// Protocol Buffers - Google's data interchange format // Copyright 2008 Google Inc. All rights reserved. // https://developers.google.com/protocol-buffers/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Author: kenton@google.com (Kenton Varda) // Based on original Protocol Buffers design by // Sanjay Ghemawat, Jeff Dean, and others. // // DynamicMessage is implemented by constructing a data structure which // has roughly the same memory layout as a generated message would have. // Then, we use Reflection to implement our reflection interface. All // the other operations we need to implement (e.g. parsing, copying, // etc.) are already implemented in terms of Reflection, so the rest is // easy. // // The up side of this strategy is that it's very efficient. We don't // need to use hash_maps or generic representations of fields. The // down side is that this is a low-level memory management hack which // can be tricky to get right. // // As mentioned in the header, we only expose a DynamicMessageFactory // publicly, not the DynamicMessage class itself. This is because // GenericMessageReflection wants to have a pointer to a "default" // copy of the class, with all fields initialized to their default // values. We only want to construct one of these per message type, // so DynamicMessageFactory stores a cache of default messages for // each type it sees (each unique Descriptor pointer). The code // refers to the "default" copy of the class as the "prototype". // // Note on memory allocation: This module often calls "operator new()" // to allocate untyped memory, rather than calling something like // "new uint8_t[]". This is because "operator new()" means "Give me some // space which I can use as I please." while "new uint8_t[]" means "Give // me an array of 8-bit integers.". In practice, the later may return // a pointer that is not aligned correctly for general use. I believe // Item 8 of "More Effective C++" discusses this in more detail, though // I don't have the book on me right now so I'm not sure. #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // NOLINT namespace google { namespace protobuf { using internal::DynamicMapField; using internal::ExtensionSet; using internal::MapField; using internal::ArenaStringPtr; // =================================================================== // Some helper tables and functions... class DynamicMessageReflectionHelper { public: static bool IsLazyField(const Reflection* reflection, const FieldDescriptor* field) { return reflection->IsLazyField(field); } }; namespace { bool IsMapFieldInApi(const FieldDescriptor* field) { return field->is_map(); } // Sync with helpers.h. inline bool HasHasbit(const FieldDescriptor* field) { // This predicate includes proto3 message fields only if they have "optional". // Foo submsg1 = 1; // HasHasbit() == false // optional Foo submsg2 = 2; // HasHasbit() == true // This is slightly odd, as adding "optional" to a singular proto3 field does // not change the semantics or API. However whenever any field in a message // has a hasbit, it forces reflection to include hasbit offsets for *all* // fields, even if almost all of them are set to -1 (no hasbit). So to avoid // causing a sudden size regression for ~all proto3 messages, we give proto3 // message fields a hasbit only if "optional" is present. If the user is // explicitly writing "optional", it is likely they are writing it on // primitive fields also. return (field->has_optional_keyword() || field->is_required()) && !field->options().weak(); } inline bool InRealOneof(const FieldDescriptor* field) { return field->containing_oneof() && !field->containing_oneof()->is_synthetic(); } // Compute the byte size of the in-memory representation of the field. int FieldSpaceUsed(const FieldDescriptor* field) { typedef FieldDescriptor FD; // avoid line wrapping if (field->label() == FD::LABEL_REPEATED) { switch (field->cpp_type()) { case FD::CPPTYPE_INT32: return sizeof(RepeatedField); case FD::CPPTYPE_INT64: return sizeof(RepeatedField); case FD::CPPTYPE_UINT32: return sizeof(RepeatedField); case FD::CPPTYPE_UINT64: return sizeof(RepeatedField); case FD::CPPTYPE_DOUBLE: return sizeof(RepeatedField); case FD::CPPTYPE_FLOAT: return sizeof(RepeatedField); case FD::CPPTYPE_BOOL: return sizeof(RepeatedField); case FD::CPPTYPE_ENUM: return sizeof(RepeatedField); case FD::CPPTYPE_MESSAGE: if (IsMapFieldInApi(field)) { return sizeof(DynamicMapField); } else { return sizeof(RepeatedPtrField); } case FD::CPPTYPE_STRING: switch (field->options().ctype()) { default: // TODO(kenton): Support other string reps. case FieldOptions::STRING: return sizeof(RepeatedPtrField); } break; } } else { switch (field->cpp_type()) { case FD::CPPTYPE_INT32: return sizeof(int32_t); case FD::CPPTYPE_INT64: return sizeof(int64_t); case FD::CPPTYPE_UINT32: return sizeof(uint32_t); case FD::CPPTYPE_UINT64: return sizeof(uint64_t); case FD::CPPTYPE_DOUBLE: return sizeof(double); case FD::CPPTYPE_FLOAT: return sizeof(float); case FD::CPPTYPE_BOOL: return sizeof(bool); case FD::CPPTYPE_ENUM: return sizeof(int); case FD::CPPTYPE_MESSAGE: return sizeof(Message*); case FD::CPPTYPE_STRING: switch (field->options().ctype()) { default: // TODO(kenton): Support other string reps. case FieldOptions::STRING: return sizeof(ArenaStringPtr); } break; } } GOOGLE_LOG(DFATAL) << "Can't get here."; return 0; } inline int DivideRoundingUp(int i, int j) { return (i + (j - 1)) / j; } static const int kSafeAlignment = sizeof(uint64_t); static const int kMaxOneofUnionSize = sizeof(uint64_t); inline int AlignTo(int offset, int alignment) { return DivideRoundingUp(offset, alignment) * alignment; } // Rounds the given byte offset up to the next offset aligned such that any // type may be stored at it. inline int AlignOffset(int offset) { return AlignTo(offset, kSafeAlignment); } #define bitsizeof(T) (sizeof(T) * 8) } // namespace // =================================================================== class DynamicMessage : public Message { public: explicit DynamicMessage(const DynamicMessageFactory::TypeInfo* type_info); // This should only be used by GetPrototypeNoLock() to avoid dead lock. DynamicMessage(DynamicMessageFactory::TypeInfo* type_info, bool lock_factory); ~DynamicMessage(); // Called on the prototype after construction to initialize message fields. // Cross linking the default instances allows for fast reflection access of // unset message fields. Without it we would have to go to the MessageFactory // to get the prototype, which is a much more expensive operation. // // Generated messages do not cross-link to avoid dynamic initialization of the // global instances. // Instead, they keep the default instances in the FieldDescriptor objects. void CrossLinkPrototypes(); // implements Message ---------------------------------------------- Message* New(Arena* arena) const override; int GetCachedSize() const override; void SetCachedSize(int size) const override; Metadata GetMetadata() const override; #if defined(__cpp_lib_destroying_delete) && defined(__cpp_sized_deallocation) static void operator delete(DynamicMessage* msg, std::destroying_delete_t); #else // We actually allocate more memory than sizeof(*this) when this // class's memory is allocated via the global operator new. Thus, we need to // manually call the global operator delete. Calling the destructor is taken // care of for us. This makes DynamicMessage compatible with -fsized-delete. // It doesn't work for MSVC though. #ifndef _MSC_VER static void operator delete(void* ptr) { ::operator delete(ptr); } #endif // !_MSC_VER #endif private: DynamicMessage(const DynamicMessageFactory::TypeInfo* type_info, Arena* arena); void SharedCtor(bool lock_factory); // Needed to get the offset of the internal metadata member. friend class DynamicMessageFactory; bool is_prototype() const; inline int OffsetValue(int v, FieldDescriptor::Type type) const { if (type == FieldDescriptor::TYPE_MESSAGE) { return v & ~0x1u; } return v; } inline void* OffsetToPointer(int offset) { return reinterpret_cast(this) + offset; } inline const void* OffsetToPointer(int offset) const { return reinterpret_cast(this) + offset; } void* MutableRaw(int i); void* MutableExtensionsRaw(); void* MutableWeakFieldMapRaw(); void* MutableOneofCaseRaw(int i); void* MutableOneofFieldRaw(const FieldDescriptor* f); const DynamicMessageFactory::TypeInfo* type_info_; mutable std::atomic cached_byte_size_; GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(DynamicMessage); }; struct DynamicMessageFactory::TypeInfo { int size; int has_bits_offset; int oneof_case_offset; int extensions_offset; // Not owned by the TypeInfo. DynamicMessageFactory* factory; // The factory that created this object. const DescriptorPool* pool; // The factory's DescriptorPool. const Descriptor* type; // Type of this DynamicMessage. // Warning: The order in which the following pointers are defined is // important (the prototype must be deleted *before* the offsets). std::unique_ptr offsets; std::unique_ptr has_bits_indices; std::unique_ptr reflection; // Don't use a unique_ptr to hold the prototype: the destructor for // DynamicMessage needs to know whether it is the prototype, and does so by // looking back at this field. This would assume details about the // implementation of unique_ptr. const DynamicMessage* prototype; int weak_field_map_offset; // The offset for the weak_field_map; TypeInfo() : prototype(nullptr) {} ~TypeInfo() { delete prototype; } }; DynamicMessage::DynamicMessage(const DynamicMessageFactory::TypeInfo* type_info) : type_info_(type_info), cached_byte_size_(0) { SharedCtor(true); } DynamicMessage::DynamicMessage(const DynamicMessageFactory::TypeInfo* type_info, Arena* arena) : Message(arena), type_info_(type_info), cached_byte_size_(0) { SharedCtor(true); } DynamicMessage::DynamicMessage(DynamicMessageFactory::TypeInfo* type_info, bool lock_factory) : type_info_(type_info), cached_byte_size_(0) { // The prototype in type_info has to be set before creating the prototype // instance on memory. e.g., message Foo { map a = 1; }. When // creating prototype for Foo, prototype of the map entry will also be // created, which needs the address of the prototype of Foo (the value in // map). To break the cyclic dependency, we have to assign the address of // prototype into type_info first. type_info->prototype = this; SharedCtor(lock_factory); } inline void* DynamicMessage::MutableRaw(int i) { return OffsetToPointer( OffsetValue(type_info_->offsets[i], type_info_->type->field(i)->type())); } void* DynamicMessage::MutableExtensionsRaw() { return OffsetToPointer(type_info_->extensions_offset); } void* DynamicMessage::MutableWeakFieldMapRaw() { return OffsetToPointer(type_info_->weak_field_map_offset); } void* DynamicMessage::MutableOneofCaseRaw(int i) { return OffsetToPointer(type_info_->oneof_case_offset + sizeof(uint32_t) * i); } void* DynamicMessage::MutableOneofFieldRaw(const FieldDescriptor* f) { return OffsetToPointer( OffsetValue(type_info_->offsets[type_info_->type->field_count() + f->containing_oneof()->index()], f->type())); } void DynamicMessage::SharedCtor(bool lock_factory) { // We need to call constructors for various fields manually and set // default values where appropriate. We use placement new to call // constructors. If you haven't heard of placement new, I suggest Googling // it now. We use placement new even for primitive types that don't have // constructors for consistency. (In theory, placement new should be used // any time you are trying to convert untyped memory to typed memory, though // in practice that's not strictly necessary for types that don't have a // constructor.) const Descriptor* descriptor = type_info_->type; // Initialize oneof cases. int oneof_count = 0; for (int i = 0; i < descriptor->oneof_decl_count(); ++i) { if (descriptor->oneof_decl(i)->is_synthetic()) continue; new (MutableOneofCaseRaw(oneof_count++)) uint32_t{0}; } if (type_info_->extensions_offset != -1) { new (MutableExtensionsRaw()) ExtensionSet(GetArenaForAllocation()); } for (int i = 0; i < descriptor->field_count(); i++) { const FieldDescriptor* field = descriptor->field(i); void* field_ptr = MutableRaw(i); if (InRealOneof(field)) { continue; } switch (field->cpp_type()) { #define HANDLE_TYPE(CPPTYPE, TYPE) \ case FieldDescriptor::CPPTYPE_##CPPTYPE: \ if (!field->is_repeated()) { \ new (field_ptr) TYPE(field->default_value_##TYPE()); \ } else { \ new (field_ptr) RepeatedField(GetArenaForAllocation()); \ } \ break; HANDLE_TYPE(INT32, int32_t); HANDLE_TYPE(INT64, int64_t); HANDLE_TYPE(UINT32, uint32_t); HANDLE_TYPE(UINT64, uint64_t); HANDLE_TYPE(DOUBLE, double); HANDLE_TYPE(FLOAT, float); HANDLE_TYPE(BOOL, bool); #undef HANDLE_TYPE case FieldDescriptor::CPPTYPE_ENUM: if (!field->is_repeated()) { new (field_ptr) int{field->default_value_enum()->number()}; } else { new (field_ptr) RepeatedField(GetArenaForAllocation()); } break; case FieldDescriptor::CPPTYPE_STRING: switch (field->options().ctype()) { default: // TODO(kenton): Support other string reps. case FieldOptions::STRING: if (!field->is_repeated()) { const std::string* default_value = field->default_value_string().empty() ? &internal::GetEmptyStringAlreadyInited() : nullptr; ArenaStringPtr* asp = new (field_ptr) ArenaStringPtr(); asp->UnsafeSetDefault(default_value); } else { new (field_ptr) RepeatedPtrField(GetArenaForAllocation()); } break; } break; case FieldDescriptor::CPPTYPE_MESSAGE: { if (!field->is_repeated()) { new (field_ptr) Message*(nullptr); } else { if (IsMapFieldInApi(field)) { // We need to lock in most cases to avoid data racing. Only not lock // when the constructor is called inside GetPrototype(), in which // case we have already locked the factory. if (lock_factory) { if (GetArenaForAllocation() != nullptr) { new (field_ptr) DynamicMapField( type_info_->factory->GetPrototype(field->message_type()), GetArenaForAllocation()); if (GetOwningArena() != nullptr) { // Needs to destroy the mutex member. GetOwningArena()->OwnDestructor( static_cast(field_ptr)); } } else { new (field_ptr) DynamicMapField( type_info_->factory->GetPrototype(field->message_type())); } } else { if (GetArenaForAllocation() != nullptr) { new (field_ptr) DynamicMapField(type_info_->factory->GetPrototypeNoLock( field->message_type()), GetArenaForAllocation()); if (GetOwningArena() != nullptr) { // Needs to destroy the mutex member. GetOwningArena()->OwnDestructor( static_cast(field_ptr)); } } else { new (field_ptr) DynamicMapField(type_info_->factory->GetPrototypeNoLock( field->message_type())); } } } else { new (field_ptr) RepeatedPtrField(GetArenaForAllocation()); } } break; } } } } bool DynamicMessage::is_prototype() const { return type_info_->prototype == this || // If type_info_->prototype is nullptr, then we must be constructing // the prototype now, which means we must be the prototype. type_info_->prototype == nullptr; } #if defined(__cpp_lib_destroying_delete) && defined(__cpp_sized_deallocation) void DynamicMessage::operator delete(DynamicMessage* msg, std::destroying_delete_t) { const size_t size = msg->type_info_->size; msg->~DynamicMessage(); ::operator delete(msg, size); } #endif DynamicMessage::~DynamicMessage() { const Descriptor* descriptor = type_info_->type; _internal_metadata_.Delete(); if (type_info_->extensions_offset != -1) { reinterpret_cast(MutableExtensionsRaw())->~ExtensionSet(); } // We need to manually run the destructors for repeated fields and strings, // just as we ran their constructors in the DynamicMessage constructor. // We also need to manually delete oneof fields if it is set and is string // or message. // Additionally, if any singular embedded messages have been allocated, we // need to delete them, UNLESS we are the prototype message of this type, // in which case any embedded messages are other prototypes and shouldn't // be touched. for (int i = 0; i < descriptor->field_count(); i++) { const FieldDescriptor* field = descriptor->field(i); if (InRealOneof(field)) { void* field_ptr = MutableOneofCaseRaw(field->containing_oneof()->index()); if (*(reinterpret_cast(field_ptr)) == field->number()) { field_ptr = MutableOneofFieldRaw(field); if (field->cpp_type() == FieldDescriptor::CPPTYPE_STRING) { switch (field->options().ctype()) { default: case FieldOptions::STRING: { // Oneof string fields are never set as a default instance. // We just need to pass some arbitrary default string to make it // work. This allows us to not have the real default accessible // from reflection. const std::string* default_value = nullptr; reinterpret_cast(field_ptr)->Destroy( default_value, nullptr); break; } } } else if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) { delete *reinterpret_cast(field_ptr); } } continue; } void* field_ptr = MutableRaw(i); if (field->is_repeated()) { switch (field->cpp_type()) { #define HANDLE_TYPE(UPPERCASE, LOWERCASE) \ case FieldDescriptor::CPPTYPE_##UPPERCASE: \ reinterpret_cast*>(field_ptr) \ ->~RepeatedField(); \ break HANDLE_TYPE(INT32, int32_t); HANDLE_TYPE(INT64, int64_t); HANDLE_TYPE(UINT32, uint32_t); HANDLE_TYPE(UINT64, uint64_t); HANDLE_TYPE(DOUBLE, double); HANDLE_TYPE(FLOAT, float); HANDLE_TYPE(BOOL, bool); HANDLE_TYPE(ENUM, int); #undef HANDLE_TYPE case FieldDescriptor::CPPTYPE_STRING: switch (field->options().ctype()) { default: // TODO(kenton): Support other string reps. case FieldOptions::STRING: reinterpret_cast*>(field_ptr) ->~RepeatedPtrField(); break; } break; case FieldDescriptor::CPPTYPE_MESSAGE: if (IsMapFieldInApi(field)) { reinterpret_cast(field_ptr)->~DynamicMapField(); } else { reinterpret_cast*>(field_ptr) ->~RepeatedPtrField(); } break; } } else if (field->cpp_type() == FieldDescriptor::CPPTYPE_STRING) { switch (field->options().ctype()) { default: // TODO(kenton): Support other string reps. case FieldOptions::STRING: { const std::string* default_value = reinterpret_cast( type_info_->prototype->OffsetToPointer( type_info_->offsets[i])) ->GetPointer(); reinterpret_cast(field_ptr)->Destroy(default_value, nullptr); break; } } } else if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) { if (!is_prototype()) { Message* message = *reinterpret_cast(field_ptr); if (message != nullptr) { delete message; } } } } } void DynamicMessage::CrossLinkPrototypes() { // This should only be called on the prototype message. GOOGLE_CHECK(is_prototype()); DynamicMessageFactory* factory = type_info_->factory; const Descriptor* descriptor = type_info_->type; // Cross-link default messages. for (int i = 0; i < descriptor->field_count(); i++) { const FieldDescriptor* field = descriptor->field(i); if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE && !field->options().weak() && !InRealOneof(field) && !field->is_repeated()) { void* field_ptr = MutableRaw(i); // For fields with message types, we need to cross-link with the // prototype for the field's type. // For singular fields, the field is just a pointer which should // point to the prototype. *reinterpret_cast(field_ptr) = factory->GetPrototypeNoLock(field->message_type()); } } } Message* DynamicMessage::New(Arena* arena) const { if (arena != nullptr) { void* new_base = Arena::CreateArray(arena, type_info_->size); memset(new_base, 0, type_info_->size); return new (new_base) DynamicMessage(type_info_, arena); } else { void* new_base = operator new(type_info_->size); memset(new_base, 0, type_info_->size); return new (new_base) DynamicMessage(type_info_); } } int DynamicMessage::GetCachedSize() const { return cached_byte_size_.load(std::memory_order_relaxed); } void DynamicMessage::SetCachedSize(int size) const { cached_byte_size_.store(size, std::memory_order_relaxed); } Metadata DynamicMessage::GetMetadata() const { Metadata metadata; metadata.descriptor = type_info_->type; metadata.reflection = type_info_->reflection.get(); return metadata; } // =================================================================== DynamicMessageFactory::DynamicMessageFactory() : pool_(nullptr), delegate_to_generated_factory_(false) {} DynamicMessageFactory::DynamicMessageFactory(const DescriptorPool* pool) : pool_(pool), delegate_to_generated_factory_(false) {} DynamicMessageFactory::~DynamicMessageFactory() { for (auto iter = prototypes_.begin(); iter != prototypes_.end(); ++iter) { delete iter->second; } } const Message* DynamicMessageFactory::GetPrototype(const Descriptor* type) { MutexLock lock(&prototypes_mutex_); return GetPrototypeNoLock(type); } const Message* DynamicMessageFactory::GetPrototypeNoLock( const Descriptor* type) { if (delegate_to_generated_factory_ && type->file()->pool() == DescriptorPool::generated_pool()) { return MessageFactory::generated_factory()->GetPrototype(type); } const TypeInfo** target = &prototypes_[type]; if (*target != nullptr) { // Already exists. return (*target)->prototype; } TypeInfo* type_info = new TypeInfo; *target = type_info; type_info->type = type; type_info->pool = (pool_ == nullptr) ? type->file()->pool() : pool_; type_info->factory = this; // We need to construct all the structures passed to Reflection's constructor. // This includes: // - A block of memory that contains space for all the message's fields. // - An array of integers indicating the byte offset of each field within // this block. // - A big bitfield containing a bit for each field indicating whether // or not that field is set. int real_oneof_count = 0; for (int i = 0; i < type->oneof_decl_count(); i++) { if (!type->oneof_decl(i)->is_synthetic()) { real_oneof_count++; } } // Compute size and offsets. uint32_t* offsets = new uint32_t[type->field_count() + real_oneof_count]; type_info->offsets.reset(offsets); // Decide all field offsets by packing in order. // We place the DynamicMessage object itself at the beginning of the allocated // space. int size = sizeof(DynamicMessage); size = AlignOffset(size); // Next the has_bits, which is an array of uint32s. type_info->has_bits_offset = -1; int max_hasbit = 0; for (int i = 0; i < type->field_count(); i++) { if (HasHasbit(type->field(i))) { if (type_info->has_bits_offset == -1) { // At least one field in the message requires a hasbit, so allocate // hasbits. type_info->has_bits_offset = size; uint32_t* has_bits_indices = new uint32_t[type->field_count()]; for (int j = 0; j < type->field_count(); j++) { // Initialize to -1, fields that need a hasbit will overwrite. has_bits_indices[j] = static_cast(-1); } type_info->has_bits_indices.reset(has_bits_indices); } type_info->has_bits_indices[i] = max_hasbit++; } } if (max_hasbit > 0) { int has_bits_array_size = DivideRoundingUp(max_hasbit, bitsizeof(uint32_t)); size += has_bits_array_size * sizeof(uint32_t); size = AlignOffset(size); } // The oneof_case, if any. It is an array of uint32s. if (real_oneof_count > 0) { type_info->oneof_case_offset = size; size += real_oneof_count * sizeof(uint32_t); size = AlignOffset(size); } // The ExtensionSet, if any. if (type->extension_range_count() > 0) { type_info->extensions_offset = size; size += sizeof(ExtensionSet); size = AlignOffset(size); } else { // No extensions. type_info->extensions_offset = -1; } // All the fields. // // TODO(b/31226269): Optimize the order of fields to minimize padding. for (int i = 0; i < type->field_count(); i++) { // Make sure field is aligned to avoid bus errors. // Oneof fields do not use any space. if (!InRealOneof(type->field(i))) { int field_size = FieldSpaceUsed(type->field(i)); size = AlignTo(size, std::min(kSafeAlignment, field_size)); offsets[i] = size; size += field_size; } } // The oneofs. for (int i = 0; i < type->oneof_decl_count(); i++) { if (!type->oneof_decl(i)->is_synthetic()) { size = AlignTo(size, kSafeAlignment); offsets[type->field_count() + i] = size; size += kMaxOneofUnionSize; } } type_info->weak_field_map_offset = -1; // Align the final size to make sure no clever allocators think that // alignment is not necessary. type_info->size = size; // Construct the reflection object. // Compute the size of default oneof instance and offsets of default // oneof fields. for (int i = 0; i < type->oneof_decl_count(); i++) { if (type->oneof_decl(i)->is_synthetic()) continue; for (int j = 0; j < type->oneof_decl(i)->field_count(); j++) { const FieldDescriptor* field = type->oneof_decl(i)->field(j); // oneof fields are not accessed through offsets, but we still have the // entry from a legacy implementation. This should be removed at some // point. // Mark the field to prevent unintentional access through reflection. // Don't use the top bit because that is for unused fields. offsets[field->index()] = internal::kInvalidFieldOffsetTag; } } // Allocate the prototype fields. void* base = operator new(size); memset(base, 0, size); // We have already locked the factory so we should not lock in the constructor // of dynamic message to avoid dead lock. DynamicMessage* prototype = new (base) DynamicMessage(type_info, false); internal::ReflectionSchema schema = { type_info->prototype, type_info->offsets.get(), type_info->has_bits_indices.get(), type_info->has_bits_offset, PROTOBUF_FIELD_OFFSET(DynamicMessage, _internal_metadata_), type_info->extensions_offset, type_info->oneof_case_offset, type_info->size, type_info->weak_field_map_offset, nullptr /* inlined_string_indices_ */, 0 /* inlined_string_donated_offset_ */}; type_info->reflection.reset( new Reflection(type_info->type, schema, type_info->pool, this)); // Cross link prototypes. prototype->CrossLinkPrototypes(); return prototype; } } // namespace protobuf } // namespace google #include // NOLINT