aboutsummaryrefslogtreecommitdiff
path: root/NorthstarDedicatedTest/include/protobuf/extension_set.h
diff options
context:
space:
mode:
Diffstat (limited to 'NorthstarDedicatedTest/include/protobuf/extension_set.h')
-rw-r--r--NorthstarDedicatedTest/include/protobuf/extension_set.h1560
1 files changed, 1560 insertions, 0 deletions
diff --git a/NorthstarDedicatedTest/include/protobuf/extension_set.h b/NorthstarDedicatedTest/include/protobuf/extension_set.h
new file mode 100644
index 00000000..a7159916
--- /dev/null
+++ b/NorthstarDedicatedTest/include/protobuf/extension_set.h
@@ -0,0 +1,1560 @@
+// Protocol Buffers - Google's data interchange format
+// Copyright 2008 Google Inc. All rights reserved.
+// https://developers.google.com/protocol-buffers/
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+// Author: kenton@google.com (Kenton Varda)
+// Based on original Protocol Buffers design by
+// Sanjay Ghemawat, Jeff Dean, and others.
+//
+// This header is logically internal, but is made public because it is used
+// from protocol-compiler-generated code, which may reside in other components.
+
+#ifndef GOOGLE_PROTOBUF_EXTENSION_SET_H__
+#define GOOGLE_PROTOBUF_EXTENSION_SET_H__
+
+#include <algorithm>
+#include <cassert>
+#include <map>
+#include <string>
+#include <utility>
+#include <vector>
+
+#include <stubs/common.h>
+#include <stubs/logging.h>
+#include <parse_context.h>
+#include <io/coded_stream.h>
+#include <port.h>
+#include <repeated_field.h>
+#include <wire_format_lite.h>
+
+// clang-format off
+#include <port_def.inc> // Must be last
+// clang-format on
+
+#ifdef SWIG
+#error "You cannot SWIG proto headers"
+#endif
+
+namespace google {
+namespace protobuf {
+class Arena;
+class Descriptor; // descriptor.h
+class FieldDescriptor; // descriptor.h
+class DescriptorPool; // descriptor.h
+class MessageLite; // message_lite.h
+class Message; // message.h
+class MessageFactory; // message.h
+class Reflection; // message.h
+class UnknownFieldSet; // unknown_field_set.h
+namespace internal {
+class FieldSkipper; // wire_format_lite.h
+} // namespace internal
+} // namespace protobuf
+} // namespace google
+
+namespace google {
+namespace protobuf {
+namespace internal {
+
+class InternalMetadata;
+
+// Used to store values of type WireFormatLite::FieldType without having to
+// #include wire_format_lite.h. Also, ensures that we use only one byte to
+// store these values, which is important to keep the layout of
+// ExtensionSet::Extension small.
+typedef uint8_t FieldType;
+
+// A function which, given an integer value, returns true if the number
+// matches one of the defined values for the corresponding enum type. This
+// is used with RegisterEnumExtension, below.
+typedef bool EnumValidityFunc(int number);
+
+// Version of the above which takes an argument. This is needed to deal with
+// extensions that are not compiled in.
+typedef bool EnumValidityFuncWithArg(const void* arg, int number);
+
+// Information about a registered extension.
+struct ExtensionInfo {
+ constexpr ExtensionInfo() : enum_validity_check() {}
+ constexpr ExtensionInfo(const MessageLite* extendee, int param_number,
+ FieldType type_param, bool isrepeated, bool ispacked)
+ : message(extendee),
+ number(param_number),
+ type(type_param),
+ is_repeated(isrepeated),
+ is_packed(ispacked),
+ enum_validity_check() {}
+
+ const MessageLite* message = nullptr;
+ int number = 0;
+
+ FieldType type = 0;
+ bool is_repeated = false;
+ bool is_packed = false;
+
+ struct EnumValidityCheck {
+ EnumValidityFuncWithArg* func;
+ const void* arg;
+ };
+
+ struct MessageInfo {
+ const MessageLite* prototype;
+ };
+
+ union {
+ EnumValidityCheck enum_validity_check;
+ MessageInfo message_info;
+ };
+
+ // The descriptor for this extension, if one exists and is known. May be
+ // nullptr. Must not be nullptr if the descriptor for the extension does not
+ // live in the same pool as the descriptor for the containing type.
+ const FieldDescriptor* descriptor = nullptr;
+};
+
+// Abstract interface for an object which looks up extension definitions. Used
+// when parsing.
+class PROTOBUF_EXPORT ExtensionFinder {
+ public:
+ virtual ~ExtensionFinder();
+
+ // Find the extension with the given containing type and number.
+ virtual bool Find(int number, ExtensionInfo* output) = 0;
+};
+
+// Implementation of ExtensionFinder which finds extensions defined in .proto
+// files which have been compiled into the binary.
+class PROTOBUF_EXPORT GeneratedExtensionFinder : public ExtensionFinder {
+ public:
+ explicit GeneratedExtensionFinder(const MessageLite* extendee)
+ : extendee_(extendee) {}
+ ~GeneratedExtensionFinder() override {}
+
+ // Returns true and fills in *output if found, otherwise returns false.
+ bool Find(int number, ExtensionInfo* output) override;
+
+ private:
+ const MessageLite* extendee_;
+};
+
+// A FieldSkipper used for parsing MessageSet.
+class MessageSetFieldSkipper;
+
+// Note: extension_set_heavy.cc defines DescriptorPoolExtensionFinder for
+// finding extensions from a DescriptorPool.
+
+// This is an internal helper class intended for use within the protocol buffer
+// library and generated classes. Clients should not use it directly. Instead,
+// use the generated accessors such as GetExtension() of the class being
+// extended.
+//
+// This class manages extensions for a protocol message object. The
+// message's HasExtension(), GetExtension(), MutableExtension(), and
+// ClearExtension() methods are just thin wrappers around the embedded
+// ExtensionSet. When parsing, if a tag number is encountered which is
+// inside one of the message type's extension ranges, the tag is passed
+// off to the ExtensionSet for parsing. Etc.
+class PROTOBUF_EXPORT ExtensionSet {
+ public:
+ constexpr ExtensionSet();
+ explicit ExtensionSet(Arena* arena);
+ ~ExtensionSet();
+
+ // These are called at startup by protocol-compiler-generated code to
+ // register known extensions. The registrations are used by ParseField()
+ // to look up extensions for parsed field numbers. Note that dynamic parsing
+ // does not use ParseField(); only protocol-compiler-generated parsing
+ // methods do.
+ static void RegisterExtension(const MessageLite* extendee, int number,
+ FieldType type, bool is_repeated,
+ bool is_packed);
+ static void RegisterEnumExtension(const MessageLite* extendee, int number,
+ FieldType type, bool is_repeated,
+ bool is_packed, EnumValidityFunc* is_valid);
+ static void RegisterMessageExtension(const MessageLite* extendee, int number,
+ FieldType type, bool is_repeated,
+ bool is_packed,
+ const MessageLite* prototype);
+
+ // =================================================================
+
+ // Add all fields which are currently present to the given vector. This
+ // is useful to implement Reflection::ListFields().
+ void AppendToList(const Descriptor* extendee, const DescriptorPool* pool,
+ std::vector<const FieldDescriptor*>* output) const;
+
+ // =================================================================
+ // Accessors
+ //
+ // Generated message classes include type-safe templated wrappers around
+ // these methods. Generally you should use those rather than call these
+ // directly, unless you are doing low-level memory management.
+ //
+ // When calling any of these accessors, the extension number requested
+ // MUST exist in the DescriptorPool provided to the constructor. Otherwise,
+ // the method will fail an assert. Normally, though, you would not call
+ // these directly; you would either call the generated accessors of your
+ // message class (e.g. GetExtension()) or you would call the accessors
+ // of the reflection interface. In both cases, it is impossible to
+ // trigger this assert failure: the generated accessors only accept
+ // linked-in extension types as parameters, while the Reflection interface
+ // requires you to provide the FieldDescriptor describing the extension.
+ //
+ // When calling any of these accessors, a protocol-compiler-generated
+ // implementation of the extension corresponding to the number MUST
+ // be linked in, and the FieldDescriptor used to refer to it MUST be
+ // the one generated by that linked-in code. Otherwise, the method will
+ // die on an assert failure. The message objects returned by the message
+ // accessors are guaranteed to be of the correct linked-in type.
+ //
+ // These methods pretty much match Reflection except that:
+ // - They're not virtual.
+ // - They identify fields by number rather than FieldDescriptors.
+ // - They identify enum values using integers rather than descriptors.
+ // - Strings provide Mutable() in addition to Set() accessors.
+
+ bool Has(int number) const;
+ int ExtensionSize(int number) const; // Size of a repeated extension.
+ int NumExtensions() const; // The number of extensions
+ FieldType ExtensionType(int number) const;
+ void ClearExtension(int number);
+
+ // singular fields -------------------------------------------------
+
+ int32_t GetInt32(int number, int32_t default_value) const;
+ int64_t GetInt64(int number, int64_t default_value) const;
+ uint32_t GetUInt32(int number, uint32_t default_value) const;
+ uint64_t GetUInt64(int number, uint64_t default_value) const;
+ float GetFloat(int number, float default_value) const;
+ double GetDouble(int number, double default_value) const;
+ bool GetBool(int number, bool default_value) const;
+ int GetEnum(int number, int default_value) const;
+ const std::string& GetString(int number,
+ const std::string& default_value) const;
+ const MessageLite& GetMessage(int number,
+ const MessageLite& default_value) const;
+ const MessageLite& GetMessage(int number, const Descriptor* message_type,
+ MessageFactory* factory) const;
+
+ // |descriptor| may be nullptr so long as it is known that the descriptor for
+ // the extension lives in the same pool as the descriptor for the containing
+ // type.
+#define desc const FieldDescriptor* descriptor // avoid line wrapping
+ void SetInt32(int number, FieldType type, int32_t value, desc);
+ void SetInt64(int number, FieldType type, int64_t value, desc);
+ void SetUInt32(int number, FieldType type, uint32_t value, desc);
+ void SetUInt64(int number, FieldType type, uint64_t value, desc);
+ void SetFloat(int number, FieldType type, float value, desc);
+ void SetDouble(int number, FieldType type, double value, desc);
+ void SetBool(int number, FieldType type, bool value, desc);
+ void SetEnum(int number, FieldType type, int value, desc);
+ void SetString(int number, FieldType type, std::string value, desc);
+ std::string* MutableString(int number, FieldType type, desc);
+ MessageLite* MutableMessage(int number, FieldType type,
+ const MessageLite& prototype, desc);
+ MessageLite* MutableMessage(const FieldDescriptor* descriptor,
+ MessageFactory* factory);
+ // Adds the given message to the ExtensionSet, taking ownership of the
+ // message object. Existing message with the same number will be deleted.
+ // If "message" is nullptr, this is equivalent to "ClearExtension(number)".
+ void SetAllocatedMessage(int number, FieldType type,
+ const FieldDescriptor* descriptor,
+ MessageLite* message);
+ void UnsafeArenaSetAllocatedMessage(int number, FieldType type,
+ const FieldDescriptor* descriptor,
+ MessageLite* message);
+ PROTOBUF_NODISCARD MessageLite* ReleaseMessage(int number,
+ const MessageLite& prototype);
+ MessageLite* UnsafeArenaReleaseMessage(int number,
+ const MessageLite& prototype);
+
+ PROTOBUF_NODISCARD MessageLite* ReleaseMessage(
+ const FieldDescriptor* descriptor, MessageFactory* factory);
+ MessageLite* UnsafeArenaReleaseMessage(const FieldDescriptor* descriptor,
+ MessageFactory* factory);
+#undef desc
+ Arena* GetArena() const { return arena_; }
+
+ // repeated fields -------------------------------------------------
+
+ // Fetches a RepeatedField extension by number; returns |default_value|
+ // if no such extension exists. User should not touch this directly; it is
+ // used by the GetRepeatedExtension() method.
+ const void* GetRawRepeatedField(int number, const void* default_value) const;
+ // Fetches a mutable version of a RepeatedField extension by number,
+ // instantiating one if none exists. Similar to above, user should not use
+ // this directly; it underlies MutableRepeatedExtension().
+ void* MutableRawRepeatedField(int number, FieldType field_type, bool packed,
+ const FieldDescriptor* desc);
+
+ // This is an overload of MutableRawRepeatedField to maintain compatibility
+ // with old code using a previous API. This version of
+ // MutableRawRepeatedField() will GOOGLE_CHECK-fail on a missing extension.
+ // (E.g.: borg/clients/internal/proto1/proto2_reflection.cc.)
+ void* MutableRawRepeatedField(int number);
+
+ int32_t GetRepeatedInt32(int number, int index) const;
+ int64_t GetRepeatedInt64(int number, int index) const;
+ uint32_t GetRepeatedUInt32(int number, int index) const;
+ uint64_t GetRepeatedUInt64(int number, int index) const;
+ float GetRepeatedFloat(int number, int index) const;
+ double GetRepeatedDouble(int number, int index) const;
+ bool GetRepeatedBool(int number, int index) const;
+ int GetRepeatedEnum(int number, int index) const;
+ const std::string& GetRepeatedString(int number, int index) const;
+ const MessageLite& GetRepeatedMessage(int number, int index) const;
+
+ void SetRepeatedInt32(int number, int index, int32_t value);
+ void SetRepeatedInt64(int number, int index, int64_t value);
+ void SetRepeatedUInt32(int number, int index, uint32_t value);
+ void SetRepeatedUInt64(int number, int index, uint64_t value);
+ void SetRepeatedFloat(int number, int index, float value);
+ void SetRepeatedDouble(int number, int index, double value);
+ void SetRepeatedBool(int number, int index, bool value);
+ void SetRepeatedEnum(int number, int index, int value);
+ void SetRepeatedString(int number, int index, std::string value);
+ std::string* MutableRepeatedString(int number, int index);
+ MessageLite* MutableRepeatedMessage(int number, int index);
+
+#define desc const FieldDescriptor* descriptor // avoid line wrapping
+ void AddInt32(int number, FieldType type, bool packed, int32_t value, desc);
+ void AddInt64(int number, FieldType type, bool packed, int64_t value, desc);
+ void AddUInt32(int number, FieldType type, bool packed, uint32_t value, desc);
+ void AddUInt64(int number, FieldType type, bool packed, uint64_t value, desc);
+ void AddFloat(int number, FieldType type, bool packed, float value, desc);
+ void AddDouble(int number, FieldType type, bool packed, double value, desc);
+ void AddBool(int number, FieldType type, bool packed, bool value, desc);
+ void AddEnum(int number, FieldType type, bool packed, int value, desc);
+ void AddString(int number, FieldType type, std::string value, desc);
+ std::string* AddString(int number, FieldType type, desc);
+ MessageLite* AddMessage(int number, FieldType type,
+ const MessageLite& prototype, desc);
+ MessageLite* AddMessage(const FieldDescriptor* descriptor,
+ MessageFactory* factory);
+ void AddAllocatedMessage(const FieldDescriptor* descriptor,
+ MessageLite* new_entry);
+ void UnsafeArenaAddAllocatedMessage(const FieldDescriptor* descriptor,
+ MessageLite* new_entry);
+#undef desc
+
+ void RemoveLast(int number);
+ PROTOBUF_NODISCARD MessageLite* ReleaseLast(int number);
+ MessageLite* UnsafeArenaReleaseLast(int number);
+ void SwapElements(int number, int index1, int index2);
+
+ // -----------------------------------------------------------------
+ // TODO(kenton): Hardcore memory management accessors
+
+ // =================================================================
+ // convenience methods for implementing methods of Message
+ //
+ // These could all be implemented in terms of the other methods of this
+ // class, but providing them here helps keep the generated code size down.
+
+ void Clear();
+ void MergeFrom(const MessageLite* extendee, const ExtensionSet& other);
+ void Swap(const MessageLite* extendee, ExtensionSet* other);
+ void InternalSwap(ExtensionSet* other);
+ void SwapExtension(const MessageLite* extendee, ExtensionSet* other,
+ int number);
+ void UnsafeShallowSwapExtension(ExtensionSet* other, int number);
+ bool IsInitialized() const;
+
+ // Parses a single extension from the input. The input should start out
+ // positioned immediately after the tag.
+ bool ParseField(uint32_t tag, io::CodedInputStream* input,
+ ExtensionFinder* extension_finder,
+ FieldSkipper* field_skipper);
+
+ // Specific versions for lite or full messages (constructs the appropriate
+ // FieldSkipper automatically). |extendee| is the default
+ // instance for the containing message; it is used only to look up the
+ // extension by number. See RegisterExtension(), above. Unlike the other
+ // methods of ExtensionSet, this only works for generated message types --
+ // it looks up extensions registered using RegisterExtension().
+ bool ParseField(uint32_t tag, io::CodedInputStream* input,
+ const MessageLite* extendee);
+ bool ParseField(uint32_t tag, io::CodedInputStream* input,
+ const Message* extendee, UnknownFieldSet* unknown_fields);
+ bool ParseField(uint32_t tag, io::CodedInputStream* input,
+ const MessageLite* extendee,
+ io::CodedOutputStream* unknown_fields);
+
+ // Lite parser
+ const char* ParseField(uint64_t tag, const char* ptr,
+ const MessageLite* extendee,
+ internal::InternalMetadata* metadata,
+ internal::ParseContext* ctx);
+ // Full parser
+ const char* ParseField(uint64_t tag, const char* ptr, const Message* extendee,
+ internal::InternalMetadata* metadata,
+ internal::ParseContext* ctx);
+ template <typename Msg>
+ const char* ParseMessageSet(const char* ptr, const Msg* extendee,
+ InternalMetadata* metadata,
+ internal::ParseContext* ctx) {
+ struct MessageSetItem {
+ const char* _InternalParse(const char* ptr, ParseContext* ctx) {
+ return me->ParseMessageSetItem(ptr, extendee, metadata, ctx);
+ }
+ ExtensionSet* me;
+ const Msg* extendee;
+ InternalMetadata* metadata;
+ } item{this, extendee, metadata};
+ while (!ctx->Done(&ptr)) {
+ uint32_t tag;
+ ptr = ReadTag(ptr, &tag);
+ GOOGLE_PROTOBUF_PARSER_ASSERT(ptr);
+ if (tag == WireFormatLite::kMessageSetItemStartTag) {
+ ptr = ctx->ParseGroup(&item, ptr, tag);
+ GOOGLE_PROTOBUF_PARSER_ASSERT(ptr);
+ } else {
+ if (tag == 0 || (tag & 7) == 4) {
+ ctx->SetLastTag(tag);
+ return ptr;
+ }
+ ptr = ParseField(tag, ptr, extendee, metadata, ctx);
+ GOOGLE_PROTOBUF_PARSER_ASSERT(ptr);
+ }
+ }
+ return ptr;
+ }
+
+ // Parse an entire message in MessageSet format. Such messages have no
+ // fields, only extensions.
+ bool ParseMessageSetLite(io::CodedInputStream* input,
+ ExtensionFinder* extension_finder,
+ FieldSkipper* field_skipper);
+ bool ParseMessageSet(io::CodedInputStream* input,
+ ExtensionFinder* extension_finder,
+ MessageSetFieldSkipper* field_skipper);
+
+ // Specific versions for lite or full messages (constructs the appropriate
+ // FieldSkipper automatically).
+ bool ParseMessageSet(io::CodedInputStream* input, const MessageLite* extendee,
+ std::string* unknown_fields);
+ bool ParseMessageSet(io::CodedInputStream* input, const Message* extendee,
+ UnknownFieldSet* unknown_fields);
+
+ // Write all extension fields with field numbers in the range
+ // [start_field_number, end_field_number)
+ // to the output stream, using the cached sizes computed when ByteSize() was
+ // last called. Note that the range bounds are inclusive-exclusive.
+ void SerializeWithCachedSizes(const MessageLite* extendee,
+ int start_field_number, int end_field_number,
+ io::CodedOutputStream* output) const {
+ output->SetCur(_InternalSerialize(extendee, start_field_number,
+ end_field_number, output->Cur(),
+ output->EpsCopy()));
+ }
+
+ // Same as SerializeWithCachedSizes, but without any bounds checking.
+ // The caller must ensure that target has sufficient capacity for the
+ // serialized extensions.
+ //
+ // Returns a pointer past the last written byte.
+
+ uint8_t* _InternalSerialize(const MessageLite* extendee,
+ int start_field_number, int end_field_number,
+ uint8_t* target,
+ io::EpsCopyOutputStream* stream) const {
+ if (flat_size_ == 0) {
+ assert(!is_large());
+ return target;
+ }
+ return _InternalSerializeImpl(extendee, start_field_number,
+ end_field_number, target, stream);
+ }
+
+ // Like above but serializes in MessageSet format.
+ void SerializeMessageSetWithCachedSizes(const MessageLite* extendee,
+ io::CodedOutputStream* output) const {
+ output->SetCur(InternalSerializeMessageSetWithCachedSizesToArray(
+ extendee, output->Cur(), output->EpsCopy()));
+ }
+ uint8_t* InternalSerializeMessageSetWithCachedSizesToArray(
+ const MessageLite* extendee, uint8_t* target,
+ io::EpsCopyOutputStream* stream) const;
+
+ // For backward-compatibility, versions of two of the above methods that
+ // serialize deterministically iff SetDefaultSerializationDeterministic()
+ // has been called.
+ uint8_t* SerializeWithCachedSizesToArray(int start_field_number,
+ int end_field_number,
+ uint8_t* target) const;
+ uint8_t* SerializeMessageSetWithCachedSizesToArray(
+ const MessageLite* extendee, uint8_t* target) const;
+
+ // Returns the total serialized size of all the extensions.
+ size_t ByteSize() const;
+
+ // Like ByteSize() but uses MessageSet format.
+ size_t MessageSetByteSize() const;
+
+ // Returns (an estimate of) the total number of bytes used for storing the
+ // extensions in memory, excluding sizeof(*this). If the ExtensionSet is
+ // for a lite message (and thus possibly contains lite messages), the results
+ // are undefined (might work, might crash, might corrupt data, might not even
+ // be linked in). It's up to the protocol compiler to avoid calling this on
+ // such ExtensionSets (easy enough since lite messages don't implement
+ // SpaceUsed()).
+ size_t SpaceUsedExcludingSelfLong() const;
+
+ // This method just calls SpaceUsedExcludingSelfLong() but it can not be
+ // inlined because the definition of SpaceUsedExcludingSelfLong() is not
+ // included in lite runtime and when an inline method refers to it MSVC
+ // will complain about unresolved symbols when building the lite runtime
+ // as .dll.
+ int SpaceUsedExcludingSelf() const;
+
+ private:
+ template <typename Type>
+ friend class PrimitiveTypeTraits;
+
+ template <typename Type>
+ friend class RepeatedPrimitiveTypeTraits;
+
+ template <typename Type, bool IsValid(int)>
+ friend class EnumTypeTraits;
+
+ template <typename Type, bool IsValid(int)>
+ friend class RepeatedEnumTypeTraits;
+
+ friend class google::protobuf::Reflection;
+
+ const int32_t& GetRefInt32(int number, const int32_t& default_value) const;
+ const int64_t& GetRefInt64(int number, const int64_t& default_value) const;
+ const uint32_t& GetRefUInt32(int number, const uint32_t& default_value) const;
+ const uint64_t& GetRefUInt64(int number, const uint64_t& default_value) const;
+ const float& GetRefFloat(int number, const float& default_value) const;
+ const double& GetRefDouble(int number, const double& default_value) const;
+ const bool& GetRefBool(int number, const bool& default_value) const;
+ const int& GetRefEnum(int number, const int& default_value) const;
+ const int32_t& GetRefRepeatedInt32(int number, int index) const;
+ const int64_t& GetRefRepeatedInt64(int number, int index) const;
+ const uint32_t& GetRefRepeatedUInt32(int number, int index) const;
+ const uint64_t& GetRefRepeatedUInt64(int number, int index) const;
+ const float& GetRefRepeatedFloat(int number, int index) const;
+ const double& GetRefRepeatedDouble(int number, int index) const;
+ const bool& GetRefRepeatedBool(int number, int index) const;
+ const int& GetRefRepeatedEnum(int number, int index) const;
+
+ // Implementation of _InternalSerialize for non-empty map_.
+ uint8_t* _InternalSerializeImpl(const MessageLite* extendee,
+ int start_field_number, int end_field_number,
+ uint8_t* target,
+ io::EpsCopyOutputStream* stream) const;
+ // Interface of a lazily parsed singular message extension.
+ class PROTOBUF_EXPORT LazyMessageExtension {
+ public:
+ LazyMessageExtension() {}
+ virtual ~LazyMessageExtension() {}
+
+ virtual LazyMessageExtension* New(Arena* arena) const = 0;
+ virtual const MessageLite& GetMessage(const MessageLite& prototype,
+ Arena* arena) const = 0;
+ virtual MessageLite* MutableMessage(const MessageLite& prototype,
+ Arena* arena) = 0;
+ virtual void SetAllocatedMessage(MessageLite* message, Arena* arena) = 0;
+ virtual void UnsafeArenaSetAllocatedMessage(MessageLite* message,
+ Arena* arena) = 0;
+ PROTOBUF_NODISCARD virtual MessageLite* ReleaseMessage(
+ const MessageLite& prototype, Arena* arena) = 0;
+ virtual MessageLite* UnsafeArenaReleaseMessage(const MessageLite& prototype,
+ Arena* arena) = 0;
+
+ virtual bool IsInitialized() const = 0;
+
+ PROTOBUF_DEPRECATED_MSG("Please use ByteSizeLong() instead")
+ virtual int ByteSize() const { return internal::ToIntSize(ByteSizeLong()); }
+ virtual size_t ByteSizeLong() const = 0;
+ virtual size_t SpaceUsedLong() const = 0;
+
+ virtual void MergeFrom(const MessageLite* prototype,
+ const LazyMessageExtension& other, Arena* arena) = 0;
+ virtual void MergeFromMessage(const MessageLite& msg, Arena* arena) = 0;
+ virtual void Clear() = 0;
+
+ virtual bool ReadMessage(const MessageLite& prototype,
+ io::CodedInputStream* input) = 0;
+ virtual const char* _InternalParse(const Message& prototype, Arena* arena,
+ const char* ptr, ParseContext* ctx) = 0;
+ virtual uint8_t* WriteMessageToArray(
+ const MessageLite* prototype, int number, uint8_t* target,
+ io::EpsCopyOutputStream* stream) const = 0;
+
+ private:
+ virtual void UnusedKeyMethod(); // Dummy key method to avoid weak vtable.
+
+ GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(LazyMessageExtension);
+ };
+ // Give access to function defined below to see LazyMessageExtension.
+ friend LazyMessageExtension* MaybeCreateLazyExtension(Arena* arena);
+ struct Extension {
+ // The order of these fields packs Extension into 24 bytes when using 8
+ // byte alignment. Consider this when adding or removing fields here.
+ union {
+ int32_t int32_t_value;
+ int64_t int64_t_value;
+ uint32_t uint32_t_value;
+ uint64_t uint64_t_value;
+ float float_value;
+ double double_value;
+ bool bool_value;
+ int enum_value;
+ std::string* string_value;
+ MessageLite* message_value;
+ LazyMessageExtension* lazymessage_value;
+
+ RepeatedField<int32_t>* repeated_int32_t_value;
+ RepeatedField<int64_t>* repeated_int64_t_value;
+ RepeatedField<uint32_t>* repeated_uint32_t_value;
+ RepeatedField<uint64_t>* repeated_uint64_t_value;
+ RepeatedField<float>* repeated_float_value;
+ RepeatedField<double>* repeated_double_value;
+ RepeatedField<bool>* repeated_bool_value;
+ RepeatedField<int>* repeated_enum_value;
+ RepeatedPtrField<std::string>* repeated_string_value;
+ RepeatedPtrField<MessageLite>* repeated_message_value;
+ };
+
+ FieldType type;
+ bool is_repeated;
+
+ // For singular types, indicates if the extension is "cleared". This
+ // happens when an extension is set and then later cleared by the caller.
+ // We want to keep the Extension object around for reuse, so instead of
+ // removing it from the map, we just set is_cleared = true. This has no
+ // meaning for repeated types; for those, the size of the RepeatedField
+ // simply becomes zero when cleared.
+ bool is_cleared : 4;
+
+ // For singular message types, indicates whether lazy parsing is enabled
+ // for this extension. This field is only valid when type == TYPE_MESSAGE
+ // and !is_repeated because we only support lazy parsing for singular
+ // message types currently. If is_lazy = true, the extension is stored in
+ // lazymessage_value. Otherwise, the extension will be message_value.
+ bool is_lazy : 4;
+
+ // For repeated types, this indicates if the [packed=true] option is set.
+ bool is_packed;
+
+ // For packed fields, the size of the packed data is recorded here when
+ // ByteSize() is called then used during serialization.
+ // TODO(kenton): Use atomic<int> when C++ supports it.
+ mutable int cached_size;
+
+ // The descriptor for this extension, if one exists and is known. May be
+ // nullptr. Must not be nullptr if the descriptor for the extension does
+ // not live in the same pool as the descriptor for the containing type.
+ const FieldDescriptor* descriptor;
+
+ // Some helper methods for operations on a single Extension.
+ uint8_t* InternalSerializeFieldWithCachedSizesToArray(
+ const MessageLite* extendee, const ExtensionSet* extension_set,
+ int number, uint8_t* target, io::EpsCopyOutputStream* stream) const;
+ uint8_t* InternalSerializeMessageSetItemWithCachedSizesToArray(
+ const MessageLite* extendee, const ExtensionSet* extension_set,
+ int number, uint8_t* target, io::EpsCopyOutputStream* stream) const;
+ size_t ByteSize(int number) const;
+ size_t MessageSetItemByteSize(int number) const;
+ void Clear();
+ int GetSize() const;
+ void Free();
+ size_t SpaceUsedExcludingSelfLong() const;
+ bool IsInitialized() const;
+ };
+
+ // The Extension struct is small enough to be passed by value, so we use it
+ // directly as the value type in mappings rather than use pointers. We use
+ // sorted maps rather than hash-maps because we expect most ExtensionSets will
+ // only contain a small number of extension. Also, we want AppendToList and
+ // deterministic serialization to order fields by field number.
+
+ struct KeyValue {
+ int first;
+ Extension second;
+
+ struct FirstComparator {
+ bool operator()(const KeyValue& lhs, const KeyValue& rhs) const {
+ return lhs.first < rhs.first;
+ }
+ bool operator()(const KeyValue& lhs, int key) const {
+ return lhs.first < key;
+ }
+ bool operator()(int key, const KeyValue& rhs) const {
+ return key < rhs.first;
+ }
+ };
+ };
+
+ typedef std::map<int, Extension> LargeMap;
+
+ // Wrapper API that switches between flat-map and LargeMap.
+
+ // Finds a key (if present) in the ExtensionSet.
+ const Extension* FindOrNull(int key) const;
+ Extension* FindOrNull(int key);
+
+ // Helper-functions that only inspect the LargeMap.
+ const Extension* FindOrNullInLargeMap(int key) const;
+ Extension* FindOrNullInLargeMap(int key);
+
+ // Inserts a new (key, Extension) into the ExtensionSet (and returns true), or
+ // finds the already-existing Extension for that key (returns false).
+ // The Extension* will point to the new-or-found Extension.
+ std::pair<Extension*, bool> Insert(int key);
+
+ // Grows the flat_capacity_.
+ // If flat_capacity_ > kMaximumFlatCapacity, converts to LargeMap.
+ void GrowCapacity(size_t minimum_new_capacity);
+ static constexpr uint16_t kMaximumFlatCapacity = 256;
+ bool is_large() const { return static_cast<int16_t>(flat_size_) < 0; }
+
+ // Removes a key from the ExtensionSet.
+ void Erase(int key);
+
+ size_t Size() const {
+ return PROTOBUF_PREDICT_FALSE(is_large()) ? map_.large->size() : flat_size_;
+ }
+
+ // Similar to std::for_each.
+ // Each Iterator is decomposed into ->first and ->second fields, so
+ // that the KeyValueFunctor can be agnostic vis-a-vis KeyValue-vs-std::pair.
+ template <typename Iterator, typename KeyValueFunctor>
+ static KeyValueFunctor ForEach(Iterator begin, Iterator end,
+ KeyValueFunctor func) {
+ for (Iterator it = begin; it != end; ++it) func(it->first, it->second);
+ return std::move(func);
+ }
+
+ // Applies a functor to the <int, Extension&> pairs in sorted order.
+ template <typename KeyValueFunctor>
+ KeyValueFunctor ForEach(KeyValueFunctor func) {
+ if (PROTOBUF_PREDICT_FALSE(is_large())) {
+ return ForEach(map_.large->begin(), map_.large->end(), std::move(func));
+ }
+ return ForEach(flat_begin(), flat_end(), std::move(func));
+ }
+
+ // Applies a functor to the <int, const Extension&> pairs in sorted order.
+ template <typename KeyValueFunctor>
+ KeyValueFunctor ForEach(KeyValueFunctor func) const {
+ if (PROTOBUF_PREDICT_FALSE(is_large())) {
+ return ForEach(map_.large->begin(), map_.large->end(), std::move(func));
+ }
+ return ForEach(flat_begin(), flat_end(), std::move(func));
+ }
+
+ // Merges existing Extension from other_extension
+ void InternalExtensionMergeFrom(const MessageLite* extendee, int number,
+ const Extension& other_extension,
+ Arena* other_arena);
+
+ // Returns true and fills field_number and extension if extension is found.
+ // Note to support packed repeated field compatibility, it also fills whether
+ // the tag on wire is packed, which can be different from
+ // extension->is_packed (whether packed=true is specified).
+ bool FindExtensionInfoFromTag(uint32_t tag, ExtensionFinder* extension_finder,
+ int* field_number, ExtensionInfo* extension,
+ bool* was_packed_on_wire);
+
+ // Returns true and fills extension if extension is found.
+ // Note to support packed repeated field compatibility, it also fills whether
+ // the tag on wire is packed, which can be different from
+ // extension->is_packed (whether packed=true is specified).
+ bool FindExtensionInfoFromFieldNumber(int wire_type, int field_number,
+ ExtensionFinder* extension_finder,
+ ExtensionInfo* extension,
+ bool* was_packed_on_wire) const;
+
+ // Find the prototype for a LazyMessage from the extension registry. Returns
+ // null if the extension is not found.
+ const MessageLite* GetPrototypeForLazyMessage(const MessageLite* extendee,
+ int number) const;
+
+ // Parses a single extension from the input. The input should start out
+ // positioned immediately after the wire tag. This method is called in
+ // ParseField() after field number and was_packed_on_wire is extracted from
+ // the wire tag and ExtensionInfo is found by the field number.
+ bool ParseFieldWithExtensionInfo(int field_number, bool was_packed_on_wire,
+ const ExtensionInfo& extension,
+ io::CodedInputStream* input,
+ FieldSkipper* field_skipper);
+
+ // Like ParseField(), but this method may parse singular message extensions
+ // lazily depending on the value of FLAGS_eagerly_parse_message_sets.
+ bool ParseFieldMaybeLazily(int wire_type, int field_number,
+ io::CodedInputStream* input,
+ ExtensionFinder* extension_finder,
+ MessageSetFieldSkipper* field_skipper);
+
+ // Returns true if extension is present and lazy.
+ bool HasLazy(int number) const;
+
+ // Gets the extension with the given number, creating it if it does not
+ // already exist. Returns true if the extension did not already exist.
+ bool MaybeNewExtension(int number, const FieldDescriptor* descriptor,
+ Extension** result);
+
+ // Gets the repeated extension for the given descriptor, creating it if
+ // it does not exist.
+ Extension* MaybeNewRepeatedExtension(const FieldDescriptor* descriptor);
+
+ // Parse a single MessageSet item -- called just after the item group start
+ // tag has been read.
+ bool ParseMessageSetItemLite(io::CodedInputStream* input,
+ ExtensionFinder* extension_finder,
+ FieldSkipper* field_skipper);
+ // Parse a single MessageSet item -- called just after the item group start
+ // tag has been read.
+ bool ParseMessageSetItem(io::CodedInputStream* input,
+ ExtensionFinder* extension_finder,
+ MessageSetFieldSkipper* field_skipper);
+
+ bool FindExtension(int wire_type, uint32_t field, const MessageLite* extendee,
+ const internal::ParseContext* /*ctx*/,
+ ExtensionInfo* extension, bool* was_packed_on_wire) {
+ GeneratedExtensionFinder finder(extendee);
+ return FindExtensionInfoFromFieldNumber(wire_type, field, &finder,
+ extension, was_packed_on_wire);
+ }
+ inline bool FindExtension(int wire_type, uint32_t field,
+ const Message* extendee,
+ const internal::ParseContext* ctx,
+ ExtensionInfo* extension, bool* was_packed_on_wire);
+ // Used for MessageSet only
+ const char* ParseFieldMaybeLazily(uint64_t tag, const char* ptr,
+ const MessageLite* extendee,
+ internal::InternalMetadata* metadata,
+ internal::ParseContext* ctx) {
+ // Lite MessageSet doesn't implement lazy.
+ return ParseField(tag, ptr, extendee, metadata, ctx);
+ }
+ const char* ParseFieldMaybeLazily(uint64_t tag, const char* ptr,
+ const Message* extendee,
+ internal::InternalMetadata* metadata,
+ internal::ParseContext* ctx);
+ const char* ParseMessageSetItem(const char* ptr, const MessageLite* extendee,
+ internal::InternalMetadata* metadata,
+ internal::ParseContext* ctx);
+ const char* ParseMessageSetItem(const char* ptr, const Message* extendee,
+ internal::InternalMetadata* metadata,
+ internal::ParseContext* ctx);
+
+ // Implemented in extension_set_inl.h to keep code out of the header file.
+ template <typename T>
+ const char* ParseFieldWithExtensionInfo(int number, bool was_packed_on_wire,
+ const ExtensionInfo& info,
+ internal::InternalMetadata* metadata,
+ const char* ptr,
+ internal::ParseContext* ctx);
+ template <typename Msg, typename T>
+ const char* ParseMessageSetItemTmpl(const char* ptr, const Msg* extendee,
+ internal::InternalMetadata* metadata,
+ internal::ParseContext* ctx);
+
+ // Hack: RepeatedPtrFieldBase declares ExtensionSet as a friend. This
+ // friendship should automatically extend to ExtensionSet::Extension, but
+ // unfortunately some older compilers (e.g. GCC 3.4.4) do not implement this
+ // correctly. So, we must provide helpers for calling methods of that
+ // class.
+
+ // Defined in extension_set_heavy.cc.
+ static inline size_t RepeatedMessage_SpaceUsedExcludingSelfLong(
+ RepeatedPtrFieldBase* field);
+
+ KeyValue* flat_begin() {
+ assert(!is_large());
+ return map_.flat;
+ }
+ const KeyValue* flat_begin() const {
+ assert(!is_large());
+ return map_.flat;
+ }
+ KeyValue* flat_end() {
+ assert(!is_large());
+ return map_.flat + flat_size_;
+ }
+ const KeyValue* flat_end() const {
+ assert(!is_large());
+ return map_.flat + flat_size_;
+ }
+
+ Arena* arena_;
+
+ // Manual memory-management:
+ // map_.flat is an allocated array of flat_capacity_ elements.
+ // [map_.flat, map_.flat + flat_size_) is the currently-in-use prefix.
+ uint16_t flat_capacity_;
+ uint16_t flat_size_; // negative int16_t(flat_size_) indicates is_large()
+ union AllocatedData {
+ KeyValue* flat;
+
+ // If flat_capacity_ > kMaximumFlatCapacity, switch to LargeMap,
+ // which guarantees O(n lg n) CPU but larger constant factors.
+ LargeMap* large;
+ } map_;
+
+ static void DeleteFlatMap(const KeyValue* flat, uint16_t flat_capacity);
+
+ GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(ExtensionSet);
+};
+
+constexpr ExtensionSet::ExtensionSet()
+ : arena_(nullptr), flat_capacity_(0), flat_size_(0), map_{nullptr} {}
+
+// These are just for convenience...
+inline void ExtensionSet::SetString(int number, FieldType type,
+ std::string value,
+ const FieldDescriptor* descriptor) {
+ MutableString(number, type, descriptor)->assign(std::move(value));
+}
+inline void ExtensionSet::SetRepeatedString(int number, int index,
+ std::string value) {
+ MutableRepeatedString(number, index)->assign(std::move(value));
+}
+inline void ExtensionSet::AddString(int number, FieldType type,
+ std::string value,
+ const FieldDescriptor* descriptor) {
+ AddString(number, type, descriptor)->assign(std::move(value));
+}
+// ===================================================================
+// Glue for generated extension accessors
+
+// -------------------------------------------------------------------
+// Template magic
+
+// First we have a set of classes representing "type traits" for different
+// field types. A type traits class knows how to implement basic accessors
+// for extensions of a particular type given an ExtensionSet. The signature
+// for a type traits class looks like this:
+//
+// class TypeTraits {
+// public:
+// typedef ? ConstType;
+// typedef ? MutableType;
+// // TypeTraits for singular fields and repeated fields will define the
+// // symbol "Singular" or "Repeated" respectively. These two symbols will
+// // be used in extension accessors to distinguish between singular
+// // extensions and repeated extensions. If the TypeTraits for the passed
+// // in extension doesn't have the expected symbol defined, it means the
+// // user is passing a repeated extension to a singular accessor, or the
+// // opposite. In that case the C++ compiler will generate an error
+// // message "no matching member function" to inform the user.
+// typedef ? Singular
+// typedef ? Repeated
+//
+// static inline ConstType Get(int number, const ExtensionSet& set);
+// static inline void Set(int number, ConstType value, ExtensionSet* set);
+// static inline MutableType Mutable(int number, ExtensionSet* set);
+//
+// // Variants for repeated fields.
+// static inline ConstType Get(int number, const ExtensionSet& set,
+// int index);
+// static inline void Set(int number, int index,
+// ConstType value, ExtensionSet* set);
+// static inline MutableType Mutable(int number, int index,
+// ExtensionSet* set);
+// static inline void Add(int number, ConstType value, ExtensionSet* set);
+// static inline MutableType Add(int number, ExtensionSet* set);
+// This is used by the ExtensionIdentifier constructor to register
+// the extension at dynamic initialization.
+// template <typename ExtendeeT>
+// static void Register(int number, FieldType type, bool is_packed);
+// };
+//
+// Not all of these methods make sense for all field types. For example, the
+// "Mutable" methods only make sense for strings and messages, and the
+// repeated methods only make sense for repeated types. So, each type
+// traits class implements only the set of methods from this signature that it
+// actually supports. This will cause a compiler error if the user tries to
+// access an extension using a method that doesn't make sense for its type.
+// For example, if "foo" is an extension of type "optional int32", then if you
+// try to write code like:
+// my_message.MutableExtension(foo)
+// you will get a compile error because PrimitiveTypeTraits<int32_t> does not
+// have a "Mutable()" method.
+
+// -------------------------------------------------------------------
+// PrimitiveTypeTraits
+
+// Since the ExtensionSet has different methods for each primitive type,
+// we must explicitly define the methods of the type traits class for each
+// known type.
+template <typename Type>
+class PrimitiveTypeTraits {
+ public:
+ typedef Type ConstType;
+ typedef Type MutableType;
+ typedef PrimitiveTypeTraits<Type> Singular;
+
+ static inline ConstType Get(int number, const ExtensionSet& set,
+ ConstType default_value);
+
+ static inline const ConstType* GetPtr(int number, const ExtensionSet& set,
+ const ConstType& default_value);
+ static inline void Set(int number, FieldType field_type, ConstType value,
+ ExtensionSet* set);
+ template <typename ExtendeeT>
+ static void Register(int number, FieldType type, bool is_packed) {
+ ExtensionSet::RegisterExtension(&ExtendeeT::default_instance(), number,
+ type, false, is_packed);
+ }
+};
+
+template <typename Type>
+class RepeatedPrimitiveTypeTraits {
+ public:
+ typedef Type ConstType;
+ typedef Type MutableType;
+ typedef RepeatedPrimitiveTypeTraits<Type> Repeated;
+
+ typedef RepeatedField<Type> RepeatedFieldType;
+
+ static inline Type Get(int number, const ExtensionSet& set, int index);
+ static inline const Type* GetPtr(int number, const ExtensionSet& set,
+ int index);
+ static inline const RepeatedField<ConstType>* GetRepeatedPtr(
+ int number, const ExtensionSet& set);
+ static inline void Set(int number, int index, Type value, ExtensionSet* set);
+ static inline void Add(int number, FieldType field_type, bool is_packed,
+ Type value, ExtensionSet* set);
+
+ static inline const RepeatedField<ConstType>& GetRepeated(
+ int number, const ExtensionSet& set);
+ static inline RepeatedField<Type>* MutableRepeated(int number,
+ FieldType field_type,
+ bool is_packed,
+ ExtensionSet* set);
+
+ static const RepeatedFieldType* GetDefaultRepeatedField();
+ template <typename ExtendeeT>
+ static void Register(int number, FieldType type, bool is_packed) {
+ ExtensionSet::RegisterExtension(&ExtendeeT::default_instance(), number,
+ type, true, is_packed);
+ }
+};
+
+class PROTOBUF_EXPORT RepeatedPrimitiveDefaults {
+ private:
+ template <typename Type>
+ friend class RepeatedPrimitiveTypeTraits;
+ static const RepeatedPrimitiveDefaults* default_instance();
+ RepeatedField<int32_t> default_repeated_field_int32_t_;
+ RepeatedField<int64_t> default_repeated_field_int64_t_;
+ RepeatedField<uint32_t> default_repeated_field_uint32_t_;
+ RepeatedField<uint64_t> default_repeated_field_uint64_t_;
+ RepeatedField<double> default_repeated_field_double_;
+ RepeatedField<float> default_repeated_field_float_;
+ RepeatedField<bool> default_repeated_field_bool_;
+};
+
+#define PROTOBUF_DEFINE_PRIMITIVE_TYPE(TYPE, METHOD) \
+ template <> \
+ inline TYPE PrimitiveTypeTraits<TYPE>::Get( \
+ int number, const ExtensionSet& set, TYPE default_value) { \
+ return set.Get##METHOD(number, default_value); \
+ } \
+ template <> \
+ inline const TYPE* PrimitiveTypeTraits<TYPE>::GetPtr( \
+ int number, const ExtensionSet& set, const TYPE& default_value) { \
+ return &set.GetRef##METHOD(number, default_value); \
+ } \
+ template <> \
+ inline void PrimitiveTypeTraits<TYPE>::Set(int number, FieldType field_type, \
+ TYPE value, ExtensionSet* set) { \
+ set->Set##METHOD(number, field_type, value, nullptr); \
+ } \
+ \
+ template <> \
+ inline TYPE RepeatedPrimitiveTypeTraits<TYPE>::Get( \
+ int number, const ExtensionSet& set, int index) { \
+ return set.GetRepeated##METHOD(number, index); \
+ } \
+ template <> \
+ inline const TYPE* RepeatedPrimitiveTypeTraits<TYPE>::GetPtr( \
+ int number, const ExtensionSet& set, int index) { \
+ return &set.GetRefRepeated##METHOD(number, index); \
+ } \
+ template <> \
+ inline void RepeatedPrimitiveTypeTraits<TYPE>::Set( \
+ int number, int index, TYPE value, ExtensionSet* set) { \
+ set->SetRepeated##METHOD(number, index, value); \
+ } \
+ template <> \
+ inline void RepeatedPrimitiveTypeTraits<TYPE>::Add( \
+ int number, FieldType field_type, bool is_packed, TYPE value, \
+ ExtensionSet* set) { \
+ set->Add##METHOD(number, field_type, is_packed, value, nullptr); \
+ } \
+ template <> \
+ inline const RepeatedField<TYPE>* \
+ RepeatedPrimitiveTypeTraits<TYPE>::GetDefaultRepeatedField() { \
+ return &RepeatedPrimitiveDefaults::default_instance() \
+ ->default_repeated_field_##TYPE##_; \
+ } \
+ template <> \
+ inline const RepeatedField<TYPE>& \
+ RepeatedPrimitiveTypeTraits<TYPE>::GetRepeated(int number, \
+ const ExtensionSet& set) { \
+ return *reinterpret_cast<const RepeatedField<TYPE>*>( \
+ set.GetRawRepeatedField(number, GetDefaultRepeatedField())); \
+ } \
+ template <> \
+ inline const RepeatedField<TYPE>* \
+ RepeatedPrimitiveTypeTraits<TYPE>::GetRepeatedPtr(int number, \
+ const ExtensionSet& set) { \
+ return &GetRepeated(number, set); \
+ } \
+ template <> \
+ inline RepeatedField<TYPE>* \
+ RepeatedPrimitiveTypeTraits<TYPE>::MutableRepeated( \
+ int number, FieldType field_type, bool is_packed, ExtensionSet* set) { \
+ return reinterpret_cast<RepeatedField<TYPE>*>( \
+ set->MutableRawRepeatedField(number, field_type, is_packed, nullptr)); \
+ }
+
+PROTOBUF_DEFINE_PRIMITIVE_TYPE(int32_t, Int32)
+PROTOBUF_DEFINE_PRIMITIVE_TYPE(int64_t, Int64)
+PROTOBUF_DEFINE_PRIMITIVE_TYPE(uint32_t, UInt32)
+PROTOBUF_DEFINE_PRIMITIVE_TYPE(uint64_t, UInt64)
+PROTOBUF_DEFINE_PRIMITIVE_TYPE(float, Float)
+PROTOBUF_DEFINE_PRIMITIVE_TYPE(double, Double)
+PROTOBUF_DEFINE_PRIMITIVE_TYPE(bool, Bool)
+
+#undef PROTOBUF_DEFINE_PRIMITIVE_TYPE
+
+// -------------------------------------------------------------------
+// StringTypeTraits
+
+// Strings support both Set() and Mutable().
+class PROTOBUF_EXPORT StringTypeTraits {
+ public:
+ typedef const std::string& ConstType;
+ typedef std::string* MutableType;
+ typedef StringTypeTraits Singular;
+
+ static inline const std::string& Get(int number, const ExtensionSet& set,
+ ConstType default_value) {
+ return set.GetString(number, default_value);
+ }
+ static inline const std::string* GetPtr(int number, const ExtensionSet& set,
+ ConstType default_value) {
+ return &Get(number, set, default_value);
+ }
+ static inline void Set(int number, FieldType field_type,
+ const std::string& value, ExtensionSet* set) {
+ set->SetString(number, field_type, value, nullptr);
+ }
+ static inline std::string* Mutable(int number, FieldType field_type,
+ ExtensionSet* set) {
+ return set->MutableString(number, field_type, nullptr);
+ }
+ template <typename ExtendeeT>
+ static void Register(int number, FieldType type, bool is_packed) {
+ ExtensionSet::RegisterExtension(&ExtendeeT::default_instance(), number,
+ type, false, is_packed);
+ }
+};
+
+class PROTOBUF_EXPORT RepeatedStringTypeTraits {
+ public:
+ typedef const std::string& ConstType;
+ typedef std::string* MutableType;
+ typedef RepeatedStringTypeTraits Repeated;
+
+ typedef RepeatedPtrField<std::string> RepeatedFieldType;
+
+ static inline const std::string& Get(int number, const ExtensionSet& set,
+ int index) {
+ return set.GetRepeatedString(number, index);
+ }
+ static inline const std::string* GetPtr(int number, const ExtensionSet& set,
+ int index) {
+ return &Get(number, set, index);
+ }
+ static inline const RepeatedPtrField<std::string>* GetRepeatedPtr(
+ int number, const ExtensionSet& set) {
+ return &GetRepeated(number, set);
+ }
+ static inline void Set(int number, int index, const std::string& value,
+ ExtensionSet* set) {
+ set->SetRepeatedString(number, index, value);
+ }
+ static inline std::string* Mutable(int number, int index, ExtensionSet* set) {
+ return set->MutableRepeatedString(number, index);
+ }
+ static inline void Add(int number, FieldType field_type, bool /*is_packed*/,
+ const std::string& value, ExtensionSet* set) {
+ set->AddString(number, field_type, value, nullptr);
+ }
+ static inline std::string* Add(int number, FieldType field_type,
+ ExtensionSet* set) {
+ return set->AddString(number, field_type, nullptr);
+ }
+ static inline const RepeatedPtrField<std::string>& GetRepeated(
+ int number, const ExtensionSet& set) {
+ return *reinterpret_cast<const RepeatedPtrField<std::string>*>(
+ set.GetRawRepeatedField(number, GetDefaultRepeatedField()));
+ }
+
+ static inline RepeatedPtrField<std::string>* MutableRepeated(
+ int number, FieldType field_type, bool is_packed, ExtensionSet* set) {
+ return reinterpret_cast<RepeatedPtrField<std::string>*>(
+ set->MutableRawRepeatedField(number, field_type, is_packed, nullptr));
+ }
+
+ static const RepeatedFieldType* GetDefaultRepeatedField();
+
+ template <typename ExtendeeT>
+ static void Register(int number, FieldType type, bool is_packed) {
+ ExtensionSet::RegisterExtension(&ExtendeeT::default_instance(), number,
+ type, true, is_packed);
+ }
+
+ private:
+ static void InitializeDefaultRepeatedFields();
+ static void DestroyDefaultRepeatedFields();
+};
+
+// -------------------------------------------------------------------
+// EnumTypeTraits
+
+// ExtensionSet represents enums using integers internally, so we have to
+// static_cast around.
+template <typename Type, bool IsValid(int)>
+class EnumTypeTraits {
+ public:
+ typedef Type ConstType;
+ typedef Type MutableType;
+ typedef EnumTypeTraits<Type, IsValid> Singular;
+
+ static inline ConstType Get(int number, const ExtensionSet& set,
+ ConstType default_value) {
+ return static_cast<Type>(set.GetEnum(number, default_value));
+ }
+ static inline const ConstType* GetPtr(int number, const ExtensionSet& set,
+ const ConstType& default_value) {
+ return reinterpret_cast<const Type*>(
+ &set.GetRefEnum(number, default_value));
+ }
+ static inline void Set(int number, FieldType field_type, ConstType value,
+ ExtensionSet* set) {
+ GOOGLE_DCHECK(IsValid(value));
+ set->SetEnum(number, field_type, value, nullptr);
+ }
+ template <typename ExtendeeT>
+ static void Register(int number, FieldType type, bool is_packed) {
+ ExtensionSet::RegisterEnumExtension(&ExtendeeT::default_instance(), number,
+ type, false, is_packed, IsValid);
+ }
+};
+
+template <typename Type, bool IsValid(int)>
+class RepeatedEnumTypeTraits {
+ public:
+ typedef Type ConstType;
+ typedef Type MutableType;
+ typedef RepeatedEnumTypeTraits<Type, IsValid> Repeated;
+
+ typedef RepeatedField<Type> RepeatedFieldType;
+
+ static inline ConstType Get(int number, const ExtensionSet& set, int index) {
+ return static_cast<Type>(set.GetRepeatedEnum(number, index));
+ }
+ static inline const ConstType* GetPtr(int number, const ExtensionSet& set,
+ int index) {
+ return reinterpret_cast<const Type*>(
+ &set.GetRefRepeatedEnum(number, index));
+ }
+ static inline void Set(int number, int index, ConstType value,
+ ExtensionSet* set) {
+ GOOGLE_DCHECK(IsValid(value));
+ set->SetRepeatedEnum(number, index, value);
+ }
+ static inline void Add(int number, FieldType field_type, bool is_packed,
+ ConstType value, ExtensionSet* set) {
+ GOOGLE_DCHECK(IsValid(value));
+ set->AddEnum(number, field_type, is_packed, value, nullptr);
+ }
+ static inline const RepeatedField<Type>& GetRepeated(
+ int number, const ExtensionSet& set) {
+ // Hack: the `Extension` struct stores a RepeatedField<int> for enums.
+ // RepeatedField<int> cannot implicitly convert to RepeatedField<EnumType>
+ // so we need to do some casting magic. See message.h for similar
+ // contortions for non-extension fields.
+ return *reinterpret_cast<const RepeatedField<Type>*>(
+ set.GetRawRepeatedField(number, GetDefaultRepeatedField()));
+ }
+ static inline const RepeatedField<Type>* GetRepeatedPtr(
+ int number, const ExtensionSet& set) {
+ return &GetRepeated(number, set);
+ }
+ static inline RepeatedField<Type>* MutableRepeated(int number,
+ FieldType field_type,
+ bool is_packed,
+ ExtensionSet* set) {
+ return reinterpret_cast<RepeatedField<Type>*>(
+ set->MutableRawRepeatedField(number, field_type, is_packed, nullptr));
+ }
+
+ static const RepeatedFieldType* GetDefaultRepeatedField() {
+ // Hack: as noted above, repeated enum fields are internally stored as a
+ // RepeatedField<int>. We need to be able to instantiate global static
+ // objects to return as default (empty) repeated fields on non-existent
+ // extensions. We would not be able to know a-priori all of the enum types
+ // (values of |Type|) to instantiate all of these, so we just re-use
+ // int32_t's default repeated field object.
+ return reinterpret_cast<const RepeatedField<Type>*>(
+ RepeatedPrimitiveTypeTraits<int32_t>::GetDefaultRepeatedField());
+ }
+ template <typename ExtendeeT>
+ static void Register(int number, FieldType type, bool is_packed) {
+ ExtensionSet::RegisterEnumExtension(&ExtendeeT::default_instance(), number,
+ type, true, is_packed, IsValid);
+ }
+};
+
+// -------------------------------------------------------------------
+// MessageTypeTraits
+
+// ExtensionSet guarantees that when manipulating extensions with message
+// types, the implementation used will be the compiled-in class representing
+// that type. So, we can static_cast down to the exact type we expect.
+template <typename Type>
+class MessageTypeTraits {
+ public:
+ typedef const Type& ConstType;
+ typedef Type* MutableType;
+ typedef MessageTypeTraits<Type> Singular;
+
+ static inline ConstType Get(int number, const ExtensionSet& set,
+ ConstType default_value) {
+ return static_cast<const Type&>(set.GetMessage(number, default_value));
+ }
+ static inline std::nullptr_t GetPtr(int /* number */, const ExtensionSet& /* set */,
+ ConstType /* default_value */) {
+ // Cannot be implemented because of forward declared messages?
+ return nullptr;
+ }
+ static inline MutableType Mutable(int number, FieldType field_type,
+ ExtensionSet* set) {
+ return static_cast<Type*>(set->MutableMessage(
+ number, field_type, Type::default_instance(), nullptr));
+ }
+ static inline void SetAllocated(int number, FieldType field_type,
+ MutableType message, ExtensionSet* set) {
+ set->SetAllocatedMessage(number, field_type, nullptr, message);
+ }
+ static inline void UnsafeArenaSetAllocated(int number, FieldType field_type,
+ MutableType message,
+ ExtensionSet* set) {
+ set->UnsafeArenaSetAllocatedMessage(number, field_type, nullptr, message);
+ }
+ PROTOBUF_NODISCARD static inline MutableType Release(
+ int number, FieldType /* field_type */, ExtensionSet* set) {
+ return static_cast<Type*>(
+ set->ReleaseMessage(number, Type::default_instance()));
+ }
+ static inline MutableType UnsafeArenaRelease(int number,
+ FieldType /* field_type */,
+ ExtensionSet* set) {
+ return static_cast<Type*>(
+ set->UnsafeArenaReleaseMessage(number, Type::default_instance()));
+ }
+ template <typename ExtendeeT>
+ static void Register(int number, FieldType type, bool is_packed) {
+ ExtensionSet::RegisterMessageExtension(&ExtendeeT::default_instance(),
+ number, type, false, is_packed,
+ &Type::default_instance());
+ }
+};
+
+// forward declaration.
+class RepeatedMessageGenericTypeTraits;
+
+template <typename Type>
+class RepeatedMessageTypeTraits {
+ public:
+ typedef const Type& ConstType;
+ typedef Type* MutableType;
+ typedef RepeatedMessageTypeTraits<Type> Repeated;
+
+ typedef RepeatedPtrField<Type> RepeatedFieldType;
+
+ static inline ConstType Get(int number, const ExtensionSet& set, int index) {
+ return static_cast<const Type&>(set.GetRepeatedMessage(number, index));
+ }
+ static inline std::nullptr_t GetPtr(int /* number */, const ExtensionSet& /* set */,
+ int /* index */) {
+ // Cannot be implemented because of forward declared messages?
+ return nullptr;
+ }
+ static inline std::nullptr_t GetRepeatedPtr(int /* number */,
+ const ExtensionSet& /* set */) {
+ // Cannot be implemented because of forward declared messages?
+ return nullptr;
+ }
+ static inline MutableType Mutable(int number, int index, ExtensionSet* set) {
+ return static_cast<Type*>(set->MutableRepeatedMessage(number, index));
+ }
+ static inline MutableType Add(int number, FieldType field_type,
+ ExtensionSet* set) {
+ return static_cast<Type*>(
+ set->AddMessage(number, field_type, Type::default_instance(), nullptr));
+ }
+ static inline const RepeatedPtrField<Type>& GetRepeated(
+ int number, const ExtensionSet& set) {
+ // See notes above in RepeatedEnumTypeTraits::GetRepeated(): same
+ // casting hack applies here, because a RepeatedPtrField<MessageLite>
+ // cannot naturally become a RepeatedPtrType<Type> even though Type is
+ // presumably a message. google::protobuf::Message goes through similar contortions
+ // with a reinterpret_cast<>.
+ return *reinterpret_cast<const RepeatedPtrField<Type>*>(
+ set.GetRawRepeatedField(number, GetDefaultRepeatedField()));
+ }
+ static inline RepeatedPtrField<Type>* MutableRepeated(int number,
+ FieldType field_type,
+ bool is_packed,
+ ExtensionSet* set) {
+ return reinterpret_cast<RepeatedPtrField<Type>*>(
+ set->MutableRawRepeatedField(number, field_type, is_packed, nullptr));
+ }
+
+ static const RepeatedFieldType* GetDefaultRepeatedField();
+ template <typename ExtendeeT>
+ static void Register(int number, FieldType type, bool is_packed) {
+ ExtensionSet::RegisterMessageExtension(&ExtendeeT::default_instance(),
+ number, type, true, is_packed,
+ &Type::default_instance());
+ }
+};
+
+template <typename Type>
+inline const typename RepeatedMessageTypeTraits<Type>::RepeatedFieldType*
+RepeatedMessageTypeTraits<Type>::GetDefaultRepeatedField() {
+ static auto instance = OnShutdownDelete(new RepeatedFieldType);
+ return instance;
+}
+
+// -------------------------------------------------------------------
+// ExtensionIdentifier
+
+// This is the type of actual extension objects. E.g. if you have:
+// extend Foo {
+// optional int32 bar = 1234;
+// }
+// then "bar" will be defined in C++ as:
+// ExtensionIdentifier<Foo, PrimitiveTypeTraits<int32_t>, 5, false> bar(1234);
+//
+// Note that we could, in theory, supply the field number as a template
+// parameter, and thus make an instance of ExtensionIdentifier have no
+// actual contents. However, if we did that, then using an extension
+// identifier would not necessarily cause the compiler to output any sort
+// of reference to any symbol defined in the extension's .pb.o file. Some
+// linkers will actually drop object files that are not explicitly referenced,
+// but that would be bad because it would cause this extension to not be
+// registered at static initialization, and therefore using it would crash.
+
+template <typename ExtendeeType, typename TypeTraitsType, FieldType field_type,
+ bool is_packed>
+class ExtensionIdentifier {
+ public:
+ typedef TypeTraitsType TypeTraits;
+ typedef ExtendeeType Extendee;
+
+ ExtensionIdentifier(int number, typename TypeTraits::ConstType default_value)
+ : number_(number), default_value_(default_value) {
+ Register(number);
+ }
+ inline int number() const { return number_; }
+ typename TypeTraits::ConstType default_value() const {
+ return default_value_;
+ }
+
+ static void Register(int number) {
+ TypeTraits::template Register<ExtendeeType>(number, field_type, is_packed);
+ }
+
+ typename TypeTraits::ConstType const& default_value_ref() const {
+ return default_value_;
+ }
+
+ private:
+ const int number_;
+ typename TypeTraits::ConstType default_value_;
+};
+
+// -------------------------------------------------------------------
+// Generated accessors
+
+
+// Used to retrieve a lazy extension, may return nullptr in some environments.
+extern PROTOBUF_ATTRIBUTE_WEAK ExtensionSet::LazyMessageExtension*
+MaybeCreateLazyExtension(Arena* arena);
+
+} // namespace internal
+
+// Call this function to ensure that this extensions's reflection is linked into
+// the binary:
+//
+// google::protobuf::LinkExtensionReflection(Foo::my_extension);
+//
+// This will ensure that the following lookup will succeed:
+//
+// DescriptorPool::generated_pool()->FindExtensionByName("Foo.my_extension");
+//
+// This is often relevant for parsing extensions in text mode.
+//
+// As a side-effect, it will also guarantee that anything else from the same
+// .proto file will also be available for lookup in the generated pool.
+//
+// This function does not actually register the extension, so it does not need
+// to be called before the lookup. However it does need to occur in a function
+// that cannot be stripped from the binary (ie. it must be reachable from main).
+//
+// Best practice is to call this function as close as possible to where the
+// reflection is actually needed. This function is very cheap to call, so you
+// should not need to worry about its runtime overhead except in tight loops (on
+// x86-64 it compiles into two "mov" instructions).
+template <typename ExtendeeType, typename TypeTraitsType,
+ internal::FieldType field_type, bool is_packed>
+void LinkExtensionReflection(
+ const google::protobuf::internal::ExtensionIdentifier<
+ ExtendeeType, TypeTraitsType, field_type, is_packed>& extension) {
+ internal::StrongReference(extension);
+}
+
+} // namespace protobuf
+} // namespace google
+
+#include <port_undef.inc>
+
+#endif // GOOGLE_PROTOBUF_EXTENSION_SET_H__