diff options
Diffstat (limited to 'NorthstarDedicatedTest/include/protobuf/extension_set.h')
-rw-r--r-- | NorthstarDedicatedTest/include/protobuf/extension_set.h | 1560 |
1 files changed, 1560 insertions, 0 deletions
diff --git a/NorthstarDedicatedTest/include/protobuf/extension_set.h b/NorthstarDedicatedTest/include/protobuf/extension_set.h new file mode 100644 index 00000000..a7159916 --- /dev/null +++ b/NorthstarDedicatedTest/include/protobuf/extension_set.h @@ -0,0 +1,1560 @@ +// Protocol Buffers - Google's data interchange format +// Copyright 2008 Google Inc. All rights reserved. +// https://developers.google.com/protocol-buffers/ +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +// Author: kenton@google.com (Kenton Varda) +// Based on original Protocol Buffers design by +// Sanjay Ghemawat, Jeff Dean, and others. +// +// This header is logically internal, but is made public because it is used +// from protocol-compiler-generated code, which may reside in other components. + +#ifndef GOOGLE_PROTOBUF_EXTENSION_SET_H__ +#define GOOGLE_PROTOBUF_EXTENSION_SET_H__ + +#include <algorithm> +#include <cassert> +#include <map> +#include <string> +#include <utility> +#include <vector> + +#include <stubs/common.h> +#include <stubs/logging.h> +#include <parse_context.h> +#include <io/coded_stream.h> +#include <port.h> +#include <repeated_field.h> +#include <wire_format_lite.h> + +// clang-format off +#include <port_def.inc> // Must be last +// clang-format on + +#ifdef SWIG +#error "You cannot SWIG proto headers" +#endif + +namespace google { +namespace protobuf { +class Arena; +class Descriptor; // descriptor.h +class FieldDescriptor; // descriptor.h +class DescriptorPool; // descriptor.h +class MessageLite; // message_lite.h +class Message; // message.h +class MessageFactory; // message.h +class Reflection; // message.h +class UnknownFieldSet; // unknown_field_set.h +namespace internal { +class FieldSkipper; // wire_format_lite.h +} // namespace internal +} // namespace protobuf +} // namespace google + +namespace google { +namespace protobuf { +namespace internal { + +class InternalMetadata; + +// Used to store values of type WireFormatLite::FieldType without having to +// #include wire_format_lite.h. Also, ensures that we use only one byte to +// store these values, which is important to keep the layout of +// ExtensionSet::Extension small. +typedef uint8_t FieldType; + +// A function which, given an integer value, returns true if the number +// matches one of the defined values for the corresponding enum type. This +// is used with RegisterEnumExtension, below. +typedef bool EnumValidityFunc(int number); + +// Version of the above which takes an argument. This is needed to deal with +// extensions that are not compiled in. +typedef bool EnumValidityFuncWithArg(const void* arg, int number); + +// Information about a registered extension. +struct ExtensionInfo { + constexpr ExtensionInfo() : enum_validity_check() {} + constexpr ExtensionInfo(const MessageLite* extendee, int param_number, + FieldType type_param, bool isrepeated, bool ispacked) + : message(extendee), + number(param_number), + type(type_param), + is_repeated(isrepeated), + is_packed(ispacked), + enum_validity_check() {} + + const MessageLite* message = nullptr; + int number = 0; + + FieldType type = 0; + bool is_repeated = false; + bool is_packed = false; + + struct EnumValidityCheck { + EnumValidityFuncWithArg* func; + const void* arg; + }; + + struct MessageInfo { + const MessageLite* prototype; + }; + + union { + EnumValidityCheck enum_validity_check; + MessageInfo message_info; + }; + + // The descriptor for this extension, if one exists and is known. May be + // nullptr. Must not be nullptr if the descriptor for the extension does not + // live in the same pool as the descriptor for the containing type. + const FieldDescriptor* descriptor = nullptr; +}; + +// Abstract interface for an object which looks up extension definitions. Used +// when parsing. +class PROTOBUF_EXPORT ExtensionFinder { + public: + virtual ~ExtensionFinder(); + + // Find the extension with the given containing type and number. + virtual bool Find(int number, ExtensionInfo* output) = 0; +}; + +// Implementation of ExtensionFinder which finds extensions defined in .proto +// files which have been compiled into the binary. +class PROTOBUF_EXPORT GeneratedExtensionFinder : public ExtensionFinder { + public: + explicit GeneratedExtensionFinder(const MessageLite* extendee) + : extendee_(extendee) {} + ~GeneratedExtensionFinder() override {} + + // Returns true and fills in *output if found, otherwise returns false. + bool Find(int number, ExtensionInfo* output) override; + + private: + const MessageLite* extendee_; +}; + +// A FieldSkipper used for parsing MessageSet. +class MessageSetFieldSkipper; + +// Note: extension_set_heavy.cc defines DescriptorPoolExtensionFinder for +// finding extensions from a DescriptorPool. + +// This is an internal helper class intended for use within the protocol buffer +// library and generated classes. Clients should not use it directly. Instead, +// use the generated accessors such as GetExtension() of the class being +// extended. +// +// This class manages extensions for a protocol message object. The +// message's HasExtension(), GetExtension(), MutableExtension(), and +// ClearExtension() methods are just thin wrappers around the embedded +// ExtensionSet. When parsing, if a tag number is encountered which is +// inside one of the message type's extension ranges, the tag is passed +// off to the ExtensionSet for parsing. Etc. +class PROTOBUF_EXPORT ExtensionSet { + public: + constexpr ExtensionSet(); + explicit ExtensionSet(Arena* arena); + ~ExtensionSet(); + + // These are called at startup by protocol-compiler-generated code to + // register known extensions. The registrations are used by ParseField() + // to look up extensions for parsed field numbers. Note that dynamic parsing + // does not use ParseField(); only protocol-compiler-generated parsing + // methods do. + static void RegisterExtension(const MessageLite* extendee, int number, + FieldType type, bool is_repeated, + bool is_packed); + static void RegisterEnumExtension(const MessageLite* extendee, int number, + FieldType type, bool is_repeated, + bool is_packed, EnumValidityFunc* is_valid); + static void RegisterMessageExtension(const MessageLite* extendee, int number, + FieldType type, bool is_repeated, + bool is_packed, + const MessageLite* prototype); + + // ================================================================= + + // Add all fields which are currently present to the given vector. This + // is useful to implement Reflection::ListFields(). + void AppendToList(const Descriptor* extendee, const DescriptorPool* pool, + std::vector<const FieldDescriptor*>* output) const; + + // ================================================================= + // Accessors + // + // Generated message classes include type-safe templated wrappers around + // these methods. Generally you should use those rather than call these + // directly, unless you are doing low-level memory management. + // + // When calling any of these accessors, the extension number requested + // MUST exist in the DescriptorPool provided to the constructor. Otherwise, + // the method will fail an assert. Normally, though, you would not call + // these directly; you would either call the generated accessors of your + // message class (e.g. GetExtension()) or you would call the accessors + // of the reflection interface. In both cases, it is impossible to + // trigger this assert failure: the generated accessors only accept + // linked-in extension types as parameters, while the Reflection interface + // requires you to provide the FieldDescriptor describing the extension. + // + // When calling any of these accessors, a protocol-compiler-generated + // implementation of the extension corresponding to the number MUST + // be linked in, and the FieldDescriptor used to refer to it MUST be + // the one generated by that linked-in code. Otherwise, the method will + // die on an assert failure. The message objects returned by the message + // accessors are guaranteed to be of the correct linked-in type. + // + // These methods pretty much match Reflection except that: + // - They're not virtual. + // - They identify fields by number rather than FieldDescriptors. + // - They identify enum values using integers rather than descriptors. + // - Strings provide Mutable() in addition to Set() accessors. + + bool Has(int number) const; + int ExtensionSize(int number) const; // Size of a repeated extension. + int NumExtensions() const; // The number of extensions + FieldType ExtensionType(int number) const; + void ClearExtension(int number); + + // singular fields ------------------------------------------------- + + int32_t GetInt32(int number, int32_t default_value) const; + int64_t GetInt64(int number, int64_t default_value) const; + uint32_t GetUInt32(int number, uint32_t default_value) const; + uint64_t GetUInt64(int number, uint64_t default_value) const; + float GetFloat(int number, float default_value) const; + double GetDouble(int number, double default_value) const; + bool GetBool(int number, bool default_value) const; + int GetEnum(int number, int default_value) const; + const std::string& GetString(int number, + const std::string& default_value) const; + const MessageLite& GetMessage(int number, + const MessageLite& default_value) const; + const MessageLite& GetMessage(int number, const Descriptor* message_type, + MessageFactory* factory) const; + + // |descriptor| may be nullptr so long as it is known that the descriptor for + // the extension lives in the same pool as the descriptor for the containing + // type. +#define desc const FieldDescriptor* descriptor // avoid line wrapping + void SetInt32(int number, FieldType type, int32_t value, desc); + void SetInt64(int number, FieldType type, int64_t value, desc); + void SetUInt32(int number, FieldType type, uint32_t value, desc); + void SetUInt64(int number, FieldType type, uint64_t value, desc); + void SetFloat(int number, FieldType type, float value, desc); + void SetDouble(int number, FieldType type, double value, desc); + void SetBool(int number, FieldType type, bool value, desc); + void SetEnum(int number, FieldType type, int value, desc); + void SetString(int number, FieldType type, std::string value, desc); + std::string* MutableString(int number, FieldType type, desc); + MessageLite* MutableMessage(int number, FieldType type, + const MessageLite& prototype, desc); + MessageLite* MutableMessage(const FieldDescriptor* descriptor, + MessageFactory* factory); + // Adds the given message to the ExtensionSet, taking ownership of the + // message object. Existing message with the same number will be deleted. + // If "message" is nullptr, this is equivalent to "ClearExtension(number)". + void SetAllocatedMessage(int number, FieldType type, + const FieldDescriptor* descriptor, + MessageLite* message); + void UnsafeArenaSetAllocatedMessage(int number, FieldType type, + const FieldDescriptor* descriptor, + MessageLite* message); + PROTOBUF_NODISCARD MessageLite* ReleaseMessage(int number, + const MessageLite& prototype); + MessageLite* UnsafeArenaReleaseMessage(int number, + const MessageLite& prototype); + + PROTOBUF_NODISCARD MessageLite* ReleaseMessage( + const FieldDescriptor* descriptor, MessageFactory* factory); + MessageLite* UnsafeArenaReleaseMessage(const FieldDescriptor* descriptor, + MessageFactory* factory); +#undef desc + Arena* GetArena() const { return arena_; } + + // repeated fields ------------------------------------------------- + + // Fetches a RepeatedField extension by number; returns |default_value| + // if no such extension exists. User should not touch this directly; it is + // used by the GetRepeatedExtension() method. + const void* GetRawRepeatedField(int number, const void* default_value) const; + // Fetches a mutable version of a RepeatedField extension by number, + // instantiating one if none exists. Similar to above, user should not use + // this directly; it underlies MutableRepeatedExtension(). + void* MutableRawRepeatedField(int number, FieldType field_type, bool packed, + const FieldDescriptor* desc); + + // This is an overload of MutableRawRepeatedField to maintain compatibility + // with old code using a previous API. This version of + // MutableRawRepeatedField() will GOOGLE_CHECK-fail on a missing extension. + // (E.g.: borg/clients/internal/proto1/proto2_reflection.cc.) + void* MutableRawRepeatedField(int number); + + int32_t GetRepeatedInt32(int number, int index) const; + int64_t GetRepeatedInt64(int number, int index) const; + uint32_t GetRepeatedUInt32(int number, int index) const; + uint64_t GetRepeatedUInt64(int number, int index) const; + float GetRepeatedFloat(int number, int index) const; + double GetRepeatedDouble(int number, int index) const; + bool GetRepeatedBool(int number, int index) const; + int GetRepeatedEnum(int number, int index) const; + const std::string& GetRepeatedString(int number, int index) const; + const MessageLite& GetRepeatedMessage(int number, int index) const; + + void SetRepeatedInt32(int number, int index, int32_t value); + void SetRepeatedInt64(int number, int index, int64_t value); + void SetRepeatedUInt32(int number, int index, uint32_t value); + void SetRepeatedUInt64(int number, int index, uint64_t value); + void SetRepeatedFloat(int number, int index, float value); + void SetRepeatedDouble(int number, int index, double value); + void SetRepeatedBool(int number, int index, bool value); + void SetRepeatedEnum(int number, int index, int value); + void SetRepeatedString(int number, int index, std::string value); + std::string* MutableRepeatedString(int number, int index); + MessageLite* MutableRepeatedMessage(int number, int index); + +#define desc const FieldDescriptor* descriptor // avoid line wrapping + void AddInt32(int number, FieldType type, bool packed, int32_t value, desc); + void AddInt64(int number, FieldType type, bool packed, int64_t value, desc); + void AddUInt32(int number, FieldType type, bool packed, uint32_t value, desc); + void AddUInt64(int number, FieldType type, bool packed, uint64_t value, desc); + void AddFloat(int number, FieldType type, bool packed, float value, desc); + void AddDouble(int number, FieldType type, bool packed, double value, desc); + void AddBool(int number, FieldType type, bool packed, bool value, desc); + void AddEnum(int number, FieldType type, bool packed, int value, desc); + void AddString(int number, FieldType type, std::string value, desc); + std::string* AddString(int number, FieldType type, desc); + MessageLite* AddMessage(int number, FieldType type, + const MessageLite& prototype, desc); + MessageLite* AddMessage(const FieldDescriptor* descriptor, + MessageFactory* factory); + void AddAllocatedMessage(const FieldDescriptor* descriptor, + MessageLite* new_entry); + void UnsafeArenaAddAllocatedMessage(const FieldDescriptor* descriptor, + MessageLite* new_entry); +#undef desc + + void RemoveLast(int number); + PROTOBUF_NODISCARD MessageLite* ReleaseLast(int number); + MessageLite* UnsafeArenaReleaseLast(int number); + void SwapElements(int number, int index1, int index2); + + // ----------------------------------------------------------------- + // TODO(kenton): Hardcore memory management accessors + + // ================================================================= + // convenience methods for implementing methods of Message + // + // These could all be implemented in terms of the other methods of this + // class, but providing them here helps keep the generated code size down. + + void Clear(); + void MergeFrom(const MessageLite* extendee, const ExtensionSet& other); + void Swap(const MessageLite* extendee, ExtensionSet* other); + void InternalSwap(ExtensionSet* other); + void SwapExtension(const MessageLite* extendee, ExtensionSet* other, + int number); + void UnsafeShallowSwapExtension(ExtensionSet* other, int number); + bool IsInitialized() const; + + // Parses a single extension from the input. The input should start out + // positioned immediately after the tag. + bool ParseField(uint32_t tag, io::CodedInputStream* input, + ExtensionFinder* extension_finder, + FieldSkipper* field_skipper); + + // Specific versions for lite or full messages (constructs the appropriate + // FieldSkipper automatically). |extendee| is the default + // instance for the containing message; it is used only to look up the + // extension by number. See RegisterExtension(), above. Unlike the other + // methods of ExtensionSet, this only works for generated message types -- + // it looks up extensions registered using RegisterExtension(). + bool ParseField(uint32_t tag, io::CodedInputStream* input, + const MessageLite* extendee); + bool ParseField(uint32_t tag, io::CodedInputStream* input, + const Message* extendee, UnknownFieldSet* unknown_fields); + bool ParseField(uint32_t tag, io::CodedInputStream* input, + const MessageLite* extendee, + io::CodedOutputStream* unknown_fields); + + // Lite parser + const char* ParseField(uint64_t tag, const char* ptr, + const MessageLite* extendee, + internal::InternalMetadata* metadata, + internal::ParseContext* ctx); + // Full parser + const char* ParseField(uint64_t tag, const char* ptr, const Message* extendee, + internal::InternalMetadata* metadata, + internal::ParseContext* ctx); + template <typename Msg> + const char* ParseMessageSet(const char* ptr, const Msg* extendee, + InternalMetadata* metadata, + internal::ParseContext* ctx) { + struct MessageSetItem { + const char* _InternalParse(const char* ptr, ParseContext* ctx) { + return me->ParseMessageSetItem(ptr, extendee, metadata, ctx); + } + ExtensionSet* me; + const Msg* extendee; + InternalMetadata* metadata; + } item{this, extendee, metadata}; + while (!ctx->Done(&ptr)) { + uint32_t tag; + ptr = ReadTag(ptr, &tag); + GOOGLE_PROTOBUF_PARSER_ASSERT(ptr); + if (tag == WireFormatLite::kMessageSetItemStartTag) { + ptr = ctx->ParseGroup(&item, ptr, tag); + GOOGLE_PROTOBUF_PARSER_ASSERT(ptr); + } else { + if (tag == 0 || (tag & 7) == 4) { + ctx->SetLastTag(tag); + return ptr; + } + ptr = ParseField(tag, ptr, extendee, metadata, ctx); + GOOGLE_PROTOBUF_PARSER_ASSERT(ptr); + } + } + return ptr; + } + + // Parse an entire message in MessageSet format. Such messages have no + // fields, only extensions. + bool ParseMessageSetLite(io::CodedInputStream* input, + ExtensionFinder* extension_finder, + FieldSkipper* field_skipper); + bool ParseMessageSet(io::CodedInputStream* input, + ExtensionFinder* extension_finder, + MessageSetFieldSkipper* field_skipper); + + // Specific versions for lite or full messages (constructs the appropriate + // FieldSkipper automatically). + bool ParseMessageSet(io::CodedInputStream* input, const MessageLite* extendee, + std::string* unknown_fields); + bool ParseMessageSet(io::CodedInputStream* input, const Message* extendee, + UnknownFieldSet* unknown_fields); + + // Write all extension fields with field numbers in the range + // [start_field_number, end_field_number) + // to the output stream, using the cached sizes computed when ByteSize() was + // last called. Note that the range bounds are inclusive-exclusive. + void SerializeWithCachedSizes(const MessageLite* extendee, + int start_field_number, int end_field_number, + io::CodedOutputStream* output) const { + output->SetCur(_InternalSerialize(extendee, start_field_number, + end_field_number, output->Cur(), + output->EpsCopy())); + } + + // Same as SerializeWithCachedSizes, but without any bounds checking. + // The caller must ensure that target has sufficient capacity for the + // serialized extensions. + // + // Returns a pointer past the last written byte. + + uint8_t* _InternalSerialize(const MessageLite* extendee, + int start_field_number, int end_field_number, + uint8_t* target, + io::EpsCopyOutputStream* stream) const { + if (flat_size_ == 0) { + assert(!is_large()); + return target; + } + return _InternalSerializeImpl(extendee, start_field_number, + end_field_number, target, stream); + } + + // Like above but serializes in MessageSet format. + void SerializeMessageSetWithCachedSizes(const MessageLite* extendee, + io::CodedOutputStream* output) const { + output->SetCur(InternalSerializeMessageSetWithCachedSizesToArray( + extendee, output->Cur(), output->EpsCopy())); + } + uint8_t* InternalSerializeMessageSetWithCachedSizesToArray( + const MessageLite* extendee, uint8_t* target, + io::EpsCopyOutputStream* stream) const; + + // For backward-compatibility, versions of two of the above methods that + // serialize deterministically iff SetDefaultSerializationDeterministic() + // has been called. + uint8_t* SerializeWithCachedSizesToArray(int start_field_number, + int end_field_number, + uint8_t* target) const; + uint8_t* SerializeMessageSetWithCachedSizesToArray( + const MessageLite* extendee, uint8_t* target) const; + + // Returns the total serialized size of all the extensions. + size_t ByteSize() const; + + // Like ByteSize() but uses MessageSet format. + size_t MessageSetByteSize() const; + + // Returns (an estimate of) the total number of bytes used for storing the + // extensions in memory, excluding sizeof(*this). If the ExtensionSet is + // for a lite message (and thus possibly contains lite messages), the results + // are undefined (might work, might crash, might corrupt data, might not even + // be linked in). It's up to the protocol compiler to avoid calling this on + // such ExtensionSets (easy enough since lite messages don't implement + // SpaceUsed()). + size_t SpaceUsedExcludingSelfLong() const; + + // This method just calls SpaceUsedExcludingSelfLong() but it can not be + // inlined because the definition of SpaceUsedExcludingSelfLong() is not + // included in lite runtime and when an inline method refers to it MSVC + // will complain about unresolved symbols when building the lite runtime + // as .dll. + int SpaceUsedExcludingSelf() const; + + private: + template <typename Type> + friend class PrimitiveTypeTraits; + + template <typename Type> + friend class RepeatedPrimitiveTypeTraits; + + template <typename Type, bool IsValid(int)> + friend class EnumTypeTraits; + + template <typename Type, bool IsValid(int)> + friend class RepeatedEnumTypeTraits; + + friend class google::protobuf::Reflection; + + const int32_t& GetRefInt32(int number, const int32_t& default_value) const; + const int64_t& GetRefInt64(int number, const int64_t& default_value) const; + const uint32_t& GetRefUInt32(int number, const uint32_t& default_value) const; + const uint64_t& GetRefUInt64(int number, const uint64_t& default_value) const; + const float& GetRefFloat(int number, const float& default_value) const; + const double& GetRefDouble(int number, const double& default_value) const; + const bool& GetRefBool(int number, const bool& default_value) const; + const int& GetRefEnum(int number, const int& default_value) const; + const int32_t& GetRefRepeatedInt32(int number, int index) const; + const int64_t& GetRefRepeatedInt64(int number, int index) const; + const uint32_t& GetRefRepeatedUInt32(int number, int index) const; + const uint64_t& GetRefRepeatedUInt64(int number, int index) const; + const float& GetRefRepeatedFloat(int number, int index) const; + const double& GetRefRepeatedDouble(int number, int index) const; + const bool& GetRefRepeatedBool(int number, int index) const; + const int& GetRefRepeatedEnum(int number, int index) const; + + // Implementation of _InternalSerialize for non-empty map_. + uint8_t* _InternalSerializeImpl(const MessageLite* extendee, + int start_field_number, int end_field_number, + uint8_t* target, + io::EpsCopyOutputStream* stream) const; + // Interface of a lazily parsed singular message extension. + class PROTOBUF_EXPORT LazyMessageExtension { + public: + LazyMessageExtension() {} + virtual ~LazyMessageExtension() {} + + virtual LazyMessageExtension* New(Arena* arena) const = 0; + virtual const MessageLite& GetMessage(const MessageLite& prototype, + Arena* arena) const = 0; + virtual MessageLite* MutableMessage(const MessageLite& prototype, + Arena* arena) = 0; + virtual void SetAllocatedMessage(MessageLite* message, Arena* arena) = 0; + virtual void UnsafeArenaSetAllocatedMessage(MessageLite* message, + Arena* arena) = 0; + PROTOBUF_NODISCARD virtual MessageLite* ReleaseMessage( + const MessageLite& prototype, Arena* arena) = 0; + virtual MessageLite* UnsafeArenaReleaseMessage(const MessageLite& prototype, + Arena* arena) = 0; + + virtual bool IsInitialized() const = 0; + + PROTOBUF_DEPRECATED_MSG("Please use ByteSizeLong() instead") + virtual int ByteSize() const { return internal::ToIntSize(ByteSizeLong()); } + virtual size_t ByteSizeLong() const = 0; + virtual size_t SpaceUsedLong() const = 0; + + virtual void MergeFrom(const MessageLite* prototype, + const LazyMessageExtension& other, Arena* arena) = 0; + virtual void MergeFromMessage(const MessageLite& msg, Arena* arena) = 0; + virtual void Clear() = 0; + + virtual bool ReadMessage(const MessageLite& prototype, + io::CodedInputStream* input) = 0; + virtual const char* _InternalParse(const Message& prototype, Arena* arena, + const char* ptr, ParseContext* ctx) = 0; + virtual uint8_t* WriteMessageToArray( + const MessageLite* prototype, int number, uint8_t* target, + io::EpsCopyOutputStream* stream) const = 0; + + private: + virtual void UnusedKeyMethod(); // Dummy key method to avoid weak vtable. + + GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(LazyMessageExtension); + }; + // Give access to function defined below to see LazyMessageExtension. + friend LazyMessageExtension* MaybeCreateLazyExtension(Arena* arena); + struct Extension { + // The order of these fields packs Extension into 24 bytes when using 8 + // byte alignment. Consider this when adding or removing fields here. + union { + int32_t int32_t_value; + int64_t int64_t_value; + uint32_t uint32_t_value; + uint64_t uint64_t_value; + float float_value; + double double_value; + bool bool_value; + int enum_value; + std::string* string_value; + MessageLite* message_value; + LazyMessageExtension* lazymessage_value; + + RepeatedField<int32_t>* repeated_int32_t_value; + RepeatedField<int64_t>* repeated_int64_t_value; + RepeatedField<uint32_t>* repeated_uint32_t_value; + RepeatedField<uint64_t>* repeated_uint64_t_value; + RepeatedField<float>* repeated_float_value; + RepeatedField<double>* repeated_double_value; + RepeatedField<bool>* repeated_bool_value; + RepeatedField<int>* repeated_enum_value; + RepeatedPtrField<std::string>* repeated_string_value; + RepeatedPtrField<MessageLite>* repeated_message_value; + }; + + FieldType type; + bool is_repeated; + + // For singular types, indicates if the extension is "cleared". This + // happens when an extension is set and then later cleared by the caller. + // We want to keep the Extension object around for reuse, so instead of + // removing it from the map, we just set is_cleared = true. This has no + // meaning for repeated types; for those, the size of the RepeatedField + // simply becomes zero when cleared. + bool is_cleared : 4; + + // For singular message types, indicates whether lazy parsing is enabled + // for this extension. This field is only valid when type == TYPE_MESSAGE + // and !is_repeated because we only support lazy parsing for singular + // message types currently. If is_lazy = true, the extension is stored in + // lazymessage_value. Otherwise, the extension will be message_value. + bool is_lazy : 4; + + // For repeated types, this indicates if the [packed=true] option is set. + bool is_packed; + + // For packed fields, the size of the packed data is recorded here when + // ByteSize() is called then used during serialization. + // TODO(kenton): Use atomic<int> when C++ supports it. + mutable int cached_size; + + // The descriptor for this extension, if one exists and is known. May be + // nullptr. Must not be nullptr if the descriptor for the extension does + // not live in the same pool as the descriptor for the containing type. + const FieldDescriptor* descriptor; + + // Some helper methods for operations on a single Extension. + uint8_t* InternalSerializeFieldWithCachedSizesToArray( + const MessageLite* extendee, const ExtensionSet* extension_set, + int number, uint8_t* target, io::EpsCopyOutputStream* stream) const; + uint8_t* InternalSerializeMessageSetItemWithCachedSizesToArray( + const MessageLite* extendee, const ExtensionSet* extension_set, + int number, uint8_t* target, io::EpsCopyOutputStream* stream) const; + size_t ByteSize(int number) const; + size_t MessageSetItemByteSize(int number) const; + void Clear(); + int GetSize() const; + void Free(); + size_t SpaceUsedExcludingSelfLong() const; + bool IsInitialized() const; + }; + + // The Extension struct is small enough to be passed by value, so we use it + // directly as the value type in mappings rather than use pointers. We use + // sorted maps rather than hash-maps because we expect most ExtensionSets will + // only contain a small number of extension. Also, we want AppendToList and + // deterministic serialization to order fields by field number. + + struct KeyValue { + int first; + Extension second; + + struct FirstComparator { + bool operator()(const KeyValue& lhs, const KeyValue& rhs) const { + return lhs.first < rhs.first; + } + bool operator()(const KeyValue& lhs, int key) const { + return lhs.first < key; + } + bool operator()(int key, const KeyValue& rhs) const { + return key < rhs.first; + } + }; + }; + + typedef std::map<int, Extension> LargeMap; + + // Wrapper API that switches between flat-map and LargeMap. + + // Finds a key (if present) in the ExtensionSet. + const Extension* FindOrNull(int key) const; + Extension* FindOrNull(int key); + + // Helper-functions that only inspect the LargeMap. + const Extension* FindOrNullInLargeMap(int key) const; + Extension* FindOrNullInLargeMap(int key); + + // Inserts a new (key, Extension) into the ExtensionSet (and returns true), or + // finds the already-existing Extension for that key (returns false). + // The Extension* will point to the new-or-found Extension. + std::pair<Extension*, bool> Insert(int key); + + // Grows the flat_capacity_. + // If flat_capacity_ > kMaximumFlatCapacity, converts to LargeMap. + void GrowCapacity(size_t minimum_new_capacity); + static constexpr uint16_t kMaximumFlatCapacity = 256; + bool is_large() const { return static_cast<int16_t>(flat_size_) < 0; } + + // Removes a key from the ExtensionSet. + void Erase(int key); + + size_t Size() const { + return PROTOBUF_PREDICT_FALSE(is_large()) ? map_.large->size() : flat_size_; + } + + // Similar to std::for_each. + // Each Iterator is decomposed into ->first and ->second fields, so + // that the KeyValueFunctor can be agnostic vis-a-vis KeyValue-vs-std::pair. + template <typename Iterator, typename KeyValueFunctor> + static KeyValueFunctor ForEach(Iterator begin, Iterator end, + KeyValueFunctor func) { + for (Iterator it = begin; it != end; ++it) func(it->first, it->second); + return std::move(func); + } + + // Applies a functor to the <int, Extension&> pairs in sorted order. + template <typename KeyValueFunctor> + KeyValueFunctor ForEach(KeyValueFunctor func) { + if (PROTOBUF_PREDICT_FALSE(is_large())) { + return ForEach(map_.large->begin(), map_.large->end(), std::move(func)); + } + return ForEach(flat_begin(), flat_end(), std::move(func)); + } + + // Applies a functor to the <int, const Extension&> pairs in sorted order. + template <typename KeyValueFunctor> + KeyValueFunctor ForEach(KeyValueFunctor func) const { + if (PROTOBUF_PREDICT_FALSE(is_large())) { + return ForEach(map_.large->begin(), map_.large->end(), std::move(func)); + } + return ForEach(flat_begin(), flat_end(), std::move(func)); + } + + // Merges existing Extension from other_extension + void InternalExtensionMergeFrom(const MessageLite* extendee, int number, + const Extension& other_extension, + Arena* other_arena); + + // Returns true and fills field_number and extension if extension is found. + // Note to support packed repeated field compatibility, it also fills whether + // the tag on wire is packed, which can be different from + // extension->is_packed (whether packed=true is specified). + bool FindExtensionInfoFromTag(uint32_t tag, ExtensionFinder* extension_finder, + int* field_number, ExtensionInfo* extension, + bool* was_packed_on_wire); + + // Returns true and fills extension if extension is found. + // Note to support packed repeated field compatibility, it also fills whether + // the tag on wire is packed, which can be different from + // extension->is_packed (whether packed=true is specified). + bool FindExtensionInfoFromFieldNumber(int wire_type, int field_number, + ExtensionFinder* extension_finder, + ExtensionInfo* extension, + bool* was_packed_on_wire) const; + + // Find the prototype for a LazyMessage from the extension registry. Returns + // null if the extension is not found. + const MessageLite* GetPrototypeForLazyMessage(const MessageLite* extendee, + int number) const; + + // Parses a single extension from the input. The input should start out + // positioned immediately after the wire tag. This method is called in + // ParseField() after field number and was_packed_on_wire is extracted from + // the wire tag and ExtensionInfo is found by the field number. + bool ParseFieldWithExtensionInfo(int field_number, bool was_packed_on_wire, + const ExtensionInfo& extension, + io::CodedInputStream* input, + FieldSkipper* field_skipper); + + // Like ParseField(), but this method may parse singular message extensions + // lazily depending on the value of FLAGS_eagerly_parse_message_sets. + bool ParseFieldMaybeLazily(int wire_type, int field_number, + io::CodedInputStream* input, + ExtensionFinder* extension_finder, + MessageSetFieldSkipper* field_skipper); + + // Returns true if extension is present and lazy. + bool HasLazy(int number) const; + + // Gets the extension with the given number, creating it if it does not + // already exist. Returns true if the extension did not already exist. + bool MaybeNewExtension(int number, const FieldDescriptor* descriptor, + Extension** result); + + // Gets the repeated extension for the given descriptor, creating it if + // it does not exist. + Extension* MaybeNewRepeatedExtension(const FieldDescriptor* descriptor); + + // Parse a single MessageSet item -- called just after the item group start + // tag has been read. + bool ParseMessageSetItemLite(io::CodedInputStream* input, + ExtensionFinder* extension_finder, + FieldSkipper* field_skipper); + // Parse a single MessageSet item -- called just after the item group start + // tag has been read. + bool ParseMessageSetItem(io::CodedInputStream* input, + ExtensionFinder* extension_finder, + MessageSetFieldSkipper* field_skipper); + + bool FindExtension(int wire_type, uint32_t field, const MessageLite* extendee, + const internal::ParseContext* /*ctx*/, + ExtensionInfo* extension, bool* was_packed_on_wire) { + GeneratedExtensionFinder finder(extendee); + return FindExtensionInfoFromFieldNumber(wire_type, field, &finder, + extension, was_packed_on_wire); + } + inline bool FindExtension(int wire_type, uint32_t field, + const Message* extendee, + const internal::ParseContext* ctx, + ExtensionInfo* extension, bool* was_packed_on_wire); + // Used for MessageSet only + const char* ParseFieldMaybeLazily(uint64_t tag, const char* ptr, + const MessageLite* extendee, + internal::InternalMetadata* metadata, + internal::ParseContext* ctx) { + // Lite MessageSet doesn't implement lazy. + return ParseField(tag, ptr, extendee, metadata, ctx); + } + const char* ParseFieldMaybeLazily(uint64_t tag, const char* ptr, + const Message* extendee, + internal::InternalMetadata* metadata, + internal::ParseContext* ctx); + const char* ParseMessageSetItem(const char* ptr, const MessageLite* extendee, + internal::InternalMetadata* metadata, + internal::ParseContext* ctx); + const char* ParseMessageSetItem(const char* ptr, const Message* extendee, + internal::InternalMetadata* metadata, + internal::ParseContext* ctx); + + // Implemented in extension_set_inl.h to keep code out of the header file. + template <typename T> + const char* ParseFieldWithExtensionInfo(int number, bool was_packed_on_wire, + const ExtensionInfo& info, + internal::InternalMetadata* metadata, + const char* ptr, + internal::ParseContext* ctx); + template <typename Msg, typename T> + const char* ParseMessageSetItemTmpl(const char* ptr, const Msg* extendee, + internal::InternalMetadata* metadata, + internal::ParseContext* ctx); + + // Hack: RepeatedPtrFieldBase declares ExtensionSet as a friend. This + // friendship should automatically extend to ExtensionSet::Extension, but + // unfortunately some older compilers (e.g. GCC 3.4.4) do not implement this + // correctly. So, we must provide helpers for calling methods of that + // class. + + // Defined in extension_set_heavy.cc. + static inline size_t RepeatedMessage_SpaceUsedExcludingSelfLong( + RepeatedPtrFieldBase* field); + + KeyValue* flat_begin() { + assert(!is_large()); + return map_.flat; + } + const KeyValue* flat_begin() const { + assert(!is_large()); + return map_.flat; + } + KeyValue* flat_end() { + assert(!is_large()); + return map_.flat + flat_size_; + } + const KeyValue* flat_end() const { + assert(!is_large()); + return map_.flat + flat_size_; + } + + Arena* arena_; + + // Manual memory-management: + // map_.flat is an allocated array of flat_capacity_ elements. + // [map_.flat, map_.flat + flat_size_) is the currently-in-use prefix. + uint16_t flat_capacity_; + uint16_t flat_size_; // negative int16_t(flat_size_) indicates is_large() + union AllocatedData { + KeyValue* flat; + + // If flat_capacity_ > kMaximumFlatCapacity, switch to LargeMap, + // which guarantees O(n lg n) CPU but larger constant factors. + LargeMap* large; + } map_; + + static void DeleteFlatMap(const KeyValue* flat, uint16_t flat_capacity); + + GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(ExtensionSet); +}; + +constexpr ExtensionSet::ExtensionSet() + : arena_(nullptr), flat_capacity_(0), flat_size_(0), map_{nullptr} {} + +// These are just for convenience... +inline void ExtensionSet::SetString(int number, FieldType type, + std::string value, + const FieldDescriptor* descriptor) { + MutableString(number, type, descriptor)->assign(std::move(value)); +} +inline void ExtensionSet::SetRepeatedString(int number, int index, + std::string value) { + MutableRepeatedString(number, index)->assign(std::move(value)); +} +inline void ExtensionSet::AddString(int number, FieldType type, + std::string value, + const FieldDescriptor* descriptor) { + AddString(number, type, descriptor)->assign(std::move(value)); +} +// =================================================================== +// Glue for generated extension accessors + +// ------------------------------------------------------------------- +// Template magic + +// First we have a set of classes representing "type traits" for different +// field types. A type traits class knows how to implement basic accessors +// for extensions of a particular type given an ExtensionSet. The signature +// for a type traits class looks like this: +// +// class TypeTraits { +// public: +// typedef ? ConstType; +// typedef ? MutableType; +// // TypeTraits for singular fields and repeated fields will define the +// // symbol "Singular" or "Repeated" respectively. These two symbols will +// // be used in extension accessors to distinguish between singular +// // extensions and repeated extensions. If the TypeTraits for the passed +// // in extension doesn't have the expected symbol defined, it means the +// // user is passing a repeated extension to a singular accessor, or the +// // opposite. In that case the C++ compiler will generate an error +// // message "no matching member function" to inform the user. +// typedef ? Singular +// typedef ? Repeated +// +// static inline ConstType Get(int number, const ExtensionSet& set); +// static inline void Set(int number, ConstType value, ExtensionSet* set); +// static inline MutableType Mutable(int number, ExtensionSet* set); +// +// // Variants for repeated fields. +// static inline ConstType Get(int number, const ExtensionSet& set, +// int index); +// static inline void Set(int number, int index, +// ConstType value, ExtensionSet* set); +// static inline MutableType Mutable(int number, int index, +// ExtensionSet* set); +// static inline void Add(int number, ConstType value, ExtensionSet* set); +// static inline MutableType Add(int number, ExtensionSet* set); +// This is used by the ExtensionIdentifier constructor to register +// the extension at dynamic initialization. +// template <typename ExtendeeT> +// static void Register(int number, FieldType type, bool is_packed); +// }; +// +// Not all of these methods make sense for all field types. For example, the +// "Mutable" methods only make sense for strings and messages, and the +// repeated methods only make sense for repeated types. So, each type +// traits class implements only the set of methods from this signature that it +// actually supports. This will cause a compiler error if the user tries to +// access an extension using a method that doesn't make sense for its type. +// For example, if "foo" is an extension of type "optional int32", then if you +// try to write code like: +// my_message.MutableExtension(foo) +// you will get a compile error because PrimitiveTypeTraits<int32_t> does not +// have a "Mutable()" method. + +// ------------------------------------------------------------------- +// PrimitiveTypeTraits + +// Since the ExtensionSet has different methods for each primitive type, +// we must explicitly define the methods of the type traits class for each +// known type. +template <typename Type> +class PrimitiveTypeTraits { + public: + typedef Type ConstType; + typedef Type MutableType; + typedef PrimitiveTypeTraits<Type> Singular; + + static inline ConstType Get(int number, const ExtensionSet& set, + ConstType default_value); + + static inline const ConstType* GetPtr(int number, const ExtensionSet& set, + const ConstType& default_value); + static inline void Set(int number, FieldType field_type, ConstType value, + ExtensionSet* set); + template <typename ExtendeeT> + static void Register(int number, FieldType type, bool is_packed) { + ExtensionSet::RegisterExtension(&ExtendeeT::default_instance(), number, + type, false, is_packed); + } +}; + +template <typename Type> +class RepeatedPrimitiveTypeTraits { + public: + typedef Type ConstType; + typedef Type MutableType; + typedef RepeatedPrimitiveTypeTraits<Type> Repeated; + + typedef RepeatedField<Type> RepeatedFieldType; + + static inline Type Get(int number, const ExtensionSet& set, int index); + static inline const Type* GetPtr(int number, const ExtensionSet& set, + int index); + static inline const RepeatedField<ConstType>* GetRepeatedPtr( + int number, const ExtensionSet& set); + static inline void Set(int number, int index, Type value, ExtensionSet* set); + static inline void Add(int number, FieldType field_type, bool is_packed, + Type value, ExtensionSet* set); + + static inline const RepeatedField<ConstType>& GetRepeated( + int number, const ExtensionSet& set); + static inline RepeatedField<Type>* MutableRepeated(int number, + FieldType field_type, + bool is_packed, + ExtensionSet* set); + + static const RepeatedFieldType* GetDefaultRepeatedField(); + template <typename ExtendeeT> + static void Register(int number, FieldType type, bool is_packed) { + ExtensionSet::RegisterExtension(&ExtendeeT::default_instance(), number, + type, true, is_packed); + } +}; + +class PROTOBUF_EXPORT RepeatedPrimitiveDefaults { + private: + template <typename Type> + friend class RepeatedPrimitiveTypeTraits; + static const RepeatedPrimitiveDefaults* default_instance(); + RepeatedField<int32_t> default_repeated_field_int32_t_; + RepeatedField<int64_t> default_repeated_field_int64_t_; + RepeatedField<uint32_t> default_repeated_field_uint32_t_; + RepeatedField<uint64_t> default_repeated_field_uint64_t_; + RepeatedField<double> default_repeated_field_double_; + RepeatedField<float> default_repeated_field_float_; + RepeatedField<bool> default_repeated_field_bool_; +}; + +#define PROTOBUF_DEFINE_PRIMITIVE_TYPE(TYPE, METHOD) \ + template <> \ + inline TYPE PrimitiveTypeTraits<TYPE>::Get( \ + int number, const ExtensionSet& set, TYPE default_value) { \ + return set.Get##METHOD(number, default_value); \ + } \ + template <> \ + inline const TYPE* PrimitiveTypeTraits<TYPE>::GetPtr( \ + int number, const ExtensionSet& set, const TYPE& default_value) { \ + return &set.GetRef##METHOD(number, default_value); \ + } \ + template <> \ + inline void PrimitiveTypeTraits<TYPE>::Set(int number, FieldType field_type, \ + TYPE value, ExtensionSet* set) { \ + set->Set##METHOD(number, field_type, value, nullptr); \ + } \ + \ + template <> \ + inline TYPE RepeatedPrimitiveTypeTraits<TYPE>::Get( \ + int number, const ExtensionSet& set, int index) { \ + return set.GetRepeated##METHOD(number, index); \ + } \ + template <> \ + inline const TYPE* RepeatedPrimitiveTypeTraits<TYPE>::GetPtr( \ + int number, const ExtensionSet& set, int index) { \ + return &set.GetRefRepeated##METHOD(number, index); \ + } \ + template <> \ + inline void RepeatedPrimitiveTypeTraits<TYPE>::Set( \ + int number, int index, TYPE value, ExtensionSet* set) { \ + set->SetRepeated##METHOD(number, index, value); \ + } \ + template <> \ + inline void RepeatedPrimitiveTypeTraits<TYPE>::Add( \ + int number, FieldType field_type, bool is_packed, TYPE value, \ + ExtensionSet* set) { \ + set->Add##METHOD(number, field_type, is_packed, value, nullptr); \ + } \ + template <> \ + inline const RepeatedField<TYPE>* \ + RepeatedPrimitiveTypeTraits<TYPE>::GetDefaultRepeatedField() { \ + return &RepeatedPrimitiveDefaults::default_instance() \ + ->default_repeated_field_##TYPE##_; \ + } \ + template <> \ + inline const RepeatedField<TYPE>& \ + RepeatedPrimitiveTypeTraits<TYPE>::GetRepeated(int number, \ + const ExtensionSet& set) { \ + return *reinterpret_cast<const RepeatedField<TYPE>*>( \ + set.GetRawRepeatedField(number, GetDefaultRepeatedField())); \ + } \ + template <> \ + inline const RepeatedField<TYPE>* \ + RepeatedPrimitiveTypeTraits<TYPE>::GetRepeatedPtr(int number, \ + const ExtensionSet& set) { \ + return &GetRepeated(number, set); \ + } \ + template <> \ + inline RepeatedField<TYPE>* \ + RepeatedPrimitiveTypeTraits<TYPE>::MutableRepeated( \ + int number, FieldType field_type, bool is_packed, ExtensionSet* set) { \ + return reinterpret_cast<RepeatedField<TYPE>*>( \ + set->MutableRawRepeatedField(number, field_type, is_packed, nullptr)); \ + } + +PROTOBUF_DEFINE_PRIMITIVE_TYPE(int32_t, Int32) +PROTOBUF_DEFINE_PRIMITIVE_TYPE(int64_t, Int64) +PROTOBUF_DEFINE_PRIMITIVE_TYPE(uint32_t, UInt32) +PROTOBUF_DEFINE_PRIMITIVE_TYPE(uint64_t, UInt64) +PROTOBUF_DEFINE_PRIMITIVE_TYPE(float, Float) +PROTOBUF_DEFINE_PRIMITIVE_TYPE(double, Double) +PROTOBUF_DEFINE_PRIMITIVE_TYPE(bool, Bool) + +#undef PROTOBUF_DEFINE_PRIMITIVE_TYPE + +// ------------------------------------------------------------------- +// StringTypeTraits + +// Strings support both Set() and Mutable(). +class PROTOBUF_EXPORT StringTypeTraits { + public: + typedef const std::string& ConstType; + typedef std::string* MutableType; + typedef StringTypeTraits Singular; + + static inline const std::string& Get(int number, const ExtensionSet& set, + ConstType default_value) { + return set.GetString(number, default_value); + } + static inline const std::string* GetPtr(int number, const ExtensionSet& set, + ConstType default_value) { + return &Get(number, set, default_value); + } + static inline void Set(int number, FieldType field_type, + const std::string& value, ExtensionSet* set) { + set->SetString(number, field_type, value, nullptr); + } + static inline std::string* Mutable(int number, FieldType field_type, + ExtensionSet* set) { + return set->MutableString(number, field_type, nullptr); + } + template <typename ExtendeeT> + static void Register(int number, FieldType type, bool is_packed) { + ExtensionSet::RegisterExtension(&ExtendeeT::default_instance(), number, + type, false, is_packed); + } +}; + +class PROTOBUF_EXPORT RepeatedStringTypeTraits { + public: + typedef const std::string& ConstType; + typedef std::string* MutableType; + typedef RepeatedStringTypeTraits Repeated; + + typedef RepeatedPtrField<std::string> RepeatedFieldType; + + static inline const std::string& Get(int number, const ExtensionSet& set, + int index) { + return set.GetRepeatedString(number, index); + } + static inline const std::string* GetPtr(int number, const ExtensionSet& set, + int index) { + return &Get(number, set, index); + } + static inline const RepeatedPtrField<std::string>* GetRepeatedPtr( + int number, const ExtensionSet& set) { + return &GetRepeated(number, set); + } + static inline void Set(int number, int index, const std::string& value, + ExtensionSet* set) { + set->SetRepeatedString(number, index, value); + } + static inline std::string* Mutable(int number, int index, ExtensionSet* set) { + return set->MutableRepeatedString(number, index); + } + static inline void Add(int number, FieldType field_type, bool /*is_packed*/, + const std::string& value, ExtensionSet* set) { + set->AddString(number, field_type, value, nullptr); + } + static inline std::string* Add(int number, FieldType field_type, + ExtensionSet* set) { + return set->AddString(number, field_type, nullptr); + } + static inline const RepeatedPtrField<std::string>& GetRepeated( + int number, const ExtensionSet& set) { + return *reinterpret_cast<const RepeatedPtrField<std::string>*>( + set.GetRawRepeatedField(number, GetDefaultRepeatedField())); + } + + static inline RepeatedPtrField<std::string>* MutableRepeated( + int number, FieldType field_type, bool is_packed, ExtensionSet* set) { + return reinterpret_cast<RepeatedPtrField<std::string>*>( + set->MutableRawRepeatedField(number, field_type, is_packed, nullptr)); + } + + static const RepeatedFieldType* GetDefaultRepeatedField(); + + template <typename ExtendeeT> + static void Register(int number, FieldType type, bool is_packed) { + ExtensionSet::RegisterExtension(&ExtendeeT::default_instance(), number, + type, true, is_packed); + } + + private: + static void InitializeDefaultRepeatedFields(); + static void DestroyDefaultRepeatedFields(); +}; + +// ------------------------------------------------------------------- +// EnumTypeTraits + +// ExtensionSet represents enums using integers internally, so we have to +// static_cast around. +template <typename Type, bool IsValid(int)> +class EnumTypeTraits { + public: + typedef Type ConstType; + typedef Type MutableType; + typedef EnumTypeTraits<Type, IsValid> Singular; + + static inline ConstType Get(int number, const ExtensionSet& set, + ConstType default_value) { + return static_cast<Type>(set.GetEnum(number, default_value)); + } + static inline const ConstType* GetPtr(int number, const ExtensionSet& set, + const ConstType& default_value) { + return reinterpret_cast<const Type*>( + &set.GetRefEnum(number, default_value)); + } + static inline void Set(int number, FieldType field_type, ConstType value, + ExtensionSet* set) { + GOOGLE_DCHECK(IsValid(value)); + set->SetEnum(number, field_type, value, nullptr); + } + template <typename ExtendeeT> + static void Register(int number, FieldType type, bool is_packed) { + ExtensionSet::RegisterEnumExtension(&ExtendeeT::default_instance(), number, + type, false, is_packed, IsValid); + } +}; + +template <typename Type, bool IsValid(int)> +class RepeatedEnumTypeTraits { + public: + typedef Type ConstType; + typedef Type MutableType; + typedef RepeatedEnumTypeTraits<Type, IsValid> Repeated; + + typedef RepeatedField<Type> RepeatedFieldType; + + static inline ConstType Get(int number, const ExtensionSet& set, int index) { + return static_cast<Type>(set.GetRepeatedEnum(number, index)); + } + static inline const ConstType* GetPtr(int number, const ExtensionSet& set, + int index) { + return reinterpret_cast<const Type*>( + &set.GetRefRepeatedEnum(number, index)); + } + static inline void Set(int number, int index, ConstType value, + ExtensionSet* set) { + GOOGLE_DCHECK(IsValid(value)); + set->SetRepeatedEnum(number, index, value); + } + static inline void Add(int number, FieldType field_type, bool is_packed, + ConstType value, ExtensionSet* set) { + GOOGLE_DCHECK(IsValid(value)); + set->AddEnum(number, field_type, is_packed, value, nullptr); + } + static inline const RepeatedField<Type>& GetRepeated( + int number, const ExtensionSet& set) { + // Hack: the `Extension` struct stores a RepeatedField<int> for enums. + // RepeatedField<int> cannot implicitly convert to RepeatedField<EnumType> + // so we need to do some casting magic. See message.h for similar + // contortions for non-extension fields. + return *reinterpret_cast<const RepeatedField<Type>*>( + set.GetRawRepeatedField(number, GetDefaultRepeatedField())); + } + static inline const RepeatedField<Type>* GetRepeatedPtr( + int number, const ExtensionSet& set) { + return &GetRepeated(number, set); + } + static inline RepeatedField<Type>* MutableRepeated(int number, + FieldType field_type, + bool is_packed, + ExtensionSet* set) { + return reinterpret_cast<RepeatedField<Type>*>( + set->MutableRawRepeatedField(number, field_type, is_packed, nullptr)); + } + + static const RepeatedFieldType* GetDefaultRepeatedField() { + // Hack: as noted above, repeated enum fields are internally stored as a + // RepeatedField<int>. We need to be able to instantiate global static + // objects to return as default (empty) repeated fields on non-existent + // extensions. We would not be able to know a-priori all of the enum types + // (values of |Type|) to instantiate all of these, so we just re-use + // int32_t's default repeated field object. + return reinterpret_cast<const RepeatedField<Type>*>( + RepeatedPrimitiveTypeTraits<int32_t>::GetDefaultRepeatedField()); + } + template <typename ExtendeeT> + static void Register(int number, FieldType type, bool is_packed) { + ExtensionSet::RegisterEnumExtension(&ExtendeeT::default_instance(), number, + type, true, is_packed, IsValid); + } +}; + +// ------------------------------------------------------------------- +// MessageTypeTraits + +// ExtensionSet guarantees that when manipulating extensions with message +// types, the implementation used will be the compiled-in class representing +// that type. So, we can static_cast down to the exact type we expect. +template <typename Type> +class MessageTypeTraits { + public: + typedef const Type& ConstType; + typedef Type* MutableType; + typedef MessageTypeTraits<Type> Singular; + + static inline ConstType Get(int number, const ExtensionSet& set, + ConstType default_value) { + return static_cast<const Type&>(set.GetMessage(number, default_value)); + } + static inline std::nullptr_t GetPtr(int /* number */, const ExtensionSet& /* set */, + ConstType /* default_value */) { + // Cannot be implemented because of forward declared messages? + return nullptr; + } + static inline MutableType Mutable(int number, FieldType field_type, + ExtensionSet* set) { + return static_cast<Type*>(set->MutableMessage( + number, field_type, Type::default_instance(), nullptr)); + } + static inline void SetAllocated(int number, FieldType field_type, + MutableType message, ExtensionSet* set) { + set->SetAllocatedMessage(number, field_type, nullptr, message); + } + static inline void UnsafeArenaSetAllocated(int number, FieldType field_type, + MutableType message, + ExtensionSet* set) { + set->UnsafeArenaSetAllocatedMessage(number, field_type, nullptr, message); + } + PROTOBUF_NODISCARD static inline MutableType Release( + int number, FieldType /* field_type */, ExtensionSet* set) { + return static_cast<Type*>( + set->ReleaseMessage(number, Type::default_instance())); + } + static inline MutableType UnsafeArenaRelease(int number, + FieldType /* field_type */, + ExtensionSet* set) { + return static_cast<Type*>( + set->UnsafeArenaReleaseMessage(number, Type::default_instance())); + } + template <typename ExtendeeT> + static void Register(int number, FieldType type, bool is_packed) { + ExtensionSet::RegisterMessageExtension(&ExtendeeT::default_instance(), + number, type, false, is_packed, + &Type::default_instance()); + } +}; + +// forward declaration. +class RepeatedMessageGenericTypeTraits; + +template <typename Type> +class RepeatedMessageTypeTraits { + public: + typedef const Type& ConstType; + typedef Type* MutableType; + typedef RepeatedMessageTypeTraits<Type> Repeated; + + typedef RepeatedPtrField<Type> RepeatedFieldType; + + static inline ConstType Get(int number, const ExtensionSet& set, int index) { + return static_cast<const Type&>(set.GetRepeatedMessage(number, index)); + } + static inline std::nullptr_t GetPtr(int /* number */, const ExtensionSet& /* set */, + int /* index */) { + // Cannot be implemented because of forward declared messages? + return nullptr; + } + static inline std::nullptr_t GetRepeatedPtr(int /* number */, + const ExtensionSet& /* set */) { + // Cannot be implemented because of forward declared messages? + return nullptr; + } + static inline MutableType Mutable(int number, int index, ExtensionSet* set) { + return static_cast<Type*>(set->MutableRepeatedMessage(number, index)); + } + static inline MutableType Add(int number, FieldType field_type, + ExtensionSet* set) { + return static_cast<Type*>( + set->AddMessage(number, field_type, Type::default_instance(), nullptr)); + } + static inline const RepeatedPtrField<Type>& GetRepeated( + int number, const ExtensionSet& set) { + // See notes above in RepeatedEnumTypeTraits::GetRepeated(): same + // casting hack applies here, because a RepeatedPtrField<MessageLite> + // cannot naturally become a RepeatedPtrType<Type> even though Type is + // presumably a message. google::protobuf::Message goes through similar contortions + // with a reinterpret_cast<>. + return *reinterpret_cast<const RepeatedPtrField<Type>*>( + set.GetRawRepeatedField(number, GetDefaultRepeatedField())); + } + static inline RepeatedPtrField<Type>* MutableRepeated(int number, + FieldType field_type, + bool is_packed, + ExtensionSet* set) { + return reinterpret_cast<RepeatedPtrField<Type>*>( + set->MutableRawRepeatedField(number, field_type, is_packed, nullptr)); + } + + static const RepeatedFieldType* GetDefaultRepeatedField(); + template <typename ExtendeeT> + static void Register(int number, FieldType type, bool is_packed) { + ExtensionSet::RegisterMessageExtension(&ExtendeeT::default_instance(), + number, type, true, is_packed, + &Type::default_instance()); + } +}; + +template <typename Type> +inline const typename RepeatedMessageTypeTraits<Type>::RepeatedFieldType* +RepeatedMessageTypeTraits<Type>::GetDefaultRepeatedField() { + static auto instance = OnShutdownDelete(new RepeatedFieldType); + return instance; +} + +// ------------------------------------------------------------------- +// ExtensionIdentifier + +// This is the type of actual extension objects. E.g. if you have: +// extend Foo { +// optional int32 bar = 1234; +// } +// then "bar" will be defined in C++ as: +// ExtensionIdentifier<Foo, PrimitiveTypeTraits<int32_t>, 5, false> bar(1234); +// +// Note that we could, in theory, supply the field number as a template +// parameter, and thus make an instance of ExtensionIdentifier have no +// actual contents. However, if we did that, then using an extension +// identifier would not necessarily cause the compiler to output any sort +// of reference to any symbol defined in the extension's .pb.o file. Some +// linkers will actually drop object files that are not explicitly referenced, +// but that would be bad because it would cause this extension to not be +// registered at static initialization, and therefore using it would crash. + +template <typename ExtendeeType, typename TypeTraitsType, FieldType field_type, + bool is_packed> +class ExtensionIdentifier { + public: + typedef TypeTraitsType TypeTraits; + typedef ExtendeeType Extendee; + + ExtensionIdentifier(int number, typename TypeTraits::ConstType default_value) + : number_(number), default_value_(default_value) { + Register(number); + } + inline int number() const { return number_; } + typename TypeTraits::ConstType default_value() const { + return default_value_; + } + + static void Register(int number) { + TypeTraits::template Register<ExtendeeType>(number, field_type, is_packed); + } + + typename TypeTraits::ConstType const& default_value_ref() const { + return default_value_; + } + + private: + const int number_; + typename TypeTraits::ConstType default_value_; +}; + +// ------------------------------------------------------------------- +// Generated accessors + + +// Used to retrieve a lazy extension, may return nullptr in some environments. +extern PROTOBUF_ATTRIBUTE_WEAK ExtensionSet::LazyMessageExtension* +MaybeCreateLazyExtension(Arena* arena); + +} // namespace internal + +// Call this function to ensure that this extensions's reflection is linked into +// the binary: +// +// google::protobuf::LinkExtensionReflection(Foo::my_extension); +// +// This will ensure that the following lookup will succeed: +// +// DescriptorPool::generated_pool()->FindExtensionByName("Foo.my_extension"); +// +// This is often relevant for parsing extensions in text mode. +// +// As a side-effect, it will also guarantee that anything else from the same +// .proto file will also be available for lookup in the generated pool. +// +// This function does not actually register the extension, so it does not need +// to be called before the lookup. However it does need to occur in a function +// that cannot be stripped from the binary (ie. it must be reachable from main). +// +// Best practice is to call this function as close as possible to where the +// reflection is actually needed. This function is very cheap to call, so you +// should not need to worry about its runtime overhead except in tight loops (on +// x86-64 it compiles into two "mov" instructions). +template <typename ExtendeeType, typename TypeTraitsType, + internal::FieldType field_type, bool is_packed> +void LinkExtensionReflection( + const google::protobuf::internal::ExtensionIdentifier< + ExtendeeType, TypeTraitsType, field_type, is_packed>& extension) { + internal::StrongReference(extension); +} + +} // namespace protobuf +} // namespace google + +#include <port_undef.inc> + +#endif // GOOGLE_PROTOBUF_EXTENSION_SET_H__ |