::VarintDecode::kNoConversion>
FieldType ZigZagDecodeHelper(uint64_t value) {
  return static_cast<FieldType>(value);
}

template <>
int32_t ZigZagDecodeHelper<int32_t, TcParser::VarintDecode::kZigZag>(
    uint64_t value) {
  return WireFormatLite::ZigZagDecode32(value);
}

template <>
int64_t ZigZagDecodeHelper<int64_t, TcParser::VarintDecode::kZigZag>(
    uint64_t value) {
  return WireFormatLite::ZigZagDecode64(value);
}

}  // namespace

template <typename FieldType, typename TagType, TcParser::VarintDecode zigzag>
const char* TcParser::SingularVarint(PROTOBUF_TC_PARAM_DECL) {
  if (PROTOBUF_PREDICT_FALSE(data.coded_tag<TagType>() != 0)) {
    return table->fallback(PROTOBUF_TC_PARAM_PASS);
  }
  ptr += sizeof(TagType);  // Consume tag
  hasbits |= (uint64_t{1} << data.hasbit_idx());
  uint64_t tmp;
  ptr = ParseVarint(ptr, &tmp);
  if (ptr == nullptr) {
    return Error(PROTOBUF_TC_PARAM_PASS);
  }
  RefAt<FieldType>(msg, data.offset()) =
      ZigZagDecodeHelper<FieldType, zigzag>(tmp);
  PROTOBUF_MUSTTAIL return ToTagDispatch(PROTOBUF_TC_PARAM_PASS);
}

template <typename FieldType, typename TagType, TcParser::VarintDecode zigzag>
PROTOBUF_NOINLINE const char* TcParser::RepeatedVarint(PROTOBUF_TC_PARAM_DECL) {
  if (PROTOBUF_PREDICT_FALSE(data.coded_tag<TagType>() != 0)) {
    // Try parsing as non-packed repeated:
    InvertPacked<WireFormatLite::WIRETYPE_VARINT>(data);
    if (data.coded_tag<TagType>() == 0) {
      return PackedVarint<FieldType, TagType, zigzag>(PROTOBUF_TC_PARAM_PASS);
    } else {
      return table->fallback(PROTOBUF_TC_PARAM_PASS);
    }
  }
  auto& field = RefAt<RepeatedField<FieldType>>(msg, data.offset());
  auto expected_tag = UnalignedLoad<TagType>(ptr);
  do {
    ptr += sizeof(TagType);
    uint64_t tmp;
    ptr = ParseVarint(ptr, &tmp);
    if (ptr == nullptr) {
      return Error(PROTOBUF_TC_PARAM_PASS);
    }
    field.Add(ZigZagDecodeHelper<FieldType, zigzag>(tmp));
    if (!ctx->DataAvailable(ptr)) {
      break;
    }
  } while (UnalignedLoad<TagType>(ptr) == expected_tag);
  return ToParseLoop(PROTOBUF_TC_PARAM_PASS);
}

template <typename FieldType, typename TagType, TcParser::VarintDecode zigzag>
PROTOBUF_NOINLINE const char* TcParser::PackedVarint(PROTOBUF_TC_PARAM_DECL) {
  if (PROTOBUF_PREDICT_FALSE(data.coded_tag<TagType>() != 0)) {
    InvertPacked<WireFormatLite::WIRETYPE_VARINT>(data);
    if (data.coded_tag<TagType>() == 0) {
      return RepeatedVarint<FieldType, TagType, zigzag>(PROTOBUF_TC_PARAM_PASS);
    } else {
      return table->fallback(PROTOBUF_TC_PARAM_PASS);
    }
  }
  ptr += sizeof(TagType);
  // Since ctx->ReadPackedVarint does not use TailCall or Return, sync any
  // pending hasbits now:
  SyncHasbits(msg, hasbits, table);
  auto* field = &RefAt<RepeatedField<FieldType>>(msg, data.offset());
  return ctx->ReadPackedVarint(ptr, [field](uint64_t varint) {
    FieldType val;
    if (zigzag) {
      if (sizeof(FieldType) == 8) {
        val = WireFormatLite::ZigZagDecode64(varint);
      } else {
        val = WireFormatLite::ZigZagDecode32(varint);
      }
    } else {
      val = varint;
    }
    field->Add(val);
  });
}

//////////////////////////////////////////////////////////////////////////////
// String/bytes fields
//////////////////////////////////////////////////////////////////////////////

// Defined in wire_format_lite.cc
void PrintUTF8ErrorLog(const char* field_name, const char* operation_str,
                       bool emit_stacktrace);

namespace {

PROTOBUF_NOINLINE
const char* SingularStringParserFallback(ArenaStringPtr* s, const char* ptr,
                                         EpsCopyInputStream* stream) {
  int size = ReadSize(&ptr);
  if (!ptr) return nullptr;
  return stream->ReadString(
      ptr, size, s->MutableNoArenaNoDefault(&GetEmptyStringAlreadyInited()));
}

}  // namespace

template <typename TagType, TcParser::Utf8Type utf8>
const char* TcParser::SingularString(PROTOBUF_TC_PARAM_DECL) {
  if (PROTOBUF_PREDICT_FALSE(data.coded_tag<TagType>() != 0)) {
    return table->fallback(PROTOBUF_TC_PARAM_PASS);
  }
  ptr += sizeof(TagType);
  hasbits |= (uint64_t{1} << data.hasbit_idx());
  auto& field = RefAt<ArenaStringPtr>(msg, data.offset());
  auto arena = ctx->data().arena;
  if (arena) {
    ptr = ctx->ReadArenaString(ptr, &field, arena);
  } else {
    ptr = SingularStringParserFallback(&field, ptr, ctx);
  }
  if (ptr == nullptr) return Error(PROTOBUF_TC_PARAM_PASS);
  switch (utf8) {
    case kNoUtf8:
#ifdef NDEBUG
    case kUtf8ValidateOnly:
#endif
      return ToParseLoop(PROTOBUF_TC_PARAM_PASS);
    default:
      if (PROTOBUF_PREDICT_TRUE(IsStructurallyValidUTF8(field.Get()))) {
        return ToParseLoop(PROTOBUF_TC_PARAM_PASS);
      }
      PrintUTF8ErrorLog("unknown", "parsing", false);
      return utf8 == kUtf8 ? Error(PROTOBUF_TC_PARAM_PASS)
                           : ToParseLoop(PROTOBUF_TC_PARAM_PASS);
  }
}

template <typename TagType, TcParser::Utf8Type utf8>
const char* TcParser::RepeatedString(PROTOBUF_TC_PARAM_DECL) {
  if (PROTOBUF_PREDICT_FALSE(data.coded_tag<TagType>() != 0)) {
    return table->fallback(PROTOBUF_TC_PARAM_PASS);
  }
  auto expected_tag = UnalignedLoad<TagType>(ptr);
  auto& field = RefAt<RepeatedPtrField<std::string>>(msg, data.offset());
  do {
    ptr += sizeof(TagType);
    std::string* str = field.Add();
    ptr = InlineGreedyStringParser(str, ptr, ctx);
    if (ptr == nullptr) {
      return Error(PROTOBUF_TC_PARAM_PASS);
    }
    if (utf8 != kNoUtf8) {
      if (PROTOBUF_PREDICT_FALSE(!IsStructurallyValidUTF8(*str))) {
        PrintUTF8ErrorLog("unknown", "parsing", false);
        if (utf8 == kUtf8) return Error(PROTOBUF_TC_PARAM_PASS);
      }
    }
    if (!ctx->DataAvailable(ptr)) break;
  } while (UnalignedLoad<TagType>(ptr) == expected_tag);
  return ToParseLoop(PROTOBUF_TC_PARAM_PASS);
}

#define PROTOBUF_TCT_SOURCE
#include <generated_message_tctable_impl.inc>

}  // namespace internal
}  // namespace protobuf
}  // namespace google