// Protocol Buffers - Google's data interchange format // Copyright 2008 Google Inc. All rights reserved. // https://developers.google.com/protocol-buffers/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Author: kenton@google.com (Kenton Varda) // Based on original Protocol Buffers design by // Sanjay Ghemawat, Jeff Dean, and others. #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include const size_t kMapEntryTagByteSize = 2; namespace google { namespace protobuf { namespace internal { // Forward declare static functions static size_t MapValueRefDataOnlyByteSize(const FieldDescriptor* field, const MapValueConstRef& value); // =================================================================== bool UnknownFieldSetFieldSkipper::SkipField(io::CodedInputStream* input, uint32_t tag) { return WireFormat::SkipField(input, tag, unknown_fields_); } bool UnknownFieldSetFieldSkipper::SkipMessage(io::CodedInputStream* input) { return WireFormat::SkipMessage(input, unknown_fields_); } void UnknownFieldSetFieldSkipper::SkipUnknownEnum(int field_number, int value) { unknown_fields_->AddVarint(field_number, value); } bool WireFormat::SkipField(io::CodedInputStream* input, uint32_t tag, UnknownFieldSet* unknown_fields) { int number = WireFormatLite::GetTagFieldNumber(tag); // Field number 0 is illegal. if (number == 0) return false; switch (WireFormatLite::GetTagWireType(tag)) { case WireFormatLite::WIRETYPE_VARINT: { uint64_t value; if (!input->ReadVarint64(&value)) return false; if (unknown_fields != nullptr) unknown_fields->AddVarint(number, value); return true; } case WireFormatLite::WIRETYPE_FIXED64: { uint64_t value; if (!input->ReadLittleEndian64(&value)) return false; if (unknown_fields != nullptr) unknown_fields->AddFixed64(number, value); return true; } case WireFormatLite::WIRETYPE_LENGTH_DELIMITED: { uint32_t length; if (!input->ReadVarint32(&length)) return false; if (unknown_fields == nullptr) { if (!input->Skip(length)) return false; } else { if (!input->ReadString(unknown_fields->AddLengthDelimited(number), length)) { return false; } } return true; } case WireFormatLite::WIRETYPE_START_GROUP: { if (!input->IncrementRecursionDepth()) return false; if (!SkipMessage(input, (unknown_fields == nullptr) ? nullptr : unknown_fields->AddGroup(number))) { return false; } input->DecrementRecursionDepth(); // Check that the ending tag matched the starting tag. if (!input->LastTagWas( WireFormatLite::MakeTag(WireFormatLite::GetTagFieldNumber(tag), WireFormatLite::WIRETYPE_END_GROUP))) { return false; } return true; } case WireFormatLite::WIRETYPE_END_GROUP: { return false; } case WireFormatLite::WIRETYPE_FIXED32: { uint32_t value; if (!input->ReadLittleEndian32(&value)) return false; if (unknown_fields != nullptr) unknown_fields->AddFixed32(number, value); return true; } default: { return false; } } } bool WireFormat::SkipMessage(io::CodedInputStream* input, UnknownFieldSet* unknown_fields) { while (true) { uint32_t tag = input->ReadTag(); if (tag == 0) { // End of input. This is a valid place to end, so return true. return true; } WireFormatLite::WireType wire_type = WireFormatLite::GetTagWireType(tag); if (wire_type == WireFormatLite::WIRETYPE_END_GROUP) { // Must be the end of the message. return true; } if (!SkipField(input, tag, unknown_fields)) return false; } } bool WireFormat::ReadPackedEnumPreserveUnknowns(io::CodedInputStream* input, uint32_t field_number, bool (*is_valid)(int), UnknownFieldSet* unknown_fields, RepeatedField* values) { uint32_t length; if (!input->ReadVarint32(&length)) return false; io::CodedInputStream::Limit limit = input->PushLimit(length); while (input->BytesUntilLimit() > 0) { int value; if (!WireFormatLite::ReadPrimitive( input, &value)) { return false; } if (is_valid == nullptr || is_valid(value)) { values->Add(value); } else { unknown_fields->AddVarint(field_number, value); } } input->PopLimit(limit); return true; } uint8_t* WireFormat::InternalSerializeUnknownFieldsToArray( const UnknownFieldSet& unknown_fields, uint8_t* target, io::EpsCopyOutputStream* stream) { for (int i = 0; i < unknown_fields.field_count(); i++) { const UnknownField& field = unknown_fields.field(i); target = stream->EnsureSpace(target); switch (field.type()) { case UnknownField::TYPE_VARINT: target = WireFormatLite::WriteUInt64ToArray(field.number(), field.varint(), target); break; case UnknownField::TYPE_FIXED32: target = WireFormatLite::WriteFixed32ToArray(field.number(), field.fixed32(), target); break; case UnknownField::TYPE_FIXED64: target = WireFormatLite::WriteFixed64ToArray(field.number(), field.fixed64(), target); break; case UnknownField::TYPE_LENGTH_DELIMITED: target = stream->WriteString(field.number(), field.length_delimited(), target); break; case UnknownField::TYPE_GROUP: target = WireFormatLite::WriteTagToArray( field.number(), WireFormatLite::WIRETYPE_START_GROUP, target); target = InternalSerializeUnknownFieldsToArray(field.group(), target, stream); target = stream->EnsureSpace(target); target = WireFormatLite::WriteTagToArray( field.number(), WireFormatLite::WIRETYPE_END_GROUP, target); break; } } return target; } uint8_t* WireFormat::InternalSerializeUnknownMessageSetItemsToArray( const UnknownFieldSet& unknown_fields, uint8_t* target, io::EpsCopyOutputStream* stream) { for (int i = 0; i < unknown_fields.field_count(); i++) { const UnknownField& field = unknown_fields.field(i); // The only unknown fields that are allowed to exist in a MessageSet are // messages, which are length-delimited. if (field.type() == UnknownField::TYPE_LENGTH_DELIMITED) { target = stream->EnsureSpace(target); // Start group. target = io::CodedOutputStream::WriteTagToArray( WireFormatLite::kMessageSetItemStartTag, target); // Write type ID. target = io::CodedOutputStream::WriteTagToArray( WireFormatLite::kMessageSetTypeIdTag, target); target = io::CodedOutputStream::WriteVarint32ToArray(field.number(), target); // Write message. target = io::CodedOutputStream::WriteTagToArray( WireFormatLite::kMessageSetMessageTag, target); target = field.InternalSerializeLengthDelimitedNoTag(target, stream); target = stream->EnsureSpace(target); // End group. target = io::CodedOutputStream::WriteTagToArray( WireFormatLite::kMessageSetItemEndTag, target); } } return target; } size_t WireFormat::ComputeUnknownFieldsSize( const UnknownFieldSet& unknown_fields) { size_t size = 0; for (int i = 0; i < unknown_fields.field_count(); i++) { const UnknownField& field = unknown_fields.field(i); switch (field.type()) { case UnknownField::TYPE_VARINT: size += io::CodedOutputStream::VarintSize32(WireFormatLite::MakeTag( field.number(), WireFormatLite::WIRETYPE_VARINT)); size += io::CodedOutputStream::VarintSize64(field.varint()); break; case UnknownField::TYPE_FIXED32: size += io::CodedOutputStream::VarintSize32(WireFormatLite::MakeTag( field.number(), WireFormatLite::WIRETYPE_FIXED32)); size += sizeof(int32_t); break; case UnknownField::TYPE_FIXED64: size += io::CodedOutputStream::VarintSize32(WireFormatLite::MakeTag( field.number(), WireFormatLite::WIRETYPE_FIXED64)); size += sizeof(int64_t); break; case UnknownField::TYPE_LENGTH_DELIMITED: size += io::CodedOutputStream::VarintSize32(WireFormatLite::MakeTag( field.number(), WireFormatLite::WIRETYPE_LENGTH_DELIMITED)); size += io::CodedOutputStream::VarintSize32( field.length_delimited().size()); size += field.length_delimited().size(); break; case UnknownField::TYPE_GROUP: size += io::CodedOutputStream::VarintSize32(WireFormatLite::MakeTag( field.number(), WireFormatLite::WIRETYPE_START_GROUP)); size += ComputeUnknownFieldsSize(field.group()); size += io::CodedOutputStream::VarintSize32(WireFormatLite::MakeTag( field.number(), WireFormatLite::WIRETYPE_END_GROUP)); break; } } return size; } size_t WireFormat::ComputeUnknownMessageSetItemsSize( const UnknownFieldSet& unknown_fields) { size_t size = 0; for (int i = 0; i < unknown_fields.field_count(); i++) { const UnknownField& field = unknown_fields.field(i); // The only unknown fields that are allowed to exist in a MessageSet are // messages, which are length-delimited. if (field.type() == UnknownField::TYPE_LENGTH_DELIMITED) { size += WireFormatLite::kMessageSetItemTagsSize; size += io::CodedOutputStream::VarintSize32(field.number()); int field_size = field.GetLengthDelimitedSize(); size += io::CodedOutputStream::VarintSize32(field_size); size += field_size; } } return size; } // =================================================================== bool WireFormat::ParseAndMergePartial(io::CodedInputStream* input, Message* message) { const Descriptor* descriptor = message->GetDescriptor(); const Reflection* message_reflection = message->GetReflection(); while (true) { uint32_t tag = input->ReadTag(); if (tag == 0) { // End of input. This is a valid place to end, so return true. return true; } if (WireFormatLite::GetTagWireType(tag) == WireFormatLite::WIRETYPE_END_GROUP) { // Must be the end of the message. return true; } const FieldDescriptor* field = nullptr; if (descriptor != nullptr) { int field_number = WireFormatLite::GetTagFieldNumber(tag); field = descriptor->FindFieldByNumber(field_number); // If that failed, check if the field is an extension. if (field == nullptr && descriptor->IsExtensionNumber(field_number)) { if (input->GetExtensionPool() == nullptr) { field = message_reflection->FindKnownExtensionByNumber(field_number); } else { field = input->GetExtensionPool()->FindExtensionByNumber( descriptor, field_number); } } // If that failed, but we're a MessageSet, and this is the tag for a // MessageSet item, then parse that. if (field == nullptr && descriptor->options().message_set_wire_format() && tag == WireFormatLite::kMessageSetItemStartTag) { if (!ParseAndMergeMessageSetItem(input, message)) { return false; } continue; // Skip ParseAndMergeField(); already taken care of. } } if (!ParseAndMergeField(tag, field, message, input)) { return false; } } } bool WireFormat::SkipMessageSetField(io::CodedInputStream* input, uint32_t field_number, UnknownFieldSet* unknown_fields) { uint32_t length; if (!input->ReadVarint32(&length)) return false; return input->ReadString(unknown_fields->AddLengthDelimited(field_number), length); } bool WireFormat::ParseAndMergeMessageSetField(uint32_t field_number, const FieldDescriptor* field, Message* message, io::CodedInputStream* input) { const Reflection* message_reflection = message->GetReflection(); if (field == nullptr) { // We store unknown MessageSet extensions as groups. return SkipMessageSetField( input, field_number, message_reflection->MutableUnknownFields(message)); } else if (field->is_repeated() || field->type() != FieldDescriptor::TYPE_MESSAGE) { // This shouldn't happen as we only allow optional message extensions to // MessageSet. GOOGLE_LOG(ERROR) << "Extensions of MessageSets must be optional messages."; return false; } else { Message* sub_message = message_reflection->MutableMessage( message, field, input->GetExtensionFactory()); return WireFormatLite::ReadMessage(input, sub_message); } } static bool StrictUtf8Check(const FieldDescriptor* field) { return field->file()->syntax() == FileDescriptor::SYNTAX_PROTO3; } bool WireFormat::ParseAndMergeField( uint32_t tag, const FieldDescriptor* field, // May be nullptr for unknown Message* message, io::CodedInputStream* input) { const Reflection* message_reflection = message->GetReflection(); enum { UNKNOWN, NORMAL_FORMAT, PACKED_FORMAT } value_format; if (field == nullptr) { value_format = UNKNOWN; } else if (WireFormatLite::GetTagWireType(tag) == WireTypeForFieldType(field->type())) { value_format = NORMAL_FORMAT; } else if (field->is_packable() && WireFormatLite::GetTagWireType(tag) == WireFormatLite::WIRETYPE_LENGTH_DELIMITED) { value_format = PACKED_FORMAT; } else { // We don't recognize this field. Either the field number is unknown // or the wire type doesn't match. Put it in our unknown field set. value_format = UNKNOWN; } if (value_format == UNKNOWN) { return SkipField(input, tag, message_reflection->MutableUnknownFields(message)); } else if (value_format == PACKED_FORMAT) { uint32_t length; if (!input->ReadVarint32(&length)) return false; io::CodedInputStream::Limit limit = input->PushLimit(length); switch (field->type()) { #define HANDLE_PACKED_TYPE(TYPE, CPPTYPE, CPPTYPE_METHOD) \ case FieldDescriptor::TYPE_##TYPE: { \ while (input->BytesUntilLimit() > 0) { \ CPPTYPE value; \ if (!WireFormatLite::ReadPrimitive(input, \ &value)) \ return false; \ message_reflection->Add##CPPTYPE_METHOD(message, field, value); \ } \ break; \ } HANDLE_PACKED_TYPE(INT32, int32_t, Int32) HANDLE_PACKED_TYPE(INT64, int64_t, Int64) HANDLE_PACKED_TYPE(SINT32, int32_t, Int32) HANDLE_PACKED_TYPE(SINT64, int64_t, Int64) HANDLE_PACKED_TYPE(UINT32, uint32_t, UInt32) HANDLE_PACKED_TYPE(UINT64, uint64_t, UInt64) HANDLE_PACKED_TYPE(FIXED32, uint32_t, UInt32) HANDLE_PACKED_TYPE(FIXED64, uint64_t, UInt64) HANDLE_PACKED_TYPE(SFIXED32, int32_t, Int32) HANDLE_PACKED_TYPE(SFIXED64, int64_t, Int64) HANDLE_PACKED_TYPE(FLOAT, float, Float) HANDLE_PACKED_TYPE(DOUBLE, double, Double) HANDLE_PACKED_TYPE(BOOL, bool, Bool) #undef HANDLE_PACKED_TYPE case FieldDescriptor::TYPE_ENUM: { while (input->BytesUntilLimit() > 0) { int value; if (!WireFormatLite::ReadPrimitive( input, &value)) return false; if (message->GetDescriptor()->file()->syntax() == FileDescriptor::SYNTAX_PROTO3) { message_reflection->AddEnumValue(message, field, value); } else { const EnumValueDescriptor* enum_value = field->enum_type()->FindValueByNumber(value); if (enum_value != nullptr) { message_reflection->AddEnum(message, field, enum_value); } else { // The enum value is not one of the known values. Add it to the // UnknownFieldSet. int64_t sign_extended_value = static_cast(value); message_reflection->MutableUnknownFields(message)->AddVarint( WireFormatLite::GetTagFieldNumber(tag), sign_extended_value); } } } break; } case FieldDescriptor::TYPE_STRING: case FieldDescriptor::TYPE_GROUP: case FieldDescriptor::TYPE_MESSAGE: case FieldDescriptor::TYPE_BYTES: // Can't have packed fields of these types: these should be caught by // the protocol compiler. return false; break; } input->PopLimit(limit); } else { // Non-packed value (value_format == NORMAL_FORMAT) switch (field->type()) { #define HANDLE_TYPE(TYPE, CPPTYPE, CPPTYPE_METHOD) \ case FieldDescriptor::TYPE_##TYPE: { \ CPPTYPE value; \ if (!WireFormatLite::ReadPrimitive( \ input, &value)) \ return false; \ if (field->is_repeated()) { \ message_reflection->Add##CPPTYPE_METHOD(message, field, value); \ } else { \ message_reflection->Set##CPPTYPE_METHOD(message, field, value); \ } \ break; \ } HANDLE_TYPE(INT32, int32_t, Int32) HANDLE_TYPE(INT64, int64_t, Int64) HANDLE_TYPE(SINT32, int32_t, Int32) HANDLE_TYPE(SINT64, int64_t, Int64) HANDLE_TYPE(UINT32, uint32_t, UInt32) HANDLE_TYPE(UINT64, uint64_t, UInt64) HANDLE_TYPE(FIXED32, uint32_t, UInt32) HANDLE_TYPE(FIXED64, uint64_t, UInt64) HANDLE_TYPE(SFIXED32, int32_t, Int32) HANDLE_TYPE(SFIXED64, int64_t, Int64) HANDLE_TYPE(FLOAT, float, Float) HANDLE_TYPE(DOUBLE, double, Double) HANDLE_TYPE(BOOL, bool, Bool) #undef HANDLE_TYPE case FieldDescriptor::TYPE_ENUM: { int value; if (!WireFormatLite::ReadPrimitive( input, &value)) return false; if (field->is_repeated()) { message_reflection->AddEnumValue(message, field, value); } else { message_reflection->SetEnumValue(message, field, value); } break; } // Handle strings separately so that we can optimize the ctype=CORD case. case FieldDescriptor::TYPE_STRING: { bool strict_utf8_check = StrictUtf8Check(field); std::string value; if (!WireFormatLite::ReadString(input, &value)) return false; if (strict_utf8_check) { if (!WireFormatLite::VerifyUtf8String(value.data(), value.length(), WireFormatLite::PARSE, field->full_name().c_str())) { return false; } } else { VerifyUTF8StringNamedField(value.data(), value.length(), PARSE, field->full_name().c_str()); } if (field->is_repeated()) { message_reflection->AddString(message, field, value); } else { message_reflection->SetString(message, field, value); } break; } case FieldDescriptor::TYPE_BYTES: { std::string value; if (!WireFormatLite::ReadBytes(input, &value)) return false; if (field->is_repeated()) { message_reflection->AddString(message, field, value); } else { message_reflection->SetString(message, field, value); } break; } case FieldDescriptor::TYPE_GROUP: { Message* sub_message; if (field->is_repeated()) { sub_message = message_reflection->AddMessage( message, field, input->GetExtensionFactory()); } else { sub_message = message_reflection->MutableMessage( message, field, input->GetExtensionFactory()); } if (!WireFormatLite::ReadGroup(WireFormatLite::GetTagFieldNumber(tag), input, sub_message)) return false; break; } case FieldDescriptor::TYPE_MESSAGE: { Message* sub_message; if (field->is_repeated()) { sub_message = message_reflection->AddMessage( message, field, input->GetExtensionFactory()); } else { sub_message = message_reflection->MutableMessage( message, field, input->GetExtensionFactory()); } if (!WireFormatLite::ReadMessage(input, sub_message)) return false; break; } } } return true; } bool WireFormat::ParseAndMergeMessageSetItem(io::CodedInputStream* input, Message* message) { struct MSReflective { bool ParseField(int type_id, io::CodedInputStream* input) { const FieldDescriptor* field = message_reflection->FindKnownExtensionByNumber(type_id); return ParseAndMergeMessageSetField(type_id, field, message, input); } bool SkipField(uint32_t tag, io::CodedInputStream* input) { return WireFormat::SkipField(input, tag, nullptr); } const Reflection* message_reflection; Message* message; }; return ParseMessageSetItemImpl( input, MSReflective{message->GetReflection(), message}); } struct WireFormat::MessageSetParser { const char* _InternalParse(const char* ptr, internal::ParseContext* ctx) { // Parse a MessageSetItem auto metadata = reflection->MutableInternalMetadata(msg); std::string payload; uint32_t type_id = 0; bool payload_read = false; while (!ctx->Done(&ptr)) { // We use 64 bit tags in order to allow typeid's that span the whole // range of 32 bit numbers. uint32_t tag = static_cast(*ptr++); if (tag == WireFormatLite::kMessageSetTypeIdTag) { uint64_t tmp; ptr = ParseBigVarint(ptr, &tmp); GOOGLE_PROTOBUF_PARSER_ASSERT(ptr); type_id = tmp; if (payload_read) { const FieldDescriptor* field; if (ctx->data().pool == nullptr) { field = reflection->FindKnownExtensionByNumber(type_id); } else { field = ctx->data().pool->FindExtensionByNumber(descriptor, type_id); } if (field == nullptr || field->message_type() == nullptr) { WriteLengthDelimited( type_id, payload, metadata->mutable_unknown_fields()); } else { Message* value = field->is_repeated() ? reflection->AddMessage(msg, field, ctx->data().factory) : reflection->MutableMessage(msg, field, ctx->data().factory); const char* p; // We can't use regular parse from string as we have to track // proper recursion depth and descriptor pools. ParseContext tmp_ctx(ctx->depth(), false, &p, payload); tmp_ctx.data().pool = ctx->data().pool; tmp_ctx.data().factory = ctx->data().factory; GOOGLE_PROTOBUF_PARSER_ASSERT(value->_InternalParse(p, &tmp_ctx) && tmp_ctx.EndedAtLimit()); } type_id = 0; } continue; } else if (tag == WireFormatLite::kMessageSetMessageTag) { if (type_id == 0) { int32_t size = ReadSize(&ptr); GOOGLE_PROTOBUF_PARSER_ASSERT(ptr); ptr = ctx->ReadString(ptr, size, &payload); GOOGLE_PROTOBUF_PARSER_ASSERT(ptr); payload_read = true; } else { // We're now parsing the payload const FieldDescriptor* field = nullptr; if (descriptor->IsExtensionNumber(type_id)) { if (ctx->data().pool == nullptr) { field = reflection->FindKnownExtensionByNumber(type_id); } else { field = ctx->data().pool->FindExtensionByNumber(descriptor, type_id); } } ptr = WireFormat::_InternalParseAndMergeField( msg, ptr, ctx, static_cast(type_id) * 8 + 2, reflection, field); type_id = 0; } } else { // An unknown field in MessageSetItem. ptr = ReadTag(ptr - 1, &tag); if (tag == 0 || (tag & 7) == WireFormatLite::WIRETYPE_END_GROUP) { ctx->SetLastTag(tag); return ptr; } // Skip field. ptr = internal::UnknownFieldParse( tag, static_cast(nullptr), ptr, ctx); } GOOGLE_PROTOBUF_PARSER_ASSERT(ptr); } return ptr; } const char* ParseMessageSet(const char* ptr, internal::ParseContext* ctx) { while (!ctx->Done(&ptr)) { uint32_t tag; ptr = ReadTag(ptr, &tag); if (PROTOBUF_PREDICT_FALSE(ptr == nullptr)) return nullptr; if (tag == 0 || (tag & 7) == WireFormatLite::WIRETYPE_END_GROUP) { ctx->SetLastTag(tag); break; } if (tag == WireFormatLite::kMessageSetItemStartTag) { // A message set item starts ptr = ctx->ParseGroup(this, ptr, tag); } else { // Parse other fields as normal extensions. int field_number = WireFormatLite::GetTagFieldNumber(tag); const FieldDescriptor* field = nullptr; if (descriptor->IsExtensionNumber(field_number)) { if (ctx->data().pool == nullptr) { field = reflection->FindKnownExtensionByNumber(field_number); } else { field = ctx->data().pool->FindExtensionByNumber(descriptor, field_number); } } ptr = WireFormat::_InternalParseAndMergeField(msg, ptr, ctx, tag, reflection, field); } if (PROTOBUF_PREDICT_FALSE(ptr == nullptr)) return nullptr; } return ptr; } Message* msg; const Descriptor* descriptor; const Reflection* reflection; }; const char* WireFormat::_InternalParse(Message* msg, const char* ptr, internal::ParseContext* ctx) { const Descriptor* descriptor = msg->GetDescriptor(); const Reflection* reflection = msg->GetReflection(); GOOGLE_DCHECK(descriptor); GOOGLE_DCHECK(reflection); if (descriptor->options().message_set_wire_format()) { MessageSetParser message_set{msg, descriptor, reflection}; return message_set.ParseMessageSet(ptr, ctx); } while (!ctx->Done(&ptr)) { uint32_t tag; ptr = ReadTag(ptr, &tag); if (PROTOBUF_PREDICT_FALSE(ptr == nullptr)) return nullptr; if (tag == 0 || (tag & 7) == WireFormatLite::WIRETYPE_END_GROUP) { ctx->SetLastTag(tag); break; } const FieldDescriptor* field = nullptr; int field_number = WireFormatLite::GetTagFieldNumber(tag); field = descriptor->FindFieldByNumber(field_number); // If that failed, check if the field is an extension. if (field == nullptr && descriptor->IsExtensionNumber(field_number)) { if (ctx->data().pool == nullptr) { field = reflection->FindKnownExtensionByNumber(field_number); } else { field = ctx->data().pool->FindExtensionByNumber(descriptor, field_number); } } ptr = _InternalParseAndMergeField(msg, ptr, ctx, tag, reflection, field); if (PROTOBUF_PREDICT_FALSE(ptr == nullptr)) return nullptr; } return ptr; } const char* WireFormat::_InternalParseAndMergeField( Message* msg, const char* ptr, internal::ParseContext* ctx, uint64_t tag, const Reflection* reflection, const FieldDescriptor* field) { if (field == nullptr) { // unknown field set parser takes 64bit tags, because message set type ids // span the full 32 bit range making the tag span [0, 2^35) range. return internal::UnknownFieldParse( tag, reflection->MutableUnknownFields(msg), ptr, ctx); } if (WireFormatLite::GetTagWireType(tag) != WireTypeForFieldType(field->type())) { if (field->is_packable() && WireFormatLite::GetTagWireType(tag) == WireFormatLite::WIRETYPE_LENGTH_DELIMITED) { switch (field->type()) { #define HANDLE_PACKED_TYPE(TYPE, CPPTYPE, CPPTYPE_METHOD) \ case FieldDescriptor::TYPE_##TYPE: { \ ptr = internal::Packed##CPPTYPE_METHOD##Parser( \ reflection->MutableRepeatedFieldInternal(msg, field), ptr, \ ctx); \ return ptr; \ } HANDLE_PACKED_TYPE(INT32, int32_t, Int32) HANDLE_PACKED_TYPE(INT64, int64_t, Int64) HANDLE_PACKED_TYPE(SINT32, int32_t, SInt32) HANDLE_PACKED_TYPE(SINT64, int64_t, SInt64) HANDLE_PACKED_TYPE(UINT32, uint32_t, UInt32) HANDLE_PACKED_TYPE(UINT64, uint64_t, UInt64) HANDLE_PACKED_TYPE(FIXED32, uint32_t, Fixed32) HANDLE_PACKED_TYPE(FIXED64, uint64_t, Fixed64) HANDLE_PACKED_TYPE(SFIXED32, int32_t, SFixed32) HANDLE_PACKED_TYPE(SFIXED64, int64_t, SFixed64) HANDLE_PACKED_TYPE(FLOAT, float, Float) HANDLE_PACKED_TYPE(DOUBLE, double, Double) HANDLE_PACKED_TYPE(BOOL, bool, Bool) #undef HANDLE_PACKED_TYPE case FieldDescriptor::TYPE_ENUM: { auto rep_enum = reflection->MutableRepeatedFieldInternal(msg, field); bool open_enum = false; if (field->file()->syntax() == FileDescriptor::SYNTAX_PROTO3 || open_enum) { ptr = internal::PackedEnumParser(rep_enum, ptr, ctx); } else { return ctx->ReadPackedVarint( ptr, [rep_enum, field, reflection, msg](uint64_t val) { if (field->enum_type()->FindValueByNumber(val) != nullptr) { rep_enum->Add(val); } else { WriteVarint(field->number(), val, reflection->MutableUnknownFields(msg)); } }); } return ptr; } case FieldDescriptor::TYPE_STRING: case FieldDescriptor::TYPE_GROUP: case FieldDescriptor::TYPE_MESSAGE: case FieldDescriptor::TYPE_BYTES: GOOGLE_LOG(FATAL) << "Can't reach"; return nullptr; } } else { // mismatched wiretype; return internal::UnknownFieldParse( tag, reflection->MutableUnknownFields(msg), ptr, ctx); } } // Non-packed value bool utf8_check = false; bool strict_utf8_check = false; switch (field->type()) { #define HANDLE_TYPE(TYPE, CPPTYPE, CPPTYPE_METHOD) \ case FieldDescriptor::TYPE_##TYPE: { \ CPPTYPE value; \ ptr = VarintParse(ptr, &value); \ if (ptr == nullptr) return nullptr; \ if (field->is_repeated()) { \ reflection->Add##CPPTYPE_METHOD(msg, field, value); \ } else { \ reflection->Set##CPPTYPE_METHOD(msg, field, value); \ } \ return ptr; \ } HANDLE_TYPE(BOOL, uint64_t, Bool) HANDLE_TYPE(INT32, uint32_t, Int32) HANDLE_TYPE(INT64, uint64_t, Int64) HANDLE_TYPE(UINT32, uint32_t, UInt32) HANDLE_TYPE(UINT64, uint64_t, UInt64) case FieldDescriptor::TYPE_SINT32: { int32_t value = ReadVarintZigZag32(&ptr); if (ptr == nullptr) return nullptr; if (field->is_repeated()) { reflection->AddInt32(msg, field, value); } else { reflection->SetInt32(msg, field, value); } return ptr; } case FieldDescriptor::TYPE_SINT64: { int64_t value = ReadVarintZigZag64(&ptr); if (ptr == nullptr) return nullptr; if (field->is_repeated()) { reflection->AddInt64(msg, field, value); } else { reflection->SetInt64(msg, field, value); } return ptr; } #undef HANDLE_TYPE #define HANDLE_TYPE(TYPE, CPPTYPE, CPPTYPE_METHOD) \ case FieldDescriptor::TYPE_##TYPE: { \ CPPTYPE value; \ value = UnalignedLoad(ptr); \ ptr += sizeof(CPPTYPE); \ if (field->is_repeated()) { \ reflection->Add##CPPTYPE_METHOD(msg, field, value); \ } else { \ reflection->Set##CPPTYPE_METHOD(msg, field, value); \ } \ return ptr; \ } HANDLE_TYPE(FIXED32, uint32_t, UInt32) HANDLE_TYPE(FIXED64, uint64_t, UInt64) HANDLE_TYPE(SFIXED32, int32_t, Int32) HANDLE_TYPE(SFIXED64, int64_t, Int64) HANDLE_TYPE(FLOAT, float, Float) HANDLE_TYPE(DOUBLE, double, Double) #undef HANDLE_TYPE case FieldDescriptor::TYPE_ENUM: { uint32_t value; ptr = VarintParse(ptr, &value); if (ptr == nullptr) return nullptr; if (field->is_repeated()) { reflection->AddEnumValue(msg, field, value); } else { reflection->SetEnumValue(msg, field, value); } return ptr; } // Handle strings separately so that we can optimize the ctype=CORD case. case FieldDescriptor::TYPE_STRING: utf8_check = true; strict_utf8_check = StrictUtf8Check(field); PROTOBUF_FALLTHROUGH_INTENDED; case FieldDescriptor::TYPE_BYTES: { int size = ReadSize(&ptr); if (ptr == nullptr) return nullptr; std::string value; ptr = ctx->ReadString(ptr, size, &value); if (ptr == nullptr) return nullptr; if (utf8_check) { if (strict_utf8_check) { if (!WireFormatLite::VerifyUtf8String(value.data(), value.length(), WireFormatLite::PARSE, field->full_name().c_str())) { return nullptr; } } else { VerifyUTF8StringNamedField(value.data(), value.length(), PARSE, field->full_name().c_str()); } } if (field->is_repeated()) { reflection->AddString(msg, field, std::move(value)); } else { reflection->SetString(msg, field, std::move(value)); } return ptr; } case FieldDescriptor::TYPE_GROUP: { Message* sub_message; if (field->is_repeated()) { sub_message = reflection->AddMessage(msg, field, ctx->data().factory); } else { sub_message = reflection->MutableMessage(msg, field, ctx->data().factory); } return ctx->ParseGroup(sub_message, ptr, tag); } case FieldDescriptor::TYPE_MESSAGE: { Message* sub_message; if (field->is_repeated()) { sub_message = reflection->AddMessage(msg, field, ctx->data().factory); } else { sub_message = reflection->MutableMessage(msg, field, ctx->data().factory); } return ctx->ParseMessage(sub_message, ptr); } } // GCC 8 complains about control reaching end of non-void function here. // Let's keep it happy by returning a nullptr. return nullptr; } // =================================================================== uint8_t* WireFormat::_InternalSerialize(const Message& message, uint8_t* target, io::EpsCopyOutputStream* stream) { const Descriptor* descriptor = message.GetDescriptor(); const Reflection* message_reflection = message.GetReflection(); std::vector fields; // Fields of map entry should always be serialized. if (descriptor->options().map_entry()) { for (int i = 0; i < descriptor->field_count(); i++) { fields.push_back(descriptor->field(i)); } } else { message_reflection->ListFields(message, &fields); } for (auto field : fields) { target = InternalSerializeField(field, message, target, stream); } if (descriptor->options().message_set_wire_format()) { return InternalSerializeUnknownMessageSetItemsToArray( message_reflection->GetUnknownFields(message), target, stream); } else { return InternalSerializeUnknownFieldsToArray( message_reflection->GetUnknownFields(message), target, stream); } } uint8_t* SerializeMapKeyWithCachedSizes(const FieldDescriptor* field, const MapKey& value, uint8_t* target, io::EpsCopyOutputStream* stream) { target = stream->EnsureSpace(target); switch (field->type()) { case FieldDescriptor::TYPE_DOUBLE: case FieldDescriptor::TYPE_FLOAT: case FieldDescriptor::TYPE_GROUP: case FieldDescriptor::TYPE_MESSAGE: case FieldDescriptor::TYPE_BYTES: case FieldDescriptor::TYPE_ENUM: GOOGLE_LOG(FATAL) << "Unsupported"; break; #define CASE_TYPE(FieldType, CamelFieldType, CamelCppType) \ case FieldDescriptor::TYPE_##FieldType: \ target = WireFormatLite::Write##CamelFieldType##ToArray( \ 1, value.Get##CamelCppType##Value(), target); \ break; CASE_TYPE(INT64, Int64, Int64) CASE_TYPE(UINT64, UInt64, UInt64) CASE_TYPE(INT32, Int32, Int32) CASE_TYPE(FIXED64, Fixed64, UInt64) CASE_TYPE(FIXED32, Fixed32, UInt32) CASE_TYPE(BOOL, Bool, Bool) CASE_TYPE(UINT32, UInt32, UInt32) CASE_TYPE(SFIXED32, SFixed32, Int32) CASE_TYPE(SFIXED64, SFixed64, Int64) CASE_TYPE(SINT32, SInt32, Int32) CASE_TYPE(SINT64, SInt64, Int64) #undef CASE_TYPE case FieldDescriptor::TYPE_STRING: target = stream->WriteString(1, value.GetStringValue(), target); break; } return target; } static uint8_t* SerializeMapValueRefWithCachedSizes( const FieldDescriptor* field, const MapValueConstRef& value, uint8_t* target, io::EpsCopyOutputStream* stream) { target = stream->EnsureSpace(target); switch (field->type()) { #define CASE_TYPE(FieldType, CamelFieldType, CamelCppType) \ case FieldDescriptor::TYPE_##FieldType: \ target = WireFormatLite::Write##CamelFieldType##ToArray( \ 2, value.Get##CamelCppType##Value(), target); \ break; CASE_TYPE(INT64, Int64, Int64) CASE_TYPE(UINT64, UInt64, UInt64) CASE_TYPE(INT32, Int32, Int32) CASE_TYPE(FIXED64, Fixed64, UInt64) CASE_TYPE(FIXED32, Fixed32, UInt32) CASE_TYPE(BOOL, Bool, Bool) CASE_TYPE(UINT32, UInt32, UInt32) CASE_TYPE(SFIXED32, SFixed32, Int32) CASE_TYPE(SFIXED64, SFixed64, Int64) CASE_TYPE(SINT32, SInt32, Int32) CASE_TYPE(SINT64, SInt64, Int64) CASE_TYPE(ENUM, Enum, Enum) CASE_TYPE(DOUBLE, Double, Double) CASE_TYPE(FLOAT, Float, Float) #undef CASE_TYPE case FieldDescriptor::TYPE_STRING: case FieldDescriptor::TYPE_BYTES: target = stream->WriteString(2, value.GetStringValue(), target); break; case FieldDescriptor::TYPE_MESSAGE: target = WireFormatLite::InternalWriteMessage(2, value.GetMessageValue(), target, stream); break; case FieldDescriptor::TYPE_GROUP: target = WireFormatLite::InternalWriteGroup(2, value.GetMessageValue(), target, stream); break; } return target; } class MapKeySorter { public: static std::vector SortKey(const Message& message, const Reflection* reflection, const FieldDescriptor* field) { std::vector sorted_key_list; for (MapIterator it = reflection->MapBegin(const_cast(&message), field); it != reflection->MapEnd(const_cast(&message), field); ++it) { sorted_key_list.push_back(it.GetKey()); } MapKeyComparator comparator; std::sort(sorted_key_list.begin(), sorted_key_list.end(), comparator); return sorted_key_list; } private: class MapKeyComparator { public: bool operator()(const MapKey& a, const MapKey& b) const { GOOGLE_DCHECK(a.type() == b.type()); switch (a.type()) { #define CASE_TYPE(CppType, CamelCppType) \ case FieldDescriptor::CPPTYPE_##CppType: { \ return a.Get##CamelCppType##Value() < b.Get##CamelCppType##Value(); \ } CASE_TYPE(STRING, String) CASE_TYPE(INT64, Int64) CASE_TYPE(INT32, Int32) CASE_TYPE(UINT64, UInt64) CASE_TYPE(UINT32, UInt32) CASE_TYPE(BOOL, Bool) #undef CASE_TYPE default: GOOGLE_LOG(DFATAL) << "Invalid key for map field."; return true; } } }; }; static uint8_t* InternalSerializeMapEntry(const FieldDescriptor* field, const MapKey& key, const MapValueConstRef& value, uint8_t* target, io::EpsCopyOutputStream* stream) { const FieldDescriptor* key_field = field->message_type()->field(0); const FieldDescriptor* value_field = field->message_type()->field(1); size_t size = kMapEntryTagByteSize; size += MapKeyDataOnlyByteSize(key_field, key); size += MapValueRefDataOnlyByteSize(value_field, value); target = stream->EnsureSpace(target); target = WireFormatLite::WriteTagToArray( field->number(), WireFormatLite::WIRETYPE_LENGTH_DELIMITED, target); target = io::CodedOutputStream::WriteVarint32ToArray(size, target); target = SerializeMapKeyWithCachedSizes(key_field, key, target, stream); target = SerializeMapValueRefWithCachedSizes(value_field, value, target, stream); return target; } uint8_t* WireFormat::InternalSerializeField(const FieldDescriptor* field, const Message& message, uint8_t* target, io::EpsCopyOutputStream* stream) { const Reflection* message_reflection = message.GetReflection(); if (field->is_extension() && field->containing_type()->options().message_set_wire_format() && field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE && !field->is_repeated()) { return InternalSerializeMessageSetItem(field, message, target, stream); } // For map fields, we can use either repeated field reflection or map // reflection. Our choice has some subtle effects. If we use repeated field // reflection here, then the repeated field representation becomes // authoritative for this field: any existing references that came from map // reflection remain valid for reading, but mutations to them are lost and // will be overwritten next time we call map reflection! // // So far this mainly affects Python, which keeps long-term references to map // values around, and always uses map reflection. See: b/35918691 // // Here we choose to use map reflection API as long as the internal // map is valid. In this way, the serialization doesn't change map field's // internal state and existing references that came from map reflection remain // valid for both reading and writing. if (field->is_map()) { const MapFieldBase* map_field = message_reflection->GetMapData(message, field); if (map_field->IsMapValid()) { if (stream->IsSerializationDeterministic()) { std::vector sorted_key_list = MapKeySorter::SortKey(message, message_reflection, field); for (std::vector::iterator it = sorted_key_list.begin(); it != sorted_key_list.end(); ++it) { MapValueConstRef map_value; message_reflection->LookupMapValue(message, field, *it, &map_value); target = InternalSerializeMapEntry(field, *it, map_value, target, stream); } } else { for (MapIterator it = message_reflection->MapBegin( const_cast(&message), field); it != message_reflection->MapEnd(const_cast(&message), field); ++it) { target = InternalSerializeMapEntry(field, it.GetKey(), it.GetValueRef(), target, stream); } } return target; } } int count = 0; if (field->is_repeated()) { count = message_reflection->FieldSize(message, field); } else if (field->containing_type()->options().map_entry()) { // Map entry fields always need to be serialized. count = 1; } else if (message_reflection->HasField(message, field)) { count = 1; } // map_entries is for maps that'll be deterministically serialized. std::vector map_entries; if (count > 1 && field->is_map() && stream->IsSerializationDeterministic()) { map_entries = DynamicMapSorter::Sort(message, count, message_reflection, field); } if (field->is_packed()) { if (count == 0) return target; target = stream->EnsureSpace(target); switch (field->type()) { #define HANDLE_PRIMITIVE_TYPE(TYPE, CPPTYPE, TYPE_METHOD, CPPTYPE_METHOD) \ case FieldDescriptor::TYPE_##TYPE: { \ auto r = \ message_reflection->GetRepeatedFieldInternal(message, field); \ target = stream->Write##TYPE_METHOD##Packed( \ field->number(), r, FieldDataOnlyByteSize(field, message), target); \ break; \ } HANDLE_PRIMITIVE_TYPE(INT32, int32_t, Int32, Int32) HANDLE_PRIMITIVE_TYPE(INT64, int64_t, Int64, Int64) HANDLE_PRIMITIVE_TYPE(SINT32, int32_t, SInt32, Int32) HANDLE_PRIMITIVE_TYPE(SINT64, int64_t, SInt64, Int64) HANDLE_PRIMITIVE_TYPE(UINT32, uint32_t, UInt32, UInt32) HANDLE_PRIMITIVE_TYPE(UINT64, uint64_t, UInt64, UInt64) HANDLE_PRIMITIVE_TYPE(ENUM, int, Enum, Enum) #undef HANDLE_PRIMITIVE_TYPE #define HANDLE_PRIMITIVE_TYPE(TYPE, CPPTYPE, TYPE_METHOD, CPPTYPE_METHOD) \ case FieldDescriptor::TYPE_##TYPE: { \ auto r = \ message_reflection->GetRepeatedFieldInternal(message, field); \ target = stream->WriteFixedPacked(field->number(), r, target); \ break; \ } HANDLE_PRIMITIVE_TYPE(FIXED32, uint32_t, Fixed32, UInt32) HANDLE_PRIMITIVE_TYPE(FIXED64, uint64_t, Fixed64, UInt64) HANDLE_PRIMITIVE_TYPE(SFIXED32, int32_t, SFixed32, Int32) HANDLE_PRIMITIVE_TYPE(SFIXED64, int64_t, SFixed64, Int64) HANDLE_PRIMITIVE_TYPE(FLOAT, float, Float, Float) HANDLE_PRIMITIVE_TYPE(DOUBLE, double, Double, Double) HANDLE_PRIMITIVE_TYPE(BOOL, bool, Bool, Bool) #undef HANDLE_PRIMITIVE_TYPE default: GOOGLE_LOG(FATAL) << "Invalid descriptor"; } return target; } for (int j = 0; j < count; j++) { target = stream->EnsureSpace(target); switch (field->type()) { #define HANDLE_PRIMITIVE_TYPE(TYPE, CPPTYPE, TYPE_METHOD, CPPTYPE_METHOD) \ case FieldDescriptor::TYPE_##TYPE: { \ const CPPTYPE value = \ field->is_repeated() \ ? message_reflection->GetRepeated##CPPTYPE_METHOD(message, field, \ j) \ : message_reflection->Get##CPPTYPE_METHOD(message, field); \ target = WireFormatLite::Write##TYPE_METHOD##ToArray(field->number(), \ value, target); \ break; \ } HANDLE_PRIMITIVE_TYPE(INT32, int32_t, Int32, Int32) HANDLE_PRIMITIVE_TYPE(INT64, int64_t, Int64, Int64) HANDLE_PRIMITIVE_TYPE(SINT32, int32_t, SInt32, Int32) HANDLE_PRIMITIVE_TYPE(SINT64, int64_t, SInt64, Int64) HANDLE_PRIMITIVE_TYPE(UINT32, uint32_t, UInt32, UInt32) HANDLE_PRIMITIVE_TYPE(UINT64, uint64_t, UInt64, UInt64) HANDLE_PRIMITIVE_TYPE(FIXED32, uint32_t, Fixed32, UInt32) HANDLE_PRIMITIVE_TYPE(FIXED64, uint64_t, Fixed64, UInt64) HANDLE_PRIMITIVE_TYPE(SFIXED32, int32_t, SFixed32, Int32) HANDLE_PRIMITIVE_TYPE(SFIXED64, int64_t, SFixed64, Int64) HANDLE_PRIMITIVE_TYPE(FLOAT, float, Float, Float) HANDLE_PRIMITIVE_TYPE(DOUBLE, double, Double, Double) HANDLE_PRIMITIVE_TYPE(BOOL, bool, Bool, Bool) #undef HANDLE_PRIMITIVE_TYPE #define HANDLE_TYPE(TYPE, TYPE_METHOD, CPPTYPE_METHOD) \ case FieldDescriptor::TYPE_##TYPE: \ target = WireFormatLite::InternalWrite##TYPE_METHOD( \ field->number(), \ field->is_repeated() \ ? (map_entries.empty() \ ? message_reflection->GetRepeated##CPPTYPE_METHOD(message, \ field, j) \ : *map_entries[j]) \ : message_reflection->Get##CPPTYPE_METHOD(message, field), \ target, stream); \ break; HANDLE_TYPE(GROUP, Group, Message) HANDLE_TYPE(MESSAGE, Message, Message) #undef HANDLE_TYPE case FieldDescriptor::TYPE_ENUM: { const EnumValueDescriptor* value = field->is_repeated() ? message_reflection->GetRepeatedEnum(message, field, j) : message_reflection->GetEnum(message, field); target = WireFormatLite::WriteEnumToArray(field->number(), value->number(), target); break; } // Handle strings separately so that we can get string references // instead of copying. case FieldDescriptor::TYPE_STRING: { bool strict_utf8_check = StrictUtf8Check(field); std::string scratch; const std::string& value = field->is_repeated() ? message_reflection->GetRepeatedStringReference(message, field, j, &scratch) : message_reflection->GetStringReference(message, field, &scratch); if (strict_utf8_check) { WireFormatLite::VerifyUtf8String(value.data(), value.length(), WireFormatLite::SERIALIZE, field->full_name().c_str()); } else { VerifyUTF8StringNamedField(value.data(), value.length(), SERIALIZE, field->full_name().c_str()); } target = stream->WriteString(field->number(), value, target); break; } case FieldDescriptor::TYPE_BYTES: { std::string scratch; const std::string& value = field->is_repeated() ? message_reflection->GetRepeatedStringReference(message, field, j, &scratch) : message_reflection->GetStringReference(message, field, &scratch); target = stream->WriteString(field->number(), value, target); break; } } } return target; } uint8_t* WireFormat::InternalSerializeMessageSetItem( const FieldDescriptor* field, const Message& message, uint8_t* target, io::EpsCopyOutputStream* stream) { const Reflection* message_reflection = message.GetReflection(); target = stream->EnsureSpace(target); // Start group. target = io::CodedOutputStream::WriteTagToArray( WireFormatLite::kMessageSetItemStartTag, target); // Write type ID. target = WireFormatLite::WriteUInt32ToArray( WireFormatLite::kMessageSetTypeIdNumber, field->number(), target); // Write message. target = WireFormatLite::InternalWriteMessage( WireFormatLite::kMessageSetMessageNumber, message_reflection->GetMessage(message, field), target, stream); // End group. target = stream->EnsureSpace(target); target = io::CodedOutputStream::WriteTagToArray( WireFormatLite::kMessageSetItemEndTag, target); return target; } // =================================================================== size_t WireFormat::ByteSize(const Message& message) { const Descriptor* descriptor = message.GetDescriptor(); const Reflection* message_reflection = message.GetReflection(); size_t our_size = 0; std::vector fields; // Fields of map entry should always be serialized. if (descriptor->options().map_entry()) { for (int i = 0; i < descriptor->field_count(); i++) { fields.push_back(descriptor->field(i)); } } else { message_reflection->ListFields(message, &fields); } for (const FieldDescriptor* field : fields) { our_size += FieldByteSize(field, message); } if (descriptor->options().message_set_wire_format()) { our_size += ComputeUnknownMessageSetItemsSize( message_reflection->GetUnknownFields(message)); } else { our_size += ComputeUnknownFieldsSize(message_reflection->GetUnknownFields(message)); } return our_size; } size_t WireFormat::FieldByteSize(const FieldDescriptor* field, const Message& message) { const Reflection* message_reflection = message.GetReflection(); if (field->is_extension() && field->containing_type()->options().message_set_wire_format() && field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE && !field->is_repeated()) { return MessageSetItemByteSize(field, message); } size_t count = 0; if (field->is_repeated()) { if (field->is_map()) { const MapFieldBase* map_field = message_reflection->GetMapData(message, field); if (map_field->IsMapValid()) { count = FromIntSize(map_field->size()); } else { count = FromIntSize(message_reflection->FieldSize(message, field)); } } else { count = FromIntSize(message_reflection->FieldSize(message, field)); } } else if (field->containing_type()->options().map_entry()) { // Map entry fields always need to be serialized. count = 1; } else if (message_reflection->HasField(message, field)) { count = 1; } const size_t data_size = FieldDataOnlyByteSize(field, message); size_t our_size = data_size; if (field->is_packed()) { if (data_size > 0) { // Packed fields get serialized like a string, not their native type. // Technically this doesn't really matter; the size only changes if it's // a GROUP our_size += TagSize(field->number(), FieldDescriptor::TYPE_STRING); our_size += io::CodedOutputStream::VarintSize32(data_size); } } else { our_size += count * TagSize(field->number(), field->type()); } return our_size; } size_t MapKeyDataOnlyByteSize(const FieldDescriptor* field, const MapKey& value) { GOOGLE_DCHECK_EQ(FieldDescriptor::TypeToCppType(field->type()), value.type()); switch (field->type()) { case FieldDescriptor::TYPE_DOUBLE: case FieldDescriptor::TYPE_FLOAT: case FieldDescriptor::TYPE_GROUP: case FieldDescriptor::TYPE_MESSAGE: case FieldDescriptor::TYPE_BYTES: case FieldDescriptor::TYPE_ENUM: GOOGLE_LOG(FATAL) << "Unsupported"; return 0; #define CASE_TYPE(FieldType, CamelFieldType, CamelCppType) \ case FieldDescriptor::TYPE_##FieldType: \ return WireFormatLite::CamelFieldType##Size( \ value.Get##CamelCppType##Value()); #define FIXED_CASE_TYPE(FieldType, CamelFieldType) \ case FieldDescriptor::TYPE_##FieldType: \ return WireFormatLite::k##CamelFieldType##Size; CASE_TYPE(INT32, Int32, Int32); CASE_TYPE(INT64, Int64, Int64); CASE_TYPE(UINT32, UInt32, UInt32); CASE_TYPE(UINT64, UInt64, UInt64); CASE_TYPE(SINT32, SInt32, Int32); CASE_TYPE(SINT64, SInt64, Int64); CASE_TYPE(STRING, String, String); FIXED_CASE_TYPE(FIXED32, Fixed32); FIXED_CASE_TYPE(FIXED64, Fixed64); FIXED_CASE_TYPE(SFIXED32, SFixed32); FIXED_CASE_TYPE(SFIXED64, SFixed64); FIXED_CASE_TYPE(BOOL, Bool); #undef CASE_TYPE #undef FIXED_CASE_TYPE } GOOGLE_LOG(FATAL) << "Cannot get here"; return 0; } static size_t MapValueRefDataOnlyByteSize(const FieldDescriptor* field, const MapValueConstRef& value) { switch (field->type()) { case FieldDescriptor::TYPE_GROUP: GOOGLE_LOG(FATAL) << "Unsupported"; return 0; #define CASE_TYPE(FieldType, CamelFieldType, CamelCppType) \ case FieldDescriptor::TYPE_##FieldType: \ return WireFormatLite::CamelFieldType##Size( \ value.Get##CamelCppType##Value()); #define FIXED_CASE_TYPE(FieldType, CamelFieldType) \ case FieldDescriptor::TYPE_##FieldType: \ return WireFormatLite::k##CamelFieldType##Size; CASE_TYPE(INT32, Int32, Int32); CASE_TYPE(INT64, Int64, Int64); CASE_TYPE(UINT32, UInt32, UInt32); CASE_TYPE(UINT64, UInt64, UInt64); CASE_TYPE(SINT32, SInt32, Int32); CASE_TYPE(SINT64, SInt64, Int64); CASE_TYPE(STRING, String, String); CASE_TYPE(BYTES, Bytes, String); CASE_TYPE(ENUM, Enum, Enum); CASE_TYPE(MESSAGE, Message, Message); FIXED_CASE_TYPE(FIXED32, Fixed32); FIXED_CASE_TYPE(FIXED64, Fixed64); FIXED_CASE_TYPE(SFIXED32, SFixed32); FIXED_CASE_TYPE(SFIXED64, SFixed64); FIXED_CASE_TYPE(DOUBLE, Double); FIXED_CASE_TYPE(FLOAT, Float); FIXED_CASE_TYPE(BOOL, Bool); #undef CASE_TYPE #undef FIXED_CASE_TYPE } GOOGLE_LOG(FATAL) << "Cannot get here"; return 0; } size_t WireFormat::FieldDataOnlyByteSize(const FieldDescriptor* field, const Message& message) { const Reflection* message_reflection = message.GetReflection(); size_t data_size = 0; if (field->is_map()) { const MapFieldBase* map_field = message_reflection->GetMapData(message, field); if (map_field->IsMapValid()) { MapIterator iter(const_cast(&message), field); MapIterator end(const_cast(&message), field); const FieldDescriptor* key_field = field->message_type()->field(0); const FieldDescriptor* value_field = field->message_type()->field(1); for (map_field->MapBegin(&iter), map_field->MapEnd(&end); iter != end; ++iter) { size_t size = kMapEntryTagByteSize; size += MapKeyDataOnlyByteSize(key_field, iter.GetKey()); size += MapValueRefDataOnlyByteSize(value_field, iter.GetValueRef()); data_size += WireFormatLite::LengthDelimitedSize(size); } return data_size; } } size_t count = 0; if (field->is_repeated()) { count = internal::FromIntSize(message_reflection->FieldSize(message, field)); } else if (field->containing_type()->options().map_entry()) { // Map entry fields always need to be serialized. count = 1; } else if (message_reflection->HasField(message, field)) { count = 1; } switch (field->type()) { #define HANDLE_TYPE(TYPE, TYPE_METHOD, CPPTYPE_METHOD) \ case FieldDescriptor::TYPE_##TYPE: \ if (field->is_repeated()) { \ for (size_t j = 0; j < count; j++) { \ data_size += WireFormatLite::TYPE_METHOD##Size( \ message_reflection->GetRepeated##CPPTYPE_METHOD(message, field, \ j)); \ } \ } else { \ data_size += WireFormatLite::TYPE_METHOD##Size( \ message_reflection->Get##CPPTYPE_METHOD(message, field)); \ } \ break; #define HANDLE_FIXED_TYPE(TYPE, TYPE_METHOD) \ case FieldDescriptor::TYPE_##TYPE: \ data_size += count * WireFormatLite::k##TYPE_METHOD##Size; \ break; HANDLE_TYPE(INT32, Int32, Int32) HANDLE_TYPE(INT64, Int64, Int64) HANDLE_TYPE(SINT32, SInt32, Int32) HANDLE_TYPE(SINT64, SInt64, Int64) HANDLE_TYPE(UINT32, UInt32, UInt32) HANDLE_TYPE(UINT64, UInt64, UInt64) HANDLE_FIXED_TYPE(FIXED32, Fixed32) HANDLE_FIXED_TYPE(FIXED64, Fixed64) HANDLE_FIXED_TYPE(SFIXED32, SFixed32) HANDLE_FIXED_TYPE(SFIXED64, SFixed64) HANDLE_FIXED_TYPE(FLOAT, Float) HANDLE_FIXED_TYPE(DOUBLE, Double) HANDLE_FIXED_TYPE(BOOL, Bool) HANDLE_TYPE(GROUP, Group, Message) HANDLE_TYPE(MESSAGE, Message, Message) #undef HANDLE_TYPE #undef HANDLE_FIXED_TYPE case FieldDescriptor::TYPE_ENUM: { if (field->is_repeated()) { for (size_t j = 0; j < count; j++) { data_size += WireFormatLite::EnumSize( message_reflection->GetRepeatedEnum(message, field, j)->number()); } } else { data_size += WireFormatLite::EnumSize( message_reflection->GetEnum(message, field)->number()); } break; } // Handle strings separately so that we can get string references // instead of copying. case FieldDescriptor::TYPE_STRING: case FieldDescriptor::TYPE_BYTES: { for (size_t j = 0; j < count; j++) { std::string scratch; const std::string& value = field->is_repeated() ? message_reflection->GetRepeatedStringReference(message, field, j, &scratch) : message_reflection->GetStringReference(message, field, &scratch); data_size += WireFormatLite::StringSize(value); } break; } } return data_size; } size_t WireFormat::MessageSetItemByteSize(const FieldDescriptor* field, const Message& message) { const Reflection* message_reflection = message.GetReflection(); size_t our_size = WireFormatLite::kMessageSetItemTagsSize; // type_id our_size += io::CodedOutputStream::VarintSize32(field->number()); // message const Message& sub_message = message_reflection->GetMessage(message, field); size_t message_size = sub_message.ByteSizeLong(); our_size += io::CodedOutputStream::VarintSize32(message_size); our_size += message_size; return our_size; } // Compute the size of the UnknownFieldSet on the wire. size_t ComputeUnknownFieldsSize(const InternalMetadata& metadata, size_t total_size, CachedSize* cached_size) { total_size += WireFormat::ComputeUnknownFieldsSize( metadata.unknown_fields( UnknownFieldSet::default_instance)); cached_size->Set(ToCachedSize(total_size)); return total_size; } } // namespace internal } // namespace protobuf } // namespace google #include