1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
|
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Author: kenton@google.com (Kenton Varda)
// Based on original Protocol Buffers design by
// Sanjay Ghemawat, Jeff Dean, and others.
#ifndef GOOGLE_PROTOBUF_COMPILER_CPP_HELPERS_H__
#define GOOGLE_PROTOBUF_COMPILER_CPP_HELPERS_H__
#include <algorithm>
#include <cstdint>
#include <iterator>
#include <map>
#include <string>
#include <compiler/cpp/cpp_options.h>
#include <compiler/cpp/cpp_names.h>
#include <compiler/scc.h>
#include <compiler/code_generator.h>
#include <descriptor.pb.h>
#include <io/printer.h>
#include <descriptor.h>
#include <port.h>
#include <stubs/strutil.h>
// Must be included last.
#include <port_def.inc>
namespace google {
namespace protobuf {
namespace compiler {
namespace cpp {
inline std::string ProtobufNamespace(const Options& /* options */) {
return "PROTOBUF_NAMESPACE_ID";
}
inline std::string MacroPrefix(const Options& /* options */) {
return "GOOGLE_PROTOBUF";
}
inline std::string DeprecatedAttribute(const Options& /* options */,
const FieldDescriptor* d) {
return d->options().deprecated() ? "PROTOBUF_DEPRECATED " : "";
}
inline std::string DeprecatedAttribute(const Options& /* options */,
const EnumValueDescriptor* d) {
return d->options().deprecated() ? "PROTOBUF_DEPRECATED_ENUM " : "";
}
// Commonly-used separator comments. Thick is a line of '=', thin is a line
// of '-'.
extern const char kThickSeparator[];
extern const char kThinSeparator[];
void SetCommonVars(const Options& options,
std::map<std::string, std::string>* variables);
void SetUnknownFieldsVariable(const Descriptor* descriptor,
const Options& options,
std::map<std::string, std::string>* variables);
bool GetBootstrapBasename(const Options& options, const std::string& basename,
std::string* bootstrap_basename);
bool MaybeBootstrap(const Options& options, GeneratorContext* generator_context,
bool bootstrap_flag, std::string* basename);
bool IsBootstrapProto(const Options& options, const FileDescriptor* file);
// Name space of the proto file. This namespace is such that the string
// "<namespace>::some_name" is the correct fully qualified namespace.
// This means if the package is empty the namespace is "", and otherwise
// the namespace is "::foo::bar::...::baz" without trailing semi-colons.
std::string Namespace(const FileDescriptor* d, const Options& options);
std::string Namespace(const Descriptor* d, const Options& options);
std::string Namespace(const FieldDescriptor* d, const Options& options);
std::string Namespace(const EnumDescriptor* d, const Options& options);
// Returns true if it's safe to reset "field" to zero.
bool CanInitializeByZeroing(const FieldDescriptor* field);
std::string ClassName(const Descriptor* descriptor);
std::string ClassName(const EnumDescriptor* enum_descriptor);
std::string QualifiedClassName(const Descriptor* d, const Options& options);
std::string QualifiedClassName(const EnumDescriptor* d, const Options& options);
std::string QualifiedClassName(const Descriptor* d);
std::string QualifiedClassName(const EnumDescriptor* d);
// DEPRECATED just use ClassName or QualifiedClassName, a boolean is very
// unreadable at the callsite.
// Returns the non-nested type name for the given type. If "qualified" is
// true, prefix the type with the full namespace. For example, if you had:
// package foo.bar;
// message Baz { message Qux {} }
// Then the qualified ClassName for Qux would be:
// ::foo::bar::Baz_Qux
// While the non-qualified version would be:
// Baz_Qux
inline std::string ClassName(const Descriptor* descriptor, bool qualified) {
return qualified ? QualifiedClassName(descriptor, Options())
: ClassName(descriptor);
}
inline std::string ClassName(const EnumDescriptor* descriptor, bool qualified) {
return qualified ? QualifiedClassName(descriptor, Options())
: ClassName(descriptor);
}
// Returns the extension name prefixed with the class name if nested but without
// the package name.
std::string ExtensionName(const FieldDescriptor* d);
std::string QualifiedExtensionName(const FieldDescriptor* d,
const Options& options);
std::string QualifiedExtensionName(const FieldDescriptor* d);
// Type name of default instance.
std::string DefaultInstanceType(const Descriptor* descriptor,
const Options& options);
// Non-qualified name of the default_instance of this message.
std::string DefaultInstanceName(const Descriptor* descriptor,
const Options& options);
// Non-qualified name of the default instance pointer. This is used only for
// implicit weak fields, where we need an extra indirection.
std::string DefaultInstancePtr(const Descriptor* descriptor,
const Options& options);
// Fully qualified name of the default_instance of this message.
std::string QualifiedDefaultInstanceName(const Descriptor* descriptor,
const Options& options);
// Fully qualified name of the default instance pointer.
std::string QualifiedDefaultInstancePtr(const Descriptor* descriptor,
const Options& options);
// DescriptorTable variable name.
std::string DescriptorTableName(const FileDescriptor* file,
const Options& options);
// When declaring symbol externs from another file, this macro will supply the
// dllexport needed for the target file, if any.
std::string FileDllExport(const FileDescriptor* file, const Options& options);
// Name of the base class: google::protobuf::Message or google::protobuf::MessageLite.
std::string SuperClassName(const Descriptor* descriptor,
const Options& options);
// Adds an underscore if necessary to prevent conflicting with a keyword.
std::string ResolveKeyword(const std::string& name);
// Get the (unqualified) name that should be used for this field in C++ code.
// The name is coerced to lower-case to emulate proto1 behavior. People
// should be using lowercase-with-underscores style for proto field names
// anyway, so normally this just returns field->name().
std::string FieldName(const FieldDescriptor* field);
// Returns an estimate of the compiler's alignment for the field. This
// can't guarantee to be correct because the generated code could be compiled on
// different systems with different alignment rules. The estimates below assume
// 64-bit pointers.
int EstimateAlignmentSize(const FieldDescriptor* field);
// Get the unqualified name that should be used for a field's field
// number constant.
std::string FieldConstantName(const FieldDescriptor* field);
// Returns the scope where the field was defined (for extensions, this is
// different from the message type to which the field applies).
inline const Descriptor* FieldScope(const FieldDescriptor* field) {
return field->is_extension() ? field->extension_scope()
: field->containing_type();
}
// Returns the fully-qualified type name field->message_type(). Usually this
// is just ClassName(field->message_type(), true);
std::string FieldMessageTypeName(const FieldDescriptor* field,
const Options& options);
// Get the C++ type name for a primitive type (e.g. "double", "::google::protobuf::int32", etc.).
const char* PrimitiveTypeName(FieldDescriptor::CppType type);
std::string PrimitiveTypeName(const Options& options,
FieldDescriptor::CppType type);
// Get the declared type name in CamelCase format, as is used e.g. for the
// methods of WireFormat. For example, TYPE_INT32 becomes "Int32".
const char* DeclaredTypeMethodName(FieldDescriptor::Type type);
// Return the code that evaluates to the number when compiled.
std::string Int32ToString(int number);
// Get code that evaluates to the field's default value.
std::string DefaultValue(const Options& options, const FieldDescriptor* field);
// Compatibility function for callers outside proto2.
std::string DefaultValue(const FieldDescriptor* field);
// Convert a file name into a valid identifier.
std::string FilenameIdentifier(const std::string& filename);
// For each .proto file generates a unique name. To prevent collisions of
// symbols in the global namespace
std::string UniqueName(const std::string& name, const std::string& filename,
const Options& options);
inline std::string UniqueName(const std::string& name, const FileDescriptor* d,
const Options& options) {
return UniqueName(name, d->name(), options);
}
inline std::string UniqueName(const std::string& name, const Descriptor* d,
const Options& options) {
return UniqueName(name, d->file(), options);
}
inline std::string UniqueName(const std::string& name, const EnumDescriptor* d,
const Options& options) {
return UniqueName(name, d->file(), options);
}
inline std::string UniqueName(const std::string& name,
const ServiceDescriptor* d,
const Options& options) {
return UniqueName(name, d->file(), options);
}
// Versions for call sites that only support the internal runtime (like proto1
// support).
inline Options InternalRuntimeOptions() {
Options options;
options.opensource_runtime = false;
return options;
}
inline std::string UniqueName(const std::string& name,
const std::string& filename) {
return UniqueName(name, filename, InternalRuntimeOptions());
}
inline std::string UniqueName(const std::string& name,
const FileDescriptor* d) {
return UniqueName(name, d->name(), InternalRuntimeOptions());
}
inline std::string UniqueName(const std::string& name, const Descriptor* d) {
return UniqueName(name, d->file(), InternalRuntimeOptions());
}
inline std::string UniqueName(const std::string& name,
const EnumDescriptor* d) {
return UniqueName(name, d->file(), InternalRuntimeOptions());
}
inline std::string UniqueName(const std::string& name,
const ServiceDescriptor* d) {
return UniqueName(name, d->file(), InternalRuntimeOptions());
}
// Return the qualified C++ name for a file level symbol.
std::string QualifiedFileLevelSymbol(const FileDescriptor* file,
const std::string& name,
const Options& options);
// Escape C++ trigraphs by escaping question marks to \?
std::string EscapeTrigraphs(const std::string& to_escape);
// Escaped function name to eliminate naming conflict.
std::string SafeFunctionName(const Descriptor* descriptor,
const FieldDescriptor* field,
const std::string& prefix);
// Returns true if generated messages have public unknown fields accessors
inline bool PublicUnknownFieldsAccessors(const Descriptor* message) {
return message->file()->syntax() != FileDescriptor::SYNTAX_PROTO3;
}
// Returns the optimize mode for <file>, respecting <options.enforce_lite>.
FileOptions_OptimizeMode GetOptimizeFor(const FileDescriptor* file,
const Options& options);
// Determines whether unknown fields will be stored in an UnknownFieldSet or
// a string.
inline bool UseUnknownFieldSet(const FileDescriptor* file,
const Options& options) {
return GetOptimizeFor(file, options) != FileOptions::LITE_RUNTIME;
}
inline bool IsWeak(const FieldDescriptor* field, const Options& options) {
if (field->options().weak()) {
GOOGLE_CHECK(!options.opensource_runtime);
return true;
}
return false;
}
bool IsStringInlined(const FieldDescriptor* descriptor, const Options& options);
// For a string field, returns the effective ctype. If the actual ctype is
// not supported, returns the default of STRING.
FieldOptions::CType EffectiveStringCType(const FieldDescriptor* field,
const Options& options);
inline bool IsCord(const FieldDescriptor* field, const Options& options) {
return field->cpp_type() == FieldDescriptor::CPPTYPE_STRING &&
EffectiveStringCType(field, options) == FieldOptions::CORD;
}
inline bool IsString(const FieldDescriptor* field, const Options& options) {
return field->cpp_type() == FieldDescriptor::CPPTYPE_STRING &&
EffectiveStringCType(field, options) == FieldOptions::STRING;
}
inline bool IsStringPiece(const FieldDescriptor* field,
const Options& options) {
return field->cpp_type() == FieldDescriptor::CPPTYPE_STRING &&
EffectiveStringCType(field, options) == FieldOptions::STRING_PIECE;
}
class MessageSCCAnalyzer;
// Does the given FileDescriptor use lazy fields?
bool HasLazyFields(const FileDescriptor* file, const Options& options,
MessageSCCAnalyzer* scc_analyzer);
// Is the given field a supported lazy field?
bool IsLazy(const FieldDescriptor* field, const Options& options,
MessageSCCAnalyzer* scc_analyzer);
inline bool IsLazilyVerifiedLazy(const FieldDescriptor* field,
const Options& options) {
return field->options().lazy() && !field->is_repeated() &&
field->type() == FieldDescriptor::TYPE_MESSAGE &&
GetOptimizeFor(field->file(), options) != FileOptions::LITE_RUNTIME &&
!options.opensource_runtime;
}
inline bool IsEagerlyVerifiedLazy(const FieldDescriptor* field,
const Options& options,
MessageSCCAnalyzer* scc_analyzer) {
return IsLazy(field, options, scc_analyzer) && !field->options().lazy();
}
inline bool IsFieldUsed(const FieldDescriptor* /* field */,
const Options& /* options */) {
return true;
}
// Returns true if "field" is stripped.
inline bool IsFieldStripped(const FieldDescriptor* /*field*/,
const Options& /*options*/) {
return false;
}
// Does the file contain any definitions that need extension_set.h?
bool HasExtensionsOrExtendableMessage(const FileDescriptor* file);
// Does the file have any repeated fields, necessitating the file to include
// repeated_field.h? This does not include repeated extensions, since those are
// all stored internally in an ExtensionSet, not a separate RepeatedField*.
bool HasRepeatedFields(const FileDescriptor* file);
// Does the file have any string/bytes fields with ctype=STRING_PIECE? This
// does not include extensions, since ctype is ignored for extensions.
bool HasStringPieceFields(const FileDescriptor* file, const Options& options);
// Does the file have any string/bytes fields with ctype=CORD? This does not
// include extensions, since ctype is ignored for extensions.
bool HasCordFields(const FileDescriptor* file, const Options& options);
// Does the file have any map fields, necessitating the file to include
// map_field_inl.h and map.h.
bool HasMapFields(const FileDescriptor* file);
// Does this file have any enum type definitions?
bool HasEnumDefinitions(const FileDescriptor* file);
// Does this file have generated parsing, serialization, and other
// standard methods for which reflection-based fallback implementations exist?
inline bool HasGeneratedMethods(const FileDescriptor* file,
const Options& options) {
return GetOptimizeFor(file, options) != FileOptions::CODE_SIZE;
}
// Do message classes in this file have descriptor and reflection methods?
inline bool HasDescriptorMethods(const FileDescriptor* file,
const Options& options) {
return GetOptimizeFor(file, options) != FileOptions::LITE_RUNTIME;
}
// Should we generate generic services for this file?
inline bool HasGenericServices(const FileDescriptor* file,
const Options& options) {
return file->service_count() > 0 &&
GetOptimizeFor(file, options) != FileOptions::LITE_RUNTIME &&
file->options().cc_generic_services();
}
inline bool IsProto2MessageSet(const Descriptor* descriptor,
const Options& options) {
return !options.opensource_runtime &&
options.enforce_mode != EnforceOptimizeMode::kLiteRuntime &&
!options.lite_implicit_weak_fields &&
descriptor->options().message_set_wire_format() &&
descriptor->full_name() == "google.protobuf.bridge.MessageSet";
}
inline bool IsMapEntryMessage(const Descriptor* descriptor) {
return descriptor->options().map_entry();
}
// Returns true if the field's CPPTYPE is string or message.
bool IsStringOrMessage(const FieldDescriptor* field);
std::string UnderscoresToCamelCase(const std::string& input,
bool cap_next_letter);
inline bool IsProto3(const FileDescriptor* file) {
return file->syntax() == FileDescriptor::SYNTAX_PROTO3;
}
inline bool HasHasbit(const FieldDescriptor* field) {
// This predicate includes proto3 message fields only if they have "optional".
// Foo submsg1 = 1; // HasHasbit() == false
// optional Foo submsg2 = 2; // HasHasbit() == true
// This is slightly odd, as adding "optional" to a singular proto3 field does
// not change the semantics or API. However whenever any field in a message
// has a hasbit, it forces reflection to include hasbit offsets for *all*
// fields, even if almost all of them are set to -1 (no hasbit). So to avoid
// causing a sudden size regression for ~all proto3 messages, we give proto3
// message fields a hasbit only if "optional" is present. If the user is
// explicitly writing "optional", it is likely they are writing it on
// primitive fields also.
return (field->has_optional_keyword() || field->is_required()) &&
!field->options().weak();
}
// Returns true if 'enum' semantics are such that unknown values are preserved
// in the enum field itself, rather than going to the UnknownFieldSet.
inline bool HasPreservingUnknownEnumSemantics(const FieldDescriptor* field) {
return field->file()->syntax() == FileDescriptor::SYNTAX_PROTO3;
}
inline bool IsCrossFileMessage(const FieldDescriptor* field) {
return field->type() == FieldDescriptor::TYPE_MESSAGE &&
field->message_type()->file() != field->file();
}
inline std::string MakeDefaultName(const FieldDescriptor* field) {
return "_i_give_permission_to_break_this_code_default_" + FieldName(field) +
"_";
}
bool IsAnyMessage(const FileDescriptor* descriptor, const Options& options);
bool IsAnyMessage(const Descriptor* descriptor, const Options& options);
bool IsWellKnownMessage(const FileDescriptor* descriptor);
inline std::string IncludeGuard(const FileDescriptor* file, bool pb_h,
const Options& options) {
// If we are generating a .pb.h file and the proto_h option is enabled, then
// the .pb.h gets an extra suffix.
std::string filename_identifier = FilenameIdentifier(
file->name() + (pb_h && options.proto_h ? ".pb.h" : ""));
if (IsWellKnownMessage(file)) {
// For well-known messages we need third_party/protobuf and net/proto2 to
// have distinct include guards, because some source files include both and
// both need to be defined (the third_party copies will be in the
// google::protobuf_opensource namespace).
return MacroPrefix(options) + "_INCLUDED_" + filename_identifier;
} else {
// Ideally this case would use distinct include guards for opensource and
// google3 protos also. (The behavior of "first #included wins" is not
// ideal). But unfortunately some legacy code includes both and depends on
// the identical include guards to avoid compile errors.
//
// We should clean this up so that this case can be removed.
return "GOOGLE_PROTOBUF_INCLUDED_" + filename_identifier;
}
}
// Returns the OptimizeMode for this file, furthermore it updates a status
// bool if has_opt_codesize_extension is non-null. If this status bool is true
// it means this file contains an extension that itself is defined as
// optimized_for = CODE_SIZE.
FileOptions_OptimizeMode GetOptimizeFor(const FileDescriptor* file,
const Options& options,
bool* has_opt_codesize_extension);
inline FileOptions_OptimizeMode GetOptimizeFor(const FileDescriptor* file,
const Options& options) {
return GetOptimizeFor(file, options, nullptr);
}
inline bool NeedsEagerDescriptorAssignment(const FileDescriptor* file,
const Options& options) {
bool has_opt_codesize_extension;
if (GetOptimizeFor(file, options, &has_opt_codesize_extension) ==
FileOptions::CODE_SIZE &&
has_opt_codesize_extension) {
// If this filedescriptor contains an extension from another file which
// is optimized_for = CODE_SIZE. We need to be careful in the ordering so
// we eagerly build the descriptors in the dependencies before building
// the descriptors of this file.
return true;
} else {
// If we have a generated code based parser we never need eager
// initialization of descriptors of our deps.
return false;
}
}
// This orders the messages in a .pb.cc as it's outputted by file.cc
void FlattenMessagesInFile(const FileDescriptor* file,
std::vector<const Descriptor*>* result);
inline std::vector<const Descriptor*> FlattenMessagesInFile(
const FileDescriptor* file) {
std::vector<const Descriptor*> result;
FlattenMessagesInFile(file, &result);
return result;
}
template <typename F>
void ForEachMessage(const Descriptor* descriptor, F&& func) {
for (int i = 0; i < descriptor->nested_type_count(); i++)
ForEachMessage(descriptor->nested_type(i), std::forward<F&&>(func));
func(descriptor);
}
template <typename F>
void ForEachMessage(const FileDescriptor* descriptor, F&& func) {
for (int i = 0; i < descriptor->message_type_count(); i++)
ForEachMessage(descriptor->message_type(i), std::forward<F&&>(func));
}
bool HasWeakFields(const Descriptor* desc, const Options& options);
bool HasWeakFields(const FileDescriptor* desc, const Options& options);
// Returns true if the "required" restriction check should be ignored for the
// given field.
inline static bool ShouldIgnoreRequiredFieldCheck(const FieldDescriptor* field,
const Options& options) {
// Do not check "required" for lazily verified lazy fields.
return IsLazilyVerifiedLazy(field, options);
}
struct MessageAnalysis {
bool is_recursive = false;
bool contains_cord = false;
bool contains_extension = false;
bool contains_required = false;
bool contains_weak = false; // Implicit weak as well.
};
// This class is used in FileGenerator, to ensure linear instead of
// quadratic performance, if we do this per message we would get O(V*(V+E)).
// Logically this is just only used in message.cc, but in the header for
// FileGenerator to help share it.
class PROTOC_EXPORT MessageSCCAnalyzer {
public:
explicit MessageSCCAnalyzer(const Options& options) : options_(options) {}
MessageAnalysis GetSCCAnalysis(const SCC* scc);
bool HasRequiredFields(const Descriptor* descriptor) {
MessageAnalysis result = GetSCCAnalysis(GetSCC(descriptor));
return result.contains_required || result.contains_extension;
}
bool HasWeakField(const Descriptor* descriptor) {
MessageAnalysis result = GetSCCAnalysis(GetSCC(descriptor));
return result.contains_weak;
}
const SCC* GetSCC(const Descriptor* descriptor) {
return analyzer_.GetSCC(descriptor);
}
private:
struct DepsGenerator {
std::vector<const Descriptor*> operator()(const Descriptor* desc) const {
std::vector<const Descriptor*> deps;
for (int i = 0; i < desc->field_count(); i++) {
if (desc->field(i)->message_type()) {
deps.push_back(desc->field(i)->message_type());
}
}
return deps;
}
};
SCCAnalyzer<DepsGenerator> analyzer_;
Options options_;
std::map<const SCC*, MessageAnalysis> analysis_cache_;
};
void ListAllFields(const Descriptor* d,
std::vector<const FieldDescriptor*>* fields);
void ListAllFields(const FileDescriptor* d,
std::vector<const FieldDescriptor*>* fields);
template <class T>
void ForEachField(const Descriptor* d, T&& func) {
for (int i = 0; i < d->nested_type_count(); i++) {
ForEachField(d->nested_type(i), std::forward<T&&>(func));
}
for (int i = 0; i < d->extension_count(); i++) {
func(d->extension(i));
}
for (int i = 0; i < d->field_count(); i++) {
func(d->field(i));
}
}
template <class T>
void ForEachField(const FileDescriptor* d, T&& func) {
for (int i = 0; i < d->message_type_count(); i++) {
ForEachField(d->message_type(i), std::forward<T&&>(func));
}
for (int i = 0; i < d->extension_count(); i++) {
func(d->extension(i));
}
}
void ListAllTypesForServices(const FileDescriptor* fd,
std::vector<const Descriptor*>* types);
// Indicates whether we should use implicit weak fields for this file.
bool UsingImplicitWeakFields(const FileDescriptor* file,
const Options& options);
// Indicates whether to treat this field as implicitly weak.
bool IsImplicitWeakField(const FieldDescriptor* field, const Options& options,
MessageSCCAnalyzer* scc_analyzer);
inline bool HasSimpleBaseClass(const Descriptor* desc, const Options& options) {
if (!HasDescriptorMethods(desc->file(), options)) return false;
if (desc->extension_range_count() != 0) return false;
if (desc->field_count() == 0) return true;
// TODO(jorg): Support additional common message types with only one
// or two fields
return false;
}
inline bool HasSimpleBaseClasses(const FileDescriptor* file,
const Options& options) {
bool v = false;
ForEachMessage(file, [&v, &options](const Descriptor* desc) {
v |= HasSimpleBaseClass(desc, options);
});
return v;
}
inline std::string SimpleBaseClass(const Descriptor* desc,
const Options& options) {
if (!HasDescriptorMethods(desc->file(), options)) return "";
if (desc->extension_range_count() != 0) return "";
if (desc->field_count() == 0) {
return "ZeroFieldsBase";
}
// TODO(jorg): Support additional common message types with only one
// or two fields
return "";
}
// Formatter is a functor class which acts as a closure around printer and
// the variable map. It's much like printer->Print except it supports both named
// variables that are substituted using a key value map and direct arguments. In
// the format string $1$, $2$, etc... are substituted for the first, second, ...
// direct argument respectively in the format call, it accepts both strings and
// integers. The implementation verifies all arguments are used and are "first"
// used in order of appearance in the argument list. For example,
//
// Format("return array[$1$];", 3) -> "return array[3];"
// Format("array[$2$] = $1$;", "Bla", 3) -> FATAL error (wrong order)
// Format("array[$1$] = $2$;", 3, "Bla") -> "array[3] = Bla;"
//
// The arguments can be used more than once like
//
// Format("array[$1$] = $2$; // Index = $1$", 3, "Bla") ->
// "array[3] = Bla; // Index = 3"
//
// If you use more arguments use the following style to help the reader,
//
// Format("int $1$() {\n"
// " array[$2$] = $3$;\n"
// " return $4$;"
// "}\n",
// funname, // 1
// idx, // 2
// varname, // 3
// retval); // 4
//
// but consider using named variables. Named variables like $foo$, with some
// identifier foo, are looked up in the map. One additional feature is that
// spaces are accepted between the '$' delimiters, $ foo$ will
// substiture to " bar" if foo stands for "bar", but in case it's empty
// will substitute to "". Hence, for example,
//
// Format(vars, "$dllexport $void fun();") -> "void fun();"
// "__declspec(export) void fun();"
//
// which is convenient to prevent double, leading or trailing spaces.
class PROTOC_EXPORT Formatter {
public:
explicit Formatter(io::Printer* printer) : printer_(printer) {}
Formatter(io::Printer* printer,
const std::map<std::string, std::string>& vars)
: printer_(printer), vars_(vars) {}
template <typename T>
void Set(const std::string& key, const T& value) {
vars_[key] = ToString(value);
}
void AddMap(const std::map<std::string, std::string>& vars) {
for (const auto& keyval : vars) vars_[keyval.first] = keyval.second;
}
template <typename... Args>
void operator()(const char* format, const Args&... args) const {
printer_->FormatInternal({ToString(args)...}, vars_, format);
}
void Indent() const { printer_->Indent(); }
void Outdent() const { printer_->Outdent(); }
io::Printer* printer() const { return printer_; }
class PROTOC_EXPORT ScopedIndenter {
public:
explicit ScopedIndenter(Formatter* format) : format_(format) {
format_->Indent();
}
~ScopedIndenter() { format_->Outdent(); }
private:
Formatter* format_;
};
PROTOBUF_NODISCARD ScopedIndenter ScopedIndent() {
return ScopedIndenter(this);
}
template <typename... Args>
PROTOBUF_NODISCARD ScopedIndenter ScopedIndent(const char* format,
const Args&&... args) {
(*this)(format, static_cast<Args&&>(args)...);
return ScopedIndenter(this);
}
class PROTOC_EXPORT SaveState {
public:
explicit SaveState(Formatter* format)
: format_(format), vars_(format->vars_) {}
~SaveState() { format_->vars_.swap(vars_); }
private:
Formatter* format_;
std::map<std::string, std::string> vars_;
};
private:
io::Printer* printer_;
std::map<std::string, std::string> vars_;
// Convenience overloads to accept different types as arguments.
static std::string ToString(const std::string& s) { return s; }
template <typename I, typename = typename std::enable_if<
std::is_integral<I>::value>::type>
static std::string ToString(I x) {
return StrCat(x);
}
static std::string ToString(strings::Hex x) { return StrCat(x); }
static std::string ToString(const FieldDescriptor* d) { return Payload(d); }
static std::string ToString(const Descriptor* d) { return Payload(d); }
static std::string ToString(const EnumDescriptor* d) { return Payload(d); }
static std::string ToString(const EnumValueDescriptor* d) {
return Payload(d);
}
static std::string ToString(const OneofDescriptor* d) { return Payload(d); }
template <typename Descriptor>
static std::string Payload(const Descriptor* descriptor) {
std::vector<int> path;
descriptor->GetLocationPath(&path);
GeneratedCodeInfo::Annotation annotation;
for (int index : path) {
annotation.add_path(index);
}
annotation.set_source_file(descriptor->file()->name());
return annotation.SerializeAsString();
}
};
template <class T>
void PrintFieldComment(const Formatter& format, const T* field) {
// Print the field's (or oneof's) proto-syntax definition as a comment.
// We don't want to print group bodies so we cut off after the first
// line.
DebugStringOptions options;
options.elide_group_body = true;
options.elide_oneof_body = true;
std::string def = field->DebugStringWithOptions(options);
format("// $1$\n", def.substr(0, def.find_first_of('\n')));
}
class PROTOC_EXPORT NamespaceOpener {
public:
explicit NamespaceOpener(const Formatter& format)
: printer_(format.printer()) {}
NamespaceOpener(const std::string& name, const Formatter& format)
: NamespaceOpener(format) {
ChangeTo(name);
}
~NamespaceOpener() { ChangeTo(""); }
void ChangeTo(const std::string& name) {
std::vector<std::string> new_stack_ =
Split(name, "::", true);
size_t len = std::min(name_stack_.size(), new_stack_.size());
size_t common_idx = 0;
while (common_idx < len) {
if (name_stack_[common_idx] != new_stack_[common_idx]) break;
common_idx++;
}
for (auto it = name_stack_.crbegin();
it != name_stack_.crend() - common_idx; ++it) {
if (*it == "PROTOBUF_NAMESPACE_ID") {
printer_->Print("PROTOBUF_NAMESPACE_CLOSE\n");
} else {
printer_->Print("} // namespace $ns$\n", "ns", *it);
}
}
name_stack_.swap(new_stack_);
for (size_t i = common_idx; i < name_stack_.size(); ++i) {
if (name_stack_[i] == "PROTOBUF_NAMESPACE_ID") {
printer_->Print("PROTOBUF_NAMESPACE_OPEN\n");
} else {
printer_->Print("namespace $ns$ {\n", "ns", name_stack_[i]);
}
}
}
private:
io::Printer* printer_;
std::vector<std::string> name_stack_;
};
enum class Utf8CheckMode {
kStrict = 0, // Parsing will fail if non UTF-8 data is in string fields.
kVerify = 1, // Only log an error but parsing will succeed.
kNone = 2, // No UTF-8 check.
};
Utf8CheckMode GetUtf8CheckMode(const FieldDescriptor* field,
const Options& options);
void GenerateUtf8CheckCodeForString(const FieldDescriptor* field,
const Options& options, bool for_parse,
const char* parameters,
const Formatter& format);
void GenerateUtf8CheckCodeForCord(const FieldDescriptor* field,
const Options& options, bool for_parse,
const char* parameters,
const Formatter& format);
template <typename T>
struct FieldRangeImpl {
struct Iterator {
using iterator_category = std::forward_iterator_tag;
using value_type = const FieldDescriptor*;
using difference_type = int;
value_type operator*() { return descriptor->field(idx); }
friend bool operator==(const Iterator& a, const Iterator& b) {
GOOGLE_DCHECK(a.descriptor == b.descriptor);
return a.idx == b.idx;
}
friend bool operator!=(const Iterator& a, const Iterator& b) {
return !(a == b);
}
Iterator& operator++() {
idx++;
return *this;
}
int idx;
const T* descriptor;
};
Iterator begin() const { return {0, descriptor}; }
Iterator end() const { return {descriptor->field_count(), descriptor}; }
const T* descriptor;
};
template <typename T>
FieldRangeImpl<T> FieldRange(const T* desc) {
return {desc};
}
struct OneOfRangeImpl {
struct Iterator {
using iterator_category = std::forward_iterator_tag;
using value_type = const OneofDescriptor*;
using difference_type = int;
value_type operator*() { return descriptor->oneof_decl(idx); }
friend bool operator==(const Iterator& a, const Iterator& b) {
GOOGLE_DCHECK(a.descriptor == b.descriptor);
return a.idx == b.idx;
}
friend bool operator!=(const Iterator& a, const Iterator& b) {
return !(a == b);
}
Iterator& operator++() {
idx++;
return *this;
}
int idx;
const Descriptor* descriptor;
};
Iterator begin() const { return {0, descriptor}; }
Iterator end() const {
return {descriptor->real_oneof_decl_count(), descriptor};
}
const Descriptor* descriptor;
};
inline OneOfRangeImpl OneOfRange(const Descriptor* desc) { return {desc}; }
PROTOC_EXPORT std::string StripProto(const std::string& filename);
bool EnableMessageOwnedArena(const Descriptor* desc);
bool ShouldVerify(const Descriptor* descriptor, const Options& options,
MessageSCCAnalyzer* scc_analyzer);
bool ShouldVerify(const FileDescriptor* file, const Options& options,
MessageSCCAnalyzer* scc_analyzer);
} // namespace cpp
} // namespace compiler
} // namespace protobuf
} // namespace google
#include <port_undef.inc>
#endif // GOOGLE_PROTOBUF_COMPILER_CPP_HELPERS_H__
|