aboutsummaryrefslogtreecommitdiff
path: root/thirdparty/spdlog/fmt/bundled/format-inl.h
diff options
context:
space:
mode:
authorF1F7Y <64418963+F1F7Y@users.noreply.github.com>2023-06-30 03:10:24 +0200
committerGitHub <noreply@github.com>2023-06-29 21:10:24 -0400
commit71f0ee98ccc85d41ba7587d122c83011ab1e25c3 (patch)
treec362337bedb5d341c3f063e9a0b4840fb8b8ba2c /thirdparty/spdlog/fmt/bundled/format-inl.h
parentefd907105cf7906c78253631f75bf4fd83f769db (diff)
downloadNorthstarLauncher-71f0ee98ccc85d41ba7587d122c83011ab1e25c3.tar.gz
NorthstarLauncher-71f0ee98ccc85d41ba7587d122c83011ab1e25c3.zip
Reorganize third-party dependencies into `thirdparty` directory (#491)
* rename `include` to `thirdparty` * remove duplicate minhook in wsock32 * move minhook into its own directory * move openssl lib into separate directories
Diffstat (limited to 'thirdparty/spdlog/fmt/bundled/format-inl.h')
-rw-r--r--thirdparty/spdlog/fmt/bundled/format-inl.h2801
1 files changed, 2801 insertions, 0 deletions
diff --git a/thirdparty/spdlog/fmt/bundled/format-inl.h b/thirdparty/spdlog/fmt/bundled/format-inl.h
new file mode 100644
index 00000000..8f2fe735
--- /dev/null
+++ b/thirdparty/spdlog/fmt/bundled/format-inl.h
@@ -0,0 +1,2801 @@
+// Formatting library for C++ - implementation
+//
+// Copyright (c) 2012 - 2016, Victor Zverovich
+// All rights reserved.
+//
+// For the license information refer to format.h.
+
+#ifndef FMT_FORMAT_INL_H_
+#define FMT_FORMAT_INL_H_
+
+#include <cassert>
+#include <cctype>
+#include <climits>
+#include <cmath>
+#include <cstdarg>
+#include <cstring> // std::memmove
+#include <cwchar>
+#include <exception>
+
+#ifndef FMT_STATIC_THOUSANDS_SEPARATOR
+# include <locale>
+#endif
+
+#ifdef _WIN32
+# include <io.h> // _isatty
+#endif
+
+#include "format.h"
+
+// Dummy implementations of strerror_r and strerror_s called if corresponding
+// system functions are not available.
+inline fmt::detail::null<> strerror_r(int, char*, ...) { return {}; }
+inline fmt::detail::null<> strerror_s(char*, size_t, ...) { return {}; }
+
+FMT_BEGIN_NAMESPACE
+namespace detail {
+
+FMT_FUNC void assert_fail(const char* file, int line, const char* message) {
+ // Use unchecked std::fprintf to avoid triggering another assertion when
+ // writing to stderr fails
+ std::fprintf(stderr, "%s:%d: assertion failed: %s", file, line, message);
+ // Chosen instead of std::abort to satisfy Clang in CUDA mode during device
+ // code pass.
+ std::terminate();
+}
+
+#ifndef _MSC_VER
+# define FMT_SNPRINTF snprintf
+#else // _MSC_VER
+inline int fmt_snprintf(char* buffer, size_t size, const char* format, ...) {
+ va_list args;
+ va_start(args, format);
+ int result = vsnprintf_s(buffer, size, _TRUNCATE, format, args);
+ va_end(args);
+ return result;
+}
+# define FMT_SNPRINTF fmt_snprintf
+#endif // _MSC_VER
+
+// A portable thread-safe version of strerror.
+// Sets buffer to point to a string describing the error code.
+// This can be either a pointer to a string stored in buffer,
+// or a pointer to some static immutable string.
+// Returns one of the following values:
+// 0 - success
+// ERANGE - buffer is not large enough to store the error message
+// other - failure
+// Buffer should be at least of size 1.
+inline int safe_strerror(int error_code, char*& buffer,
+ size_t buffer_size) FMT_NOEXCEPT {
+ FMT_ASSERT(buffer != nullptr && buffer_size != 0, "invalid buffer");
+
+ class dispatcher {
+ private:
+ int error_code_;
+ char*& buffer_;
+ size_t buffer_size_;
+
+ // A noop assignment operator to avoid bogus warnings.
+ void operator=(const dispatcher&) {}
+
+ // Handle the result of XSI-compliant version of strerror_r.
+ int handle(int result) {
+ // glibc versions before 2.13 return result in errno.
+ return result == -1 ? errno : result;
+ }
+
+ // Handle the result of GNU-specific version of strerror_r.
+ FMT_MAYBE_UNUSED
+ int handle(char* message) {
+ // If the buffer is full then the message is probably truncated.
+ if (message == buffer_ && strlen(buffer_) == buffer_size_ - 1)
+ return ERANGE;
+ buffer_ = message;
+ return 0;
+ }
+
+ // Handle the case when strerror_r is not available.
+ FMT_MAYBE_UNUSED
+ int handle(detail::null<>) {
+ return fallback(strerror_s(buffer_, buffer_size_, error_code_));
+ }
+
+ // Fallback to strerror_s when strerror_r is not available.
+ FMT_MAYBE_UNUSED
+ int fallback(int result) {
+ // If the buffer is full then the message is probably truncated.
+ return result == 0 && strlen(buffer_) == buffer_size_ - 1 ? ERANGE
+ : result;
+ }
+
+#if !FMT_MSC_VER
+ // Fallback to strerror if strerror_r and strerror_s are not available.
+ int fallback(detail::null<>) {
+ errno = 0;
+ buffer_ = strerror(error_code_);
+ return errno;
+ }
+#endif
+
+ public:
+ dispatcher(int err_code, char*& buf, size_t buf_size)
+ : error_code_(err_code), buffer_(buf), buffer_size_(buf_size) {}
+
+ int run() { return handle(strerror_r(error_code_, buffer_, buffer_size_)); }
+ };
+ return dispatcher(error_code, buffer, buffer_size).run();
+}
+
+FMT_FUNC void format_error_code(detail::buffer<char>& out, int error_code,
+ string_view message) FMT_NOEXCEPT {
+ // Report error code making sure that the output fits into
+ // inline_buffer_size to avoid dynamic memory allocation and potential
+ // bad_alloc.
+ out.try_resize(0);
+ static const char SEP[] = ": ";
+ static const char ERROR_STR[] = "error ";
+ // Subtract 2 to account for terminating null characters in SEP and ERROR_STR.
+ size_t error_code_size = sizeof(SEP) + sizeof(ERROR_STR) - 2;
+ auto abs_value = static_cast<uint32_or_64_or_128_t<int>>(error_code);
+ if (detail::is_negative(error_code)) {
+ abs_value = 0 - abs_value;
+ ++error_code_size;
+ }
+ error_code_size += detail::to_unsigned(detail::count_digits(abs_value));
+ auto it = buffer_appender<char>(out);
+ if (message.size() <= inline_buffer_size - error_code_size)
+ format_to(it, "{}{}", message, SEP);
+ format_to(it, "{}{}", ERROR_STR, error_code);
+ assert(out.size() <= inline_buffer_size);
+}
+
+FMT_FUNC void report_error(format_func func, int error_code,
+ string_view message) FMT_NOEXCEPT {
+ memory_buffer full_message;
+ func(full_message, error_code, message);
+ // Don't use fwrite_fully because the latter may throw.
+ (void)std::fwrite(full_message.data(), full_message.size(), 1, stderr);
+ std::fputc('\n', stderr);
+}
+
+// A wrapper around fwrite that throws on error.
+inline void fwrite_fully(const void* ptr, size_t size, size_t count,
+ FILE* stream) {
+ size_t written = std::fwrite(ptr, size, count, stream);
+ if (written < count) FMT_THROW(system_error(errno, "cannot write to file"));
+}
+} // namespace detail
+
+#if !defined(FMT_STATIC_THOUSANDS_SEPARATOR)
+namespace detail {
+
+template <typename Locale>
+locale_ref::locale_ref(const Locale& loc) : locale_(&loc) {
+ static_assert(std::is_same<Locale, std::locale>::value, "");
+}
+
+template <typename Locale> Locale locale_ref::get() const {
+ static_assert(std::is_same<Locale, std::locale>::value, "");
+ return locale_ ? *static_cast<const std::locale*>(locale_) : std::locale();
+}
+
+template <typename Char> FMT_FUNC std::string grouping_impl(locale_ref loc) {
+ return std::use_facet<std::numpunct<Char>>(loc.get<std::locale>()).grouping();
+}
+template <typename Char> FMT_FUNC Char thousands_sep_impl(locale_ref loc) {
+ return std::use_facet<std::numpunct<Char>>(loc.get<std::locale>())
+ .thousands_sep();
+}
+template <typename Char> FMT_FUNC Char decimal_point_impl(locale_ref loc) {
+ return std::use_facet<std::numpunct<Char>>(loc.get<std::locale>())
+ .decimal_point();
+}
+} // namespace detail
+#else
+template <typename Char>
+FMT_FUNC std::string detail::grouping_impl(locale_ref) {
+ return "\03";
+}
+template <typename Char> FMT_FUNC Char detail::thousands_sep_impl(locale_ref) {
+ return FMT_STATIC_THOUSANDS_SEPARATOR;
+}
+template <typename Char> FMT_FUNC Char detail::decimal_point_impl(locale_ref) {
+ return '.';
+}
+#endif
+
+FMT_API FMT_FUNC format_error::~format_error() FMT_NOEXCEPT = default;
+FMT_API FMT_FUNC system_error::~system_error() FMT_NOEXCEPT = default;
+
+FMT_FUNC void system_error::init(int err_code, string_view format_str,
+ format_args args) {
+ error_code_ = err_code;
+ memory_buffer buffer;
+ format_system_error(buffer, err_code, vformat(format_str, args));
+ std::runtime_error& base = *this;
+ base = std::runtime_error(to_string(buffer));
+}
+
+namespace detail {
+
+template <> FMT_FUNC int count_digits<4>(detail::fallback_uintptr n) {
+ // fallback_uintptr is always stored in little endian.
+ int i = static_cast<int>(sizeof(void*)) - 1;
+ while (i > 0 && n.value[i] == 0) --i;
+ auto char_digits = std::numeric_limits<unsigned char>::digits / 4;
+ return i >= 0 ? i * char_digits + count_digits<4, unsigned>(n.value[i]) : 1;
+}
+
+template <typename T>
+const typename basic_data<T>::digit_pair basic_data<T>::digits[] = {
+ {'0', '0'}, {'0', '1'}, {'0', '2'}, {'0', '3'}, {'0', '4'}, {'0', '5'},
+ {'0', '6'}, {'0', '7'}, {'0', '8'}, {'0', '9'}, {'1', '0'}, {'1', '1'},
+ {'1', '2'}, {'1', '3'}, {'1', '4'}, {'1', '5'}, {'1', '6'}, {'1', '7'},
+ {'1', '8'}, {'1', '9'}, {'2', '0'}, {'2', '1'}, {'2', '2'}, {'2', '3'},
+ {'2', '4'}, {'2', '5'}, {'2', '6'}, {'2', '7'}, {'2', '8'}, {'2', '9'},
+ {'3', '0'}, {'3', '1'}, {'3', '2'}, {'3', '3'}, {'3', '4'}, {'3', '5'},
+ {'3', '6'}, {'3', '7'}, {'3', '8'}, {'3', '9'}, {'4', '0'}, {'4', '1'},
+ {'4', '2'}, {'4', '3'}, {'4', '4'}, {'4', '5'}, {'4', '6'}, {'4', '7'},
+ {'4', '8'}, {'4', '9'}, {'5', '0'}, {'5', '1'}, {'5', '2'}, {'5', '3'},
+ {'5', '4'}, {'5', '5'}, {'5', '6'}, {'5', '7'}, {'5', '8'}, {'5', '9'},
+ {'6', '0'}, {'6', '1'}, {'6', '2'}, {'6', '3'}, {'6', '4'}, {'6', '5'},
+ {'6', '6'}, {'6', '7'}, {'6', '8'}, {'6', '9'}, {'7', '0'}, {'7', '1'},
+ {'7', '2'}, {'7', '3'}, {'7', '4'}, {'7', '5'}, {'7', '6'}, {'7', '7'},
+ {'7', '8'}, {'7', '9'}, {'8', '0'}, {'8', '1'}, {'8', '2'}, {'8', '3'},
+ {'8', '4'}, {'8', '5'}, {'8', '6'}, {'8', '7'}, {'8', '8'}, {'8', '9'},
+ {'9', '0'}, {'9', '1'}, {'9', '2'}, {'9', '3'}, {'9', '4'}, {'9', '5'},
+ {'9', '6'}, {'9', '7'}, {'9', '8'}, {'9', '9'}};
+
+template <typename T>
+const char basic_data<T>::hex_digits[] = "0123456789abcdef";
+
+#define FMT_POWERS_OF_10(factor) \
+ factor * 10, (factor)*100, (factor)*1000, (factor)*10000, (factor)*100000, \
+ (factor)*1000000, (factor)*10000000, (factor)*100000000, \
+ (factor)*1000000000
+
+template <typename T>
+const uint64_t basic_data<T>::powers_of_10_64[] = {
+ 1, FMT_POWERS_OF_10(1), FMT_POWERS_OF_10(1000000000ULL),
+ 10000000000000000000ULL};
+
+template <typename T>
+const uint32_t basic_data<T>::zero_or_powers_of_10_32[] = {0,
+ FMT_POWERS_OF_10(1)};
+template <typename T>
+const uint64_t basic_data<T>::zero_or_powers_of_10_64[] = {
+ 0, FMT_POWERS_OF_10(1), FMT_POWERS_OF_10(1000000000ULL),
+ 10000000000000000000ULL};
+
+template <typename T>
+const uint32_t basic_data<T>::zero_or_powers_of_10_32_new[] = {
+ 0, 0, FMT_POWERS_OF_10(1)};
+
+template <typename T>
+const uint64_t basic_data<T>::zero_or_powers_of_10_64_new[] = {
+ 0, 0, FMT_POWERS_OF_10(1), FMT_POWERS_OF_10(1000000000ULL),
+ 10000000000000000000ULL};
+
+// Normalized 64-bit significands of pow(10, k), for k = -348, -340, ..., 340.
+// These are generated by support/compute-powers.py.
+template <typename T>
+const uint64_t basic_data<T>::grisu_pow10_significands[] = {
+ 0xfa8fd5a0081c0288, 0xbaaee17fa23ebf76, 0x8b16fb203055ac76,
+ 0xcf42894a5dce35ea, 0x9a6bb0aa55653b2d, 0xe61acf033d1a45df,
+ 0xab70fe17c79ac6ca, 0xff77b1fcbebcdc4f, 0xbe5691ef416bd60c,
+ 0x8dd01fad907ffc3c, 0xd3515c2831559a83, 0x9d71ac8fada6c9b5,
+ 0xea9c227723ee8bcb, 0xaecc49914078536d, 0x823c12795db6ce57,
+ 0xc21094364dfb5637, 0x9096ea6f3848984f, 0xd77485cb25823ac7,
+ 0xa086cfcd97bf97f4, 0xef340a98172aace5, 0xb23867fb2a35b28e,
+ 0x84c8d4dfd2c63f3b, 0xc5dd44271ad3cdba, 0x936b9fcebb25c996,
+ 0xdbac6c247d62a584, 0xa3ab66580d5fdaf6, 0xf3e2f893dec3f126,
+ 0xb5b5ada8aaff80b8, 0x87625f056c7c4a8b, 0xc9bcff6034c13053,
+ 0x964e858c91ba2655, 0xdff9772470297ebd, 0xa6dfbd9fb8e5b88f,
+ 0xf8a95fcf88747d94, 0xb94470938fa89bcf, 0x8a08f0f8bf0f156b,
+ 0xcdb02555653131b6, 0x993fe2c6d07b7fac, 0xe45c10c42a2b3b06,
+ 0xaa242499697392d3, 0xfd87b5f28300ca0e, 0xbce5086492111aeb,
+ 0x8cbccc096f5088cc, 0xd1b71758e219652c, 0x9c40000000000000,
+ 0xe8d4a51000000000, 0xad78ebc5ac620000, 0x813f3978f8940984,
+ 0xc097ce7bc90715b3, 0x8f7e32ce7bea5c70, 0xd5d238a4abe98068,
+ 0x9f4f2726179a2245, 0xed63a231d4c4fb27, 0xb0de65388cc8ada8,
+ 0x83c7088e1aab65db, 0xc45d1df942711d9a, 0x924d692ca61be758,
+ 0xda01ee641a708dea, 0xa26da3999aef774a, 0xf209787bb47d6b85,
+ 0xb454e4a179dd1877, 0x865b86925b9bc5c2, 0xc83553c5c8965d3d,
+ 0x952ab45cfa97a0b3, 0xde469fbd99a05fe3, 0xa59bc234db398c25,
+ 0xf6c69a72a3989f5c, 0xb7dcbf5354e9bece, 0x88fcf317f22241e2,
+ 0xcc20ce9bd35c78a5, 0x98165af37b2153df, 0xe2a0b5dc971f303a,
+ 0xa8d9d1535ce3b396, 0xfb9b7cd9a4a7443c, 0xbb764c4ca7a44410,
+ 0x8bab8eefb6409c1a, 0xd01fef10a657842c, 0x9b10a4e5e9913129,
+ 0xe7109bfba19c0c9d, 0xac2820d9623bf429, 0x80444b5e7aa7cf85,
+ 0xbf21e44003acdd2d, 0x8e679c2f5e44ff8f, 0xd433179d9c8cb841,
+ 0x9e19db92b4e31ba9, 0xeb96bf6ebadf77d9, 0xaf87023b9bf0ee6b,
+};
+
+// Binary exponents of pow(10, k), for k = -348, -340, ..., 340, corresponding
+// to significands above.
+template <typename T>
+const int16_t basic_data<T>::grisu_pow10_exponents[] = {
+ -1220, -1193, -1166, -1140, -1113, -1087, -1060, -1034, -1007, -980, -954,
+ -927, -901, -874, -847, -821, -794, -768, -741, -715, -688, -661,
+ -635, -608, -582, -555, -529, -502, -475, -449, -422, -396, -369,
+ -343, -316, -289, -263, -236, -210, -183, -157, -130, -103, -77,
+ -50, -24, 3, 30, 56, 83, 109, 136, 162, 189, 216,
+ 242, 269, 295, 322, 348, 375, 402, 428, 455, 481, 508,
+ 534, 561, 588, 614, 641, 667, 694, 720, 747, 774, 800,
+ 827, 853, 880, 907, 933, 960, 986, 1013, 1039, 1066};
+
+template <typename T>
+const divtest_table_entry<uint32_t> basic_data<T>::divtest_table_for_pow5_32[] =
+ {{0x00000001, 0xffffffff}, {0xcccccccd, 0x33333333},
+ {0xc28f5c29, 0x0a3d70a3}, {0x26e978d5, 0x020c49ba},
+ {0x3afb7e91, 0x0068db8b}, {0x0bcbe61d, 0x0014f8b5},
+ {0x68c26139, 0x000431bd}, {0xae8d46a5, 0x0000d6bf},
+ {0x22e90e21, 0x00002af3}, {0x3a2e9c6d, 0x00000897},
+ {0x3ed61f49, 0x000001b7}};
+
+template <typename T>
+const divtest_table_entry<uint64_t> basic_data<T>::divtest_table_for_pow5_64[] =
+ {{0x0000000000000001, 0xffffffffffffffff},
+ {0xcccccccccccccccd, 0x3333333333333333},
+ {0x8f5c28f5c28f5c29, 0x0a3d70a3d70a3d70},
+ {0x1cac083126e978d5, 0x020c49ba5e353f7c},
+ {0xd288ce703afb7e91, 0x0068db8bac710cb2},
+ {0x5d4e8fb00bcbe61d, 0x0014f8b588e368f0},
+ {0x790fb65668c26139, 0x000431bde82d7b63},
+ {0xe5032477ae8d46a5, 0x0000d6bf94d5e57a},
+ {0xc767074b22e90e21, 0x00002af31dc46118},
+ {0x8e47ce423a2e9c6d, 0x0000089705f4136b},
+ {0x4fa7f60d3ed61f49, 0x000001b7cdfd9d7b},
+ {0x0fee64690c913975, 0x00000057f5ff85e5},
+ {0x3662e0e1cf503eb1, 0x000000119799812d},
+ {0xa47a2cf9f6433fbd, 0x0000000384b84d09},
+ {0x54186f653140a659, 0x00000000b424dc35},
+ {0x7738164770402145, 0x0000000024075f3d},
+ {0xe4a4d1417cd9a041, 0x000000000734aca5},
+ {0xc75429d9e5c5200d, 0x000000000170ef54},
+ {0xc1773b91fac10669, 0x000000000049c977},
+ {0x26b172506559ce15, 0x00000000000ec1e4},
+ {0xd489e3a9addec2d1, 0x000000000002f394},
+ {0x90e860bb892c8d5d, 0x000000000000971d},
+ {0x502e79bf1b6f4f79, 0x0000000000001e39},
+ {0xdcd618596be30fe5, 0x000000000000060b}};
+
+template <typename T>
+const uint64_t basic_data<T>::dragonbox_pow10_significands_64[] = {
+ 0x81ceb32c4b43fcf5, 0xa2425ff75e14fc32, 0xcad2f7f5359a3b3f,
+ 0xfd87b5f28300ca0e, 0x9e74d1b791e07e49, 0xc612062576589ddb,
+ 0xf79687aed3eec552, 0x9abe14cd44753b53, 0xc16d9a0095928a28,
+ 0xf1c90080baf72cb2, 0x971da05074da7bef, 0xbce5086492111aeb,
+ 0xec1e4a7db69561a6, 0x9392ee8e921d5d08, 0xb877aa3236a4b44a,
+ 0xe69594bec44de15c, 0x901d7cf73ab0acda, 0xb424dc35095cd810,
+ 0xe12e13424bb40e14, 0x8cbccc096f5088cc, 0xafebff0bcb24aaff,
+ 0xdbe6fecebdedd5bf, 0x89705f4136b4a598, 0xabcc77118461cefd,
+ 0xd6bf94d5e57a42bd, 0x8637bd05af6c69b6, 0xa7c5ac471b478424,
+ 0xd1b71758e219652c, 0x83126e978d4fdf3c, 0xa3d70a3d70a3d70b,
+ 0xcccccccccccccccd, 0x8000000000000000, 0xa000000000000000,
+ 0xc800000000000000, 0xfa00000000000000, 0x9c40000000000000,
+ 0xc350000000000000, 0xf424000000000000, 0x9896800000000000,
+ 0xbebc200000000000, 0xee6b280000000000, 0x9502f90000000000,
+ 0xba43b74000000000, 0xe8d4a51000000000, 0x9184e72a00000000,
+ 0xb5e620f480000000, 0xe35fa931a0000000, 0x8e1bc9bf04000000,
+ 0xb1a2bc2ec5000000, 0xde0b6b3a76400000, 0x8ac7230489e80000,
+ 0xad78ebc5ac620000, 0xd8d726b7177a8000, 0x878678326eac9000,
+ 0xa968163f0a57b400, 0xd3c21bcecceda100, 0x84595161401484a0,
+ 0xa56fa5b99019a5c8, 0xcecb8f27f4200f3a, 0x813f3978f8940984,
+ 0xa18f07d736b90be5, 0xc9f2c9cd04674ede, 0xfc6f7c4045812296,
+ 0x9dc5ada82b70b59d, 0xc5371912364ce305, 0xf684df56c3e01bc6,
+ 0x9a130b963a6c115c, 0xc097ce7bc90715b3, 0xf0bdc21abb48db20,
+ 0x96769950b50d88f4, 0xbc143fa4e250eb31, 0xeb194f8e1ae525fd,
+ 0x92efd1b8d0cf37be, 0xb7abc627050305ad, 0xe596b7b0c643c719,
+ 0x8f7e32ce7bea5c6f, 0xb35dbf821ae4f38b, 0xe0352f62a19e306e};
+
+template <typename T>
+const uint128_wrapper basic_data<T>::dragonbox_pow10_significands_128[] = {
+#if FMT_USE_FULL_CACHE_DRAGONBOX
+ {0xff77b1fcbebcdc4f, 0x25e8e89c13bb0f7b},
+ {0x9faacf3df73609b1, 0x77b191618c54e9ad},
+ {0xc795830d75038c1d, 0xd59df5b9ef6a2418},
+ {0xf97ae3d0d2446f25, 0x4b0573286b44ad1e},
+ {0x9becce62836ac577, 0x4ee367f9430aec33},
+ {0xc2e801fb244576d5, 0x229c41f793cda740},
+ {0xf3a20279ed56d48a, 0x6b43527578c11110},
+ {0x9845418c345644d6, 0x830a13896b78aaaa},
+ {0xbe5691ef416bd60c, 0x23cc986bc656d554},
+ {0xedec366b11c6cb8f, 0x2cbfbe86b7ec8aa9},
+ {0x94b3a202eb1c3f39, 0x7bf7d71432f3d6aa},
+ {0xb9e08a83a5e34f07, 0xdaf5ccd93fb0cc54},
+ {0xe858ad248f5c22c9, 0xd1b3400f8f9cff69},
+ {0x91376c36d99995be, 0x23100809b9c21fa2},
+ {0xb58547448ffffb2d, 0xabd40a0c2832a78b},
+ {0xe2e69915b3fff9f9, 0x16c90c8f323f516d},
+ {0x8dd01fad907ffc3b, 0xae3da7d97f6792e4},
+ {0xb1442798f49ffb4a, 0x99cd11cfdf41779d},
+ {0xdd95317f31c7fa1d, 0x40405643d711d584},
+ {0x8a7d3eef7f1cfc52, 0x482835ea666b2573},
+ {0xad1c8eab5ee43b66, 0xda3243650005eed0},
+ {0xd863b256369d4a40, 0x90bed43e40076a83},
+ {0x873e4f75e2224e68, 0x5a7744a6e804a292},
+ {0xa90de3535aaae202, 0x711515d0a205cb37},
+ {0xd3515c2831559a83, 0x0d5a5b44ca873e04},
+ {0x8412d9991ed58091, 0xe858790afe9486c3},
+ {0xa5178fff668ae0b6, 0x626e974dbe39a873},
+ {0xce5d73ff402d98e3, 0xfb0a3d212dc81290},
+ {0x80fa687f881c7f8e, 0x7ce66634bc9d0b9a},
+ {0xa139029f6a239f72, 0x1c1fffc1ebc44e81},
+ {0xc987434744ac874e, 0xa327ffb266b56221},
+ {0xfbe9141915d7a922, 0x4bf1ff9f0062baa9},
+ {0x9d71ac8fada6c9b5, 0x6f773fc3603db4aa},
+ {0xc4ce17b399107c22, 0xcb550fb4384d21d4},
+ {0xf6019da07f549b2b, 0x7e2a53a146606a49},
+ {0x99c102844f94e0fb, 0x2eda7444cbfc426e},
+ {0xc0314325637a1939, 0xfa911155fefb5309},
+ {0xf03d93eebc589f88, 0x793555ab7eba27cb},
+ {0x96267c7535b763b5, 0x4bc1558b2f3458df},
+ {0xbbb01b9283253ca2, 0x9eb1aaedfb016f17},
+ {0xea9c227723ee8bcb, 0x465e15a979c1cadd},
+ {0x92a1958a7675175f, 0x0bfacd89ec191eca},
+ {0xb749faed14125d36, 0xcef980ec671f667c},
+ {0xe51c79a85916f484, 0x82b7e12780e7401b},
+ {0x8f31cc0937ae58d2, 0xd1b2ecb8b0908811},
+ {0xb2fe3f0b8599ef07, 0x861fa7e6dcb4aa16},
+ {0xdfbdcece67006ac9, 0x67a791e093e1d49b},
+ {0x8bd6a141006042bd, 0xe0c8bb2c5c6d24e1},
+ {0xaecc49914078536d, 0x58fae9f773886e19},
+ {0xda7f5bf590966848, 0xaf39a475506a899f},
+ {0x888f99797a5e012d, 0x6d8406c952429604},
+ {0xaab37fd7d8f58178, 0xc8e5087ba6d33b84},
+ {0xd5605fcdcf32e1d6, 0xfb1e4a9a90880a65},
+ {0x855c3be0a17fcd26, 0x5cf2eea09a550680},
+ {0xa6b34ad8c9dfc06f, 0xf42faa48c0ea481f},
+ {0xd0601d8efc57b08b, 0xf13b94daf124da27},
+ {0x823c12795db6ce57, 0x76c53d08d6b70859},
+ {0xa2cb1717b52481ed, 0x54768c4b0c64ca6f},
+ {0xcb7ddcdda26da268, 0xa9942f5dcf7dfd0a},
+ {0xfe5d54150b090b02, 0xd3f93b35435d7c4d},
+ {0x9efa548d26e5a6e1, 0xc47bc5014a1a6db0},
+ {0xc6b8e9b0709f109a, 0x359ab6419ca1091c},
+ {0xf867241c8cc6d4c0, 0xc30163d203c94b63},
+ {0x9b407691d7fc44f8, 0x79e0de63425dcf1e},
+ {0xc21094364dfb5636, 0x985915fc12f542e5},
+ {0xf294b943e17a2bc4, 0x3e6f5b7b17b2939e},
+ {0x979cf3ca6cec5b5a, 0xa705992ceecf9c43},
+ {0xbd8430bd08277231, 0x50c6ff782a838354},
+ {0xece53cec4a314ebd, 0xa4f8bf5635246429},
+ {0x940f4613ae5ed136, 0x871b7795e136be9a},
+ {0xb913179899f68584, 0x28e2557b59846e40},
+ {0xe757dd7ec07426e5, 0x331aeada2fe589d0},
+ {0x9096ea6f3848984f, 0x3ff0d2c85def7622},
+ {0xb4bca50b065abe63, 0x0fed077a756b53aa},
+ {0xe1ebce4dc7f16dfb, 0xd3e8495912c62895},
+ {0x8d3360f09cf6e4bd, 0x64712dd7abbbd95d},
+ {0xb080392cc4349dec, 0xbd8d794d96aacfb4},
+ {0xdca04777f541c567, 0xecf0d7a0fc5583a1},
+ {0x89e42caaf9491b60, 0xf41686c49db57245},
+ {0xac5d37d5b79b6239, 0x311c2875c522ced6},
+ {0xd77485cb25823ac7, 0x7d633293366b828c},
+ {0x86a8d39ef77164bc, 0xae5dff9c02033198},
+ {0xa8530886b54dbdeb, 0xd9f57f830283fdfd},
+ {0xd267caa862a12d66, 0xd072df63c324fd7c},
+ {0x8380dea93da4bc60, 0x4247cb9e59f71e6e},
+ {0xa46116538d0deb78, 0x52d9be85f074e609},
+ {0xcd795be870516656, 0x67902e276c921f8c},
+ {0x806bd9714632dff6, 0x00ba1cd8a3db53b7},
+ {0xa086cfcd97bf97f3, 0x80e8a40eccd228a5},
+ {0xc8a883c0fdaf7df0, 0x6122cd128006b2ce},
+ {0xfad2a4b13d1b5d6c, 0x796b805720085f82},
+ {0x9cc3a6eec6311a63, 0xcbe3303674053bb1},
+ {0xc3f490aa77bd60fc, 0xbedbfc4411068a9d},
+ {0xf4f1b4d515acb93b, 0xee92fb5515482d45},
+ {0x991711052d8bf3c5, 0x751bdd152d4d1c4b},
+ {0xbf5cd54678eef0b6, 0xd262d45a78a0635e},
+ {0xef340a98172aace4, 0x86fb897116c87c35},
+ {0x9580869f0e7aac0e, 0xd45d35e6ae3d4da1},
+ {0xbae0a846d2195712, 0x8974836059cca10a},
+ {0xe998d258869facd7, 0x2bd1a438703fc94c},
+ {0x91ff83775423cc06, 0x7b6306a34627ddd0},
+ {0xb67f6455292cbf08, 0x1a3bc84c17b1d543},
+ {0xe41f3d6a7377eeca, 0x20caba5f1d9e4a94},
+ {0x8e938662882af53e, 0x547eb47b7282ee9d},
+ {0xb23867fb2a35b28d, 0xe99e619a4f23aa44},
+ {0xdec681f9f4c31f31, 0x6405fa00e2ec94d5},
+ {0x8b3c113c38f9f37e, 0xde83bc408dd3dd05},
+ {0xae0b158b4738705e, 0x9624ab50b148d446},
+ {0xd98ddaee19068c76, 0x3badd624dd9b0958},
+ {0x87f8a8d4cfa417c9, 0xe54ca5d70a80e5d7},
+ {0xa9f6d30a038d1dbc, 0x5e9fcf4ccd211f4d},
+ {0xd47487cc8470652b, 0x7647c32000696720},
+ {0x84c8d4dfd2c63f3b, 0x29ecd9f40041e074},
+ {0xa5fb0a17c777cf09, 0xf468107100525891},
+ {0xcf79cc9db955c2cc, 0x7182148d4066eeb5},
+ {0x81ac1fe293d599bf, 0xc6f14cd848405531},
+ {0xa21727db38cb002f, 0xb8ada00e5a506a7d},
+ {0xca9cf1d206fdc03b, 0xa6d90811f0e4851d},
+ {0xfd442e4688bd304a, 0x908f4a166d1da664},
+ {0x9e4a9cec15763e2e, 0x9a598e4e043287ff},
+ {0xc5dd44271ad3cdba, 0x40eff1e1853f29fe},
+ {0xf7549530e188c128, 0xd12bee59e68ef47d},
+ {0x9a94dd3e8cf578b9, 0x82bb74f8301958cf},
+ {0xc13a148e3032d6e7, 0xe36a52363c1faf02},
+ {0xf18899b1bc3f8ca1, 0xdc44e6c3cb279ac2},
+ {0x96f5600f15a7b7e5, 0x29ab103a5ef8c0ba},
+ {0xbcb2b812db11a5de, 0x7415d448f6b6f0e8},
+ {0xebdf661791d60f56, 0x111b495b3464ad22},
+ {0x936b9fcebb25c995, 0xcab10dd900beec35},
+ {0xb84687c269ef3bfb, 0x3d5d514f40eea743},
+ {0xe65829b3046b0afa, 0x0cb4a5a3112a5113},
+ {0x8ff71a0fe2c2e6dc, 0x47f0e785eaba72ac},
+ {0xb3f4e093db73a093, 0x59ed216765690f57},
+ {0xe0f218b8d25088b8, 0x306869c13ec3532d},
+ {0x8c974f7383725573, 0x1e414218c73a13fc},
+ {0xafbd2350644eeacf, 0xe5d1929ef90898fb},
+ {0xdbac6c247d62a583, 0xdf45f746b74abf3a},
+ {0x894bc396ce5da772, 0x6b8bba8c328eb784},
+ {0xab9eb47c81f5114f, 0x066ea92f3f326565},
+ {0xd686619ba27255a2, 0xc80a537b0efefebe},
+ {0x8613fd0145877585, 0xbd06742ce95f5f37},
+ {0xa798fc4196e952e7, 0x2c48113823b73705},
+ {0xd17f3b51fca3a7a0, 0xf75a15862ca504c6},
+ {0x82ef85133de648c4, 0x9a984d73dbe722fc},
+ {0xa3ab66580d5fdaf5, 0xc13e60d0d2e0ebbb},
+ {0xcc963fee10b7d1b3, 0x318df905079926a9},
+ {0xffbbcfe994e5c61f, 0xfdf17746497f7053},
+ {0x9fd561f1fd0f9bd3, 0xfeb6ea8bedefa634},
+ {0xc7caba6e7c5382c8, 0xfe64a52ee96b8fc1},
+ {0xf9bd690a1b68637b, 0x3dfdce7aa3c673b1},
+ {0x9c1661a651213e2d, 0x06bea10ca65c084f},
+ {0xc31bfa0fe5698db8, 0x486e494fcff30a63},
+ {0xf3e2f893dec3f126, 0x5a89dba3c3efccfb},
+ {0x986ddb5c6b3a76b7, 0xf89629465a75e01d},
+ {0xbe89523386091465, 0xf6bbb397f1135824},
+ {0xee2ba6c0678b597f, 0x746aa07ded582e2d},
+ {0x94db483840b717ef, 0xa8c2a44eb4571cdd},
+ {0xba121a4650e4ddeb, 0x92f34d62616ce414},
+ {0xe896a0d7e51e1566, 0x77b020baf9c81d18},
+ {0x915e2486ef32cd60, 0x0ace1474dc1d122f},
+ {0xb5b5ada8aaff80b8, 0x0d819992132456bb},
+ {0xe3231912d5bf60e6, 0x10e1fff697ed6c6a},
+ {0x8df5efabc5979c8f, 0xca8d3ffa1ef463c2},
+ {0xb1736b96b6fd83b3, 0xbd308ff8a6b17cb3},
+ {0xddd0467c64bce4a0, 0xac7cb3f6d05ddbdf},
+ {0x8aa22c0dbef60ee4, 0x6bcdf07a423aa96c},
+ {0xad4ab7112eb3929d, 0x86c16c98d2c953c7},
+ {0xd89d64d57a607744, 0xe871c7bf077ba8b8},
+ {0x87625f056c7c4a8b, 0x11471cd764ad4973},
+ {0xa93af6c6c79b5d2d, 0xd598e40d3dd89bd0},
+ {0xd389b47879823479, 0x4aff1d108d4ec2c4},
+ {0x843610cb4bf160cb, 0xcedf722a585139bb},
+ {0xa54394fe1eedb8fe, 0xc2974eb4ee658829},
+ {0xce947a3da6a9273e, 0x733d226229feea33},
+ {0x811ccc668829b887, 0x0806357d5a3f5260},
+ {0xa163ff802a3426a8, 0xca07c2dcb0cf26f8},
+ {0xc9bcff6034c13052, 0xfc89b393dd02f0b6},
+ {0xfc2c3f3841f17c67, 0xbbac2078d443ace3},
+ {0x9d9ba7832936edc0, 0xd54b944b84aa4c0e},
+ {0xc5029163f384a931, 0x0a9e795e65d4df12},
+ {0xf64335bcf065d37d, 0x4d4617b5ff4a16d6},
+ {0x99ea0196163fa42e, 0x504bced1bf8e4e46},
+ {0xc06481fb9bcf8d39, 0xe45ec2862f71e1d7},
+ {0xf07da27a82c37088, 0x5d767327bb4e5a4d},
+ {0x964e858c91ba2655, 0x3a6a07f8d510f870},
+ {0xbbe226efb628afea, 0x890489f70a55368c},
+ {0xeadab0aba3b2dbe5, 0x2b45ac74ccea842f},
+ {0x92c8ae6b464fc96f, 0x3b0b8bc90012929e},
+ {0xb77ada0617e3bbcb, 0x09ce6ebb40173745},
+ {0xe55990879ddcaabd, 0xcc420a6a101d0516},
+ {0x8f57fa54c2a9eab6, 0x9fa946824a12232e},
+ {0xb32df8e9f3546564, 0x47939822dc96abfa},
+ {0xdff9772470297ebd, 0x59787e2b93bc56f8},
+ {0x8bfbea76c619ef36, 0x57eb4edb3c55b65b},
+ {0xaefae51477a06b03, 0xede622920b6b23f2},
+ {0xdab99e59958885c4, 0xe95fab368e45ecee},
+ {0x88b402f7fd75539b, 0x11dbcb0218ebb415},
+ {0xaae103b5fcd2a881, 0xd652bdc29f26a11a},
+ {0xd59944a37c0752a2, 0x4be76d3346f04960},
+ {0x857fcae62d8493a5, 0x6f70a4400c562ddc},
+ {0xa6dfbd9fb8e5b88e, 0xcb4ccd500f6bb953},
+ {0xd097ad07a71f26b2, 0x7e2000a41346a7a8},
+ {0x825ecc24c873782f, 0x8ed400668c0c28c9},
+ {0xa2f67f2dfa90563b, 0x728900802f0f32fb},
+ {0xcbb41ef979346bca, 0x4f2b40a03ad2ffba},
+ {0xfea126b7d78186bc, 0xe2f610c84987bfa9},
+ {0x9f24b832e6b0f436, 0x0dd9ca7d2df4d7ca},
+ {0xc6ede63fa05d3143, 0x91503d1c79720dbc},
+ {0xf8a95fcf88747d94, 0x75a44c6397ce912b},
+ {0x9b69dbe1b548ce7c, 0xc986afbe3ee11abb},
+ {0xc24452da229b021b, 0xfbe85badce996169},
+ {0xf2d56790ab41c2a2, 0xfae27299423fb9c4},
+ {0x97c560ba6b0919a5, 0xdccd879fc967d41b},
+ {0xbdb6b8e905cb600f, 0x5400e987bbc1c921},
+ {0xed246723473e3813, 0x290123e9aab23b69},
+ {0x9436c0760c86e30b, 0xf9a0b6720aaf6522},
+ {0xb94470938fa89bce, 0xf808e40e8d5b3e6a},
+ {0xe7958cb87392c2c2, 0xb60b1d1230b20e05},
+ {0x90bd77f3483bb9b9, 0xb1c6f22b5e6f48c3},
+ {0xb4ecd5f01a4aa828, 0x1e38aeb6360b1af4},
+ {0xe2280b6c20dd5232, 0x25c6da63c38de1b1},
+ {0x8d590723948a535f, 0x579c487e5a38ad0f},
+ {0xb0af48ec79ace837, 0x2d835a9df0c6d852},
+ {0xdcdb1b2798182244, 0xf8e431456cf88e66},
+ {0x8a08f0f8bf0f156b, 0x1b8e9ecb641b5900},
+ {0xac8b2d36eed2dac5, 0xe272467e3d222f40},
+ {0xd7adf884aa879177, 0x5b0ed81dcc6abb10},
+ {0x86ccbb52ea94baea, 0x98e947129fc2b4ea},
+ {0xa87fea27a539e9a5, 0x3f2398d747b36225},
+ {0xd29fe4b18e88640e, 0x8eec7f0d19a03aae},
+ {0x83a3eeeef9153e89, 0x1953cf68300424ad},
+ {0xa48ceaaab75a8e2b, 0x5fa8c3423c052dd8},
+ {0xcdb02555653131b6, 0x3792f412cb06794e},
+ {0x808e17555f3ebf11, 0xe2bbd88bbee40bd1},
+ {0xa0b19d2ab70e6ed6, 0x5b6aceaeae9d0ec5},
+ {0xc8de047564d20a8b, 0xf245825a5a445276},
+ {0xfb158592be068d2e, 0xeed6e2f0f0d56713},
+ {0x9ced737bb6c4183d, 0x55464dd69685606c},
+ {0xc428d05aa4751e4c, 0xaa97e14c3c26b887},
+ {0xf53304714d9265df, 0xd53dd99f4b3066a9},
+ {0x993fe2c6d07b7fab, 0xe546a8038efe402a},
+ {0xbf8fdb78849a5f96, 0xde98520472bdd034},
+ {0xef73d256a5c0f77c, 0x963e66858f6d4441},
+ {0x95a8637627989aad, 0xdde7001379a44aa9},
+ {0xbb127c53b17ec159, 0x5560c018580d5d53},
+ {0xe9d71b689dde71af, 0xaab8f01e6e10b4a7},
+ {0x9226712162ab070d, 0xcab3961304ca70e9},
+ {0xb6b00d69bb55c8d1, 0x3d607b97c5fd0d23},
+ {0xe45c10c42a2b3b05, 0x8cb89a7db77c506b},
+ {0x8eb98a7a9a5b04e3, 0x77f3608e92adb243},
+ {0xb267ed1940f1c61c, 0x55f038b237591ed4},
+ {0xdf01e85f912e37a3, 0x6b6c46dec52f6689},
+ {0x8b61313bbabce2c6, 0x2323ac4b3b3da016},
+ {0xae397d8aa96c1b77, 0xabec975e0a0d081b},
+ {0xd9c7dced53c72255, 0x96e7bd358c904a22},
+ {0x881cea14545c7575, 0x7e50d64177da2e55},
+ {0xaa242499697392d2, 0xdde50bd1d5d0b9ea},
+ {0xd4ad2dbfc3d07787, 0x955e4ec64b44e865},
+ {0x84ec3c97da624ab4, 0xbd5af13bef0b113f},
+ {0xa6274bbdd0fadd61, 0xecb1ad8aeacdd58f},
+ {0xcfb11ead453994ba, 0x67de18eda5814af3},
+ {0x81ceb32c4b43fcf4, 0x80eacf948770ced8},
+ {0xa2425ff75e14fc31, 0xa1258379a94d028e},
+ {0xcad2f7f5359a3b3e, 0x096ee45813a04331},
+ {0xfd87b5f28300ca0d, 0x8bca9d6e188853fd},
+ {0x9e74d1b791e07e48, 0x775ea264cf55347e},
+ {0xc612062576589dda, 0x95364afe032a819e},
+ {0xf79687aed3eec551, 0x3a83ddbd83f52205},
+ {0x9abe14cd44753b52, 0xc4926a9672793543},
+ {0xc16d9a0095928a27, 0x75b7053c0f178294},
+ {0xf1c90080baf72cb1, 0x5324c68b12dd6339},
+ {0x971da05074da7bee, 0xd3f6fc16ebca5e04},
+ {0xbce5086492111aea, 0x88f4bb1ca6bcf585},
+ {0xec1e4a7db69561a5, 0x2b31e9e3d06c32e6},
+ {0x9392ee8e921d5d07, 0x3aff322e62439fd0},
+ {0xb877aa3236a4b449, 0x09befeb9fad487c3},
+ {0xe69594bec44de15b, 0x4c2ebe687989a9b4},
+ {0x901d7cf73ab0acd9, 0x0f9d37014bf60a11},
+ {0xb424dc35095cd80f, 0x538484c19ef38c95},
+ {0xe12e13424bb40e13, 0x2865a5f206b06fba},
+ {0x8cbccc096f5088cb, 0xf93f87b7442e45d4},
+ {0xafebff0bcb24aafe, 0xf78f69a51539d749},
+ {0xdbe6fecebdedd5be, 0xb573440e5a884d1c},
+ {0x89705f4136b4a597, 0x31680a88f8953031},
+ {0xabcc77118461cefc, 0xfdc20d2b36ba7c3e},
+ {0xd6bf94d5e57a42bc, 0x3d32907604691b4d},
+ {0x8637bd05af6c69b5, 0xa63f9a49c2c1b110},
+ {0xa7c5ac471b478423, 0x0fcf80dc33721d54},
+ {0xd1b71758e219652b, 0xd3c36113404ea4a9},
+ {0x83126e978d4fdf3b, 0x645a1cac083126ea},
+ {0xa3d70a3d70a3d70a, 0x3d70a3d70a3d70a4},
+ {0xcccccccccccccccc, 0xcccccccccccccccd},
+ {0x8000000000000000, 0x0000000000000000},
+ {0xa000000000000000, 0x0000000000000000},
+ {0xc800000000000000, 0x0000000000000000},
+ {0xfa00000000000000, 0x0000000000000000},
+ {0x9c40000000000000, 0x0000000000000000},
+ {0xc350000000000000, 0x0000000000000000},
+ {0xf424000000000000, 0x0000000000000000},
+ {0x9896800000000000, 0x0000000000000000},
+ {0xbebc200000000000, 0x0000000000000000},
+ {0xee6b280000000000, 0x0000000000000000},
+ {0x9502f90000000000, 0x0000000000000000},
+ {0xba43b74000000000, 0x0000000000000000},
+ {0xe8d4a51000000000, 0x0000000000000000},
+ {0x9184e72a00000000, 0x0000000000000000},
+ {0xb5e620f480000000, 0x0000000000000000},
+ {0xe35fa931a0000000, 0x0000000000000000},
+ {0x8e1bc9bf04000000, 0x0000000000000000},
+ {0xb1a2bc2ec5000000, 0x0000000000000000},
+ {0xde0b6b3a76400000, 0x0000000000000000},
+ {0x8ac7230489e80000, 0x0000000000000000},
+ {0xad78ebc5ac620000, 0x0000000000000000},
+ {0xd8d726b7177a8000, 0x0000000000000000},
+ {0x878678326eac9000, 0x0000000000000000},
+ {0xa968163f0a57b400, 0x0000000000000000},
+ {0xd3c21bcecceda100, 0x0000000000000000},
+ {0x84595161401484a0, 0x0000000000000000},
+ {0xa56fa5b99019a5c8, 0x0000000000000000},
+ {0xcecb8f27f4200f3a, 0x0000000000000000},
+ {0x813f3978f8940984, 0x4000000000000000},
+ {0xa18f07d736b90be5, 0x5000000000000000},
+ {0xc9f2c9cd04674ede, 0xa400000000000000},
+ {0xfc6f7c4045812296, 0x4d00000000000000},
+ {0x9dc5ada82b70b59d, 0xf020000000000000},
+ {0xc5371912364ce305, 0x6c28000000000000},
+ {0xf684df56c3e01bc6, 0xc732000000000000},
+ {0x9a130b963a6c115c, 0x3c7f400000000000},
+ {0xc097ce7bc90715b3, 0x4b9f100000000000},
+ {0xf0bdc21abb48db20, 0x1e86d40000000000},
+ {0x96769950b50d88f4, 0x1314448000000000},
+ {0xbc143fa4e250eb31, 0x17d955a000000000},
+ {0xeb194f8e1ae525fd, 0x5dcfab0800000000},
+ {0x92efd1b8d0cf37be, 0x5aa1cae500000000},
+ {0xb7abc627050305ad, 0xf14a3d9e40000000},
+ {0xe596b7b0c643c719, 0x6d9ccd05d0000000},
+ {0x8f7e32ce7bea5c6f, 0xe4820023a2000000},
+ {0xb35dbf821ae4f38b, 0xdda2802c8a800000},
+ {0xe0352f62a19e306e, 0xd50b2037ad200000},
+ {0x8c213d9da502de45, 0x4526f422cc340000},
+ {0xaf298d050e4395d6, 0x9670b12b7f410000},
+ {0xdaf3f04651d47b4c, 0x3c0cdd765f114000},
+ {0x88d8762bf324cd0f, 0xa5880a69fb6ac800},
+ {0xab0e93b6efee0053, 0x8eea0d047a457a00},
+ {0xd5d238a4abe98068, 0x72a4904598d6d880},
+ {0x85a36366eb71f041, 0x47a6da2b7f864750},
+ {0xa70c3c40a64e6c51, 0x999090b65f67d924},
+ {0xd0cf4b50cfe20765, 0xfff4b4e3f741cf6d},
+ {0x82818f1281ed449f, 0xbff8f10e7a8921a4},
+ {0xa321f2d7226895c7, 0xaff72d52192b6a0d},
+ {0xcbea6f8ceb02bb39, 0x9bf4f8a69f764490},
+ {0xfee50b7025c36a08, 0x02f236d04753d5b4},
+ {0x9f4f2726179a2245, 0x01d762422c946590},
+ {0xc722f0ef9d80aad6, 0x424d3ad2b7b97ef5},
+ {0xf8ebad2b84e0d58b, 0xd2e0898765a7deb2},
+ {0x9b934c3b330c8577, 0x63cc55f49f88eb2f},
+ {0xc2781f49ffcfa6d5, 0x3cbf6b71c76b25fb},
+ {0xf316271c7fc3908a, 0x8bef464e3945ef7a},
+ {0x97edd871cfda3a56, 0x97758bf0e3cbb5ac},
+ {0xbde94e8e43d0c8ec, 0x3d52eeed1cbea317},
+ {0xed63a231d4c4fb27, 0x4ca7aaa863ee4bdd},
+ {0x945e455f24fb1cf8, 0x8fe8caa93e74ef6a},
+ {0xb975d6b6ee39e436, 0xb3e2fd538e122b44},
+ {0xe7d34c64a9c85d44, 0x60dbbca87196b616},
+ {0x90e40fbeea1d3a4a, 0xbc8955e946fe31cd},
+ {0xb51d13aea4a488dd, 0x6babab6398bdbe41},
+ {0xe264589a4dcdab14, 0xc696963c7eed2dd1},
+ {0x8d7eb76070a08aec, 0xfc1e1de5cf543ca2},
+ {0xb0de65388cc8ada8, 0x3b25a55f43294bcb},
+ {0xdd15fe86affad912, 0x49ef0eb713f39ebe},
+ {0x8a2dbf142dfcc7ab, 0x6e3569326c784337},
+ {0xacb92ed9397bf996, 0x49c2c37f07965404},
+ {0xd7e77a8f87daf7fb, 0xdc33745ec97be906},
+ {0x86f0ac99b4e8dafd, 0x69a028bb3ded71a3},
+ {0xa8acd7c0222311bc, 0xc40832ea0d68ce0c},
+ {0xd2d80db02aabd62b, 0xf50a3fa490c30190},
+ {0x83c7088e1aab65db, 0x792667c6da79e0fa},
+ {0xa4b8cab1a1563f52, 0x577001b891185938},
+ {0xcde6fd5e09abcf26, 0xed4c0226b55e6f86},
+ {0x80b05e5ac60b6178, 0x544f8158315b05b4},
+ {0xa0dc75f1778e39d6, 0x696361ae3db1c721},
+ {0xc913936dd571c84c, 0x03bc3a19cd1e38e9},
+ {0xfb5878494ace3a5f, 0x04ab48a04065c723},
+ {0x9d174b2dcec0e47b, 0x62eb0d64283f9c76},
+ {0xc45d1df942711d9a, 0x3ba5d0bd324f8394},
+ {0xf5746577930d6500, 0xca8f44ec7ee36479},
+ {0x9968bf6abbe85f20, 0x7e998b13cf4e1ecb},
+ {0xbfc2ef456ae276e8, 0x9e3fedd8c321a67e},
+ {0xefb3ab16c59b14a2, 0xc5cfe94ef3ea101e},
+ {0x95d04aee3b80ece5, 0xbba1f1d158724a12},
+ {0xbb445da9ca61281f, 0x2a8a6e45ae8edc97},
+ {0xea1575143cf97226, 0xf52d09d71a3293bd},
+ {0x924d692ca61be758, 0x593c2626705f9c56},
+ {0xb6e0c377cfa2e12e, 0x6f8b2fb00c77836c},
+ {0xe498f455c38b997a, 0x0b6dfb9c0f956447},
+ {0x8edf98b59a373fec, 0x4724bd4189bd5eac},
+ {0xb2977ee300c50fe7, 0x58edec91ec2cb657},
+ {0xdf3d5e9bc0f653e1, 0x2f2967b66737e3ed},
+ {0x8b865b215899f46c, 0xbd79e0d20082ee74},
+ {0xae67f1e9aec07187, 0xecd8590680a3aa11},
+ {0xda01ee641a708de9, 0xe80e6f4820cc9495},
+ {0x884134fe908658b2, 0x3109058d147fdcdd},
+ {0xaa51823e34a7eede, 0xbd4b46f0599fd415},
+ {0xd4e5e2cdc1d1ea96, 0x6c9e18ac7007c91a},
+ {0x850fadc09923329e, 0x03e2cf6bc604ddb0},
+ {0xa6539930bf6bff45, 0x84db8346b786151c},
+ {0xcfe87f7cef46ff16, 0xe612641865679a63},
+ {0x81f14fae158c5f6e, 0x4fcb7e8f3f60c07e},
+ {0xa26da3999aef7749, 0xe3be5e330f38f09d},
+ {0xcb090c8001ab551c, 0x5cadf5bfd3072cc5},
+ {0xfdcb4fa002162a63, 0x73d9732fc7c8f7f6},
+ {0x9e9f11c4014dda7e, 0x2867e7fddcdd9afa},
+ {0xc646d63501a1511d, 0xb281e1fd541501b8},
+ {0xf7d88bc24209a565, 0x1f225a7ca91a4226},
+ {0x9ae757596946075f, 0x3375788de9b06958},
+ {0xc1a12d2fc3978937, 0x0052d6b1641c83ae},
+ {0xf209787bb47d6b84, 0xc0678c5dbd23a49a},
+ {0x9745eb4d50ce6332, 0xf840b7ba963646e0},
+ {0xbd176620a501fbff, 0xb650e5a93bc3d898},
+ {0xec5d3fa8ce427aff, 0xa3e51f138ab4cebe},
+ {0x93ba47c980e98cdf, 0xc66f336c36b10137},
+ {0xb8a8d9bbe123f017, 0xb80b0047445d4184},
+ {0xe6d3102ad96cec1d, 0xa60dc059157491e5},
+ {0x9043ea1ac7e41392, 0x87c89837ad68db2f},
+ {0xb454e4a179dd1877, 0x29babe4598c311fb},
+ {0xe16a1dc9d8545e94, 0xf4296dd6fef3d67a},
+ {0x8ce2529e2734bb1d, 0x1899e4a65f58660c},
+ {0xb01ae745b101e9e4, 0x5ec05dcff72e7f8f},
+ {0xdc21a1171d42645d, 0x76707543f4fa1f73},
+ {0x899504ae72497eba, 0x6a06494a791c53a8},
+ {0xabfa45da0edbde69, 0x0487db9d17636892},
+ {0xd6f8d7509292d603, 0x45a9d2845d3c42b6},
+ {0x865b86925b9bc5c2, 0x0b8a2392ba45a9b2},
+ {0xa7f26836f282b732, 0x8e6cac7768d7141e},
+ {0xd1ef0244af2364ff, 0x3207d795430cd926},
+ {0x8335616aed761f1f, 0x7f44e6bd49e807b8},
+ {0xa402b9c5a8d3a6e7, 0x5f16206c9c6209a6},
+ {0xcd036837130890a1, 0x36dba887c37a8c0f},
+ {0x802221226be55a64, 0xc2494954da2c9789},
+ {0xa02aa96b06deb0fd, 0xf2db9baa10b7bd6c},
+ {0xc83553c5c8965d3d, 0x6f92829494e5acc7},
+ {0xfa42a8b73abbf48c, 0xcb772339ba1f17f9},
+ {0x9c69a97284b578d7, 0xff2a760414536efb},
+ {0xc38413cf25e2d70d, 0xfef5138519684aba},
+ {0xf46518c2ef5b8cd1, 0x7eb258665fc25d69},
+ {0x98bf2f79d5993802, 0xef2f773ffbd97a61},
+ {0xbeeefb584aff8603, 0xaafb550ffacfd8fa},
+ {0xeeaaba2e5dbf6784, 0x95ba2a53f983cf38},
+ {0x952ab45cfa97a0b2, 0xdd945a747bf26183},
+ {0xba756174393d88df, 0x94f971119aeef9e4},
+ {0xe912b9d1478ceb17, 0x7a37cd5601aab85d},
+ {0x91abb422ccb812ee, 0xac62e055c10ab33a},
+ {0xb616a12b7fe617aa, 0x577b986b314d6009},
+ {0xe39c49765fdf9d94, 0xed5a7e85fda0b80b},
+ {0x8e41ade9fbebc27d, 0x14588f13be847307},
+ {0xb1d219647ae6b31c, 0x596eb2d8ae258fc8},
+ {0xde469fbd99a05fe3, 0x6fca5f8ed9aef3bb},
+ {0x8aec23d680043bee, 0x25de7bb9480d5854},
+ {0xada72ccc20054ae9, 0xaf561aa79a10ae6a},
+ {0xd910f7ff28069da4, 0x1b2ba1518094da04},
+ {0x87aa9aff79042286, 0x90fb44d2f05d0842},
+ {0xa99541bf57452b28, 0x353a1607ac744a53},
+ {0xd3fa922f2d1675f2, 0x42889b8997915ce8},
+ {0x847c9b5d7c2e09b7, 0x69956135febada11},
+ {0xa59bc234db398c25, 0x43fab9837e699095},
+ {0xcf02b2c21207ef2e, 0x94f967e45e03f4bb},
+ {0x8161afb94b44f57d, 0x1d1be0eebac278f5},
+ {0xa1ba1ba79e1632dc, 0x6462d92a69731732},
+ {0xca28a291859bbf93, 0x7d7b8f7503cfdcfe},
+ {0xfcb2cb35e702af78, 0x5cda735244c3d43e},
+ {0x9defbf01b061adab, 0x3a0888136afa64a7},
+ {0xc56baec21c7a1916, 0x088aaa1845b8fdd0},
+ {0xf6c69a72a3989f5b, 0x8aad549e57273d45},
+ {0x9a3c2087a63f6399, 0x36ac54e2f678864b},
+ {0xc0cb28a98fcf3c7f, 0x84576a1bb416a7dd},
+ {0xf0fdf2d3f3c30b9f, 0x656d44a2a11c51d5},
+ {0x969eb7c47859e743, 0x9f644ae5a4b1b325},
+ {0xbc4665b596706114, 0x873d5d9f0dde1fee},
+ {0xeb57ff22fc0c7959, 0xa90cb506d155a7ea},
+ {0x9316ff75dd87cbd8, 0x09a7f12442d588f2},
+ {0xb7dcbf5354e9bece, 0x0c11ed6d538aeb2f},
+ {0xe5d3ef282a242e81, 0x8f1668c8a86da5fa},
+ {0x8fa475791a569d10, 0xf96e017d694487bc},
+ {0xb38d92d760ec4455, 0x37c981dcc395a9ac},
+ {0xe070f78d3927556a, 0x85bbe253f47b1417},
+ {0x8c469ab843b89562, 0x93956d7478ccec8e},
+ {0xaf58416654a6babb, 0x387ac8d1970027b2},
+ {0xdb2e51bfe9d0696a, 0x06997b05fcc0319e},
+ {0x88fcf317f22241e2, 0x441fece3bdf81f03},
+ {0xab3c2fddeeaad25a, 0xd527e81cad7626c3},
+ {0xd60b3bd56a5586f1, 0x8a71e223d8d3b074},
+ {0x85c7056562757456, 0xf6872d5667844e49},
+ {0xa738c6bebb12d16c, 0xb428f8ac016561db},
+ {0xd106f86e69d785c7, 0xe13336d701beba52},
+ {0x82a45b450226b39c, 0xecc0024661173473},
+ {0xa34d721642b06084, 0x27f002d7f95d0190},
+ {0xcc20ce9bd35c78a5, 0x31ec038df7b441f4},
+ {0xff290242c83396ce, 0x7e67047175a15271},
+ {0x9f79a169bd203e41, 0x0f0062c6e984d386},
+ {0xc75809c42c684dd1, 0x52c07b78a3e60868},
+ {0xf92e0c3537826145, 0xa7709a56ccdf8a82},
+ {0x9bbcc7a142b17ccb, 0x88a66076400bb691},
+ {0xc2abf989935ddbfe, 0x6acff893d00ea435},
+ {0xf356f7ebf83552fe, 0x0583f6b8c4124d43},
+ {0x98165af37b2153de, 0xc3727a337a8b704a},
+ {0xbe1bf1b059e9a8d6, 0x744f18c0592e4c5c},
+ {0xeda2ee1c7064130c, 0x1162def06f79df73},
+ {0x9485d4d1c63e8be7, 0x8addcb5645ac2ba8},
+ {0xb9a74a0637ce2ee1, 0x6d953e2bd7173692},
+ {0xe8111c87c5c1ba99, 0xc8fa8db6ccdd0437},
+ {0x910ab1d4db9914a0, 0x1d9c9892400a22a2},
+ {0xb54d5e4a127f59c8, 0x2503beb6d00cab4b},
+ {0xe2a0b5dc971f303a, 0x2e44ae64840fd61d},
+ {0x8da471a9de737e24, 0x5ceaecfed289e5d2},
+ {0xb10d8e1456105dad, 0x7425a83e872c5f47},
+ {0xdd50f1996b947518, 0xd12f124e28f77719},
+ {0x8a5296ffe33cc92f, 0x82bd6b70d99aaa6f},
+ {0xace73cbfdc0bfb7b, 0x636cc64d1001550b},
+ {0xd8210befd30efa5a, 0x3c47f7e05401aa4e},
+ {0x8714a775e3e95c78, 0x65acfaec34810a71},
+ {0xa8d9d1535ce3b396, 0x7f1839a741a14d0d},
+ {0xd31045a8341ca07c, 0x1ede48111209a050},
+ {0x83ea2b892091e44d, 0x934aed0aab460432},
+ {0xa4e4b66b68b65d60, 0xf81da84d5617853f},
+ {0xce1de40642e3f4b9, 0x36251260ab9d668e},
+ {0x80d2ae83e9ce78f3, 0xc1d72b7c6b426019},
+ {0xa1075a24e4421730, 0xb24cf65b8612f81f},
+ {0xc94930ae1d529cfc, 0xdee033f26797b627},
+ {0xfb9b7cd9a4a7443c, 0x169840ef017da3b1},
+ {0x9d412e0806e88aa5, 0x8e1f289560ee864e},
+ {0xc491798a08a2ad4e, 0xf1a6f2bab92a27e2},
+ {0xf5b5d7ec8acb58a2, 0xae10af696774b1db},
+ {0x9991a6f3d6bf1765, 0xacca6da1e0a8ef29},
+ {0xbff610b0cc6edd3f, 0x17fd090a58d32af3},
+ {0xeff394dcff8a948e, 0xddfc4b4cef07f5b0},
+ {0x95f83d0a1fb69cd9, 0x4abdaf101564f98e},
+ {0xbb764c4ca7a4440f, 0x9d6d1ad41abe37f1},
+ {0xea53df5fd18d5513, 0x84c86189216dc5ed},
+ {0x92746b9be2f8552c, 0x32fd3cf5b4e49bb4},
+ {0xb7118682dbb66a77, 0x3fbc8c33221dc2a1},
+ {0xe4d5e82392a40515, 0x0fabaf3feaa5334a},
+ {0x8f05b1163ba6832d, 0x29cb4d87f2a7400e},
+ {0xb2c71d5bca9023f8, 0x743e20e9ef511012},
+ {0xdf78e4b2bd342cf6, 0x914da9246b255416},
+ {0x8bab8eefb6409c1a, 0x1ad089b6c2f7548e},
+ {0xae9672aba3d0c320, 0xa184ac2473b529b1},
+ {0xda3c0f568cc4f3e8, 0xc9e5d72d90a2741e},
+ {0x8865899617fb1871, 0x7e2fa67c7a658892},
+ {0xaa7eebfb9df9de8d, 0xddbb901b98feeab7},
+ {0xd51ea6fa85785631, 0x552a74227f3ea565},
+ {0x8533285c936b35de, 0xd53a88958f87275f},
+ {0xa67ff273b8460356, 0x8a892abaf368f137},
+ {0xd01fef10a657842c, 0x2d2b7569b0432d85},
+ {0x8213f56a67f6b29b, 0x9c3b29620e29fc73},
+ {0xa298f2c501f45f42, 0x8349f3ba91b47b8f},
+ {0xcb3f2f7642717713, 0x241c70a936219a73},
+ {0xfe0efb53d30dd4d7, 0xed238cd383aa0110},
+ {0x9ec95d1463e8a506, 0xf4363804324a40aa},
+ {0xc67bb4597ce2ce48, 0xb143c6053edcd0d5},
+ {0xf81aa16fdc1b81da, 0xdd94b7868e94050a},
+ {0x9b10a4e5e9913128, 0xca7cf2b4191c8326},
+ {0xc1d4ce1f63f57d72, 0xfd1c2f611f63a3f0},
+ {0xf24a01a73cf2dccf, 0xbc633b39673c8cec},
+ {0x976e41088617ca01, 0xd5be0503e085d813},
+ {0xbd49d14aa79dbc82, 0x4b2d8644d8a74e18},
+ {0xec9c459d51852ba2, 0xddf8e7d60ed1219e},
+ {0x93e1ab8252f33b45, 0xcabb90e5c942b503},
+ {0xb8da1662e7b00a17, 0x3d6a751f3b936243},
+ {0xe7109bfba19c0c9d, 0x0cc512670a783ad4},
+ {0x906a617d450187e2, 0x27fb2b80668b24c5},
+ {0xb484f9dc9641e9da, 0xb1f9f660802dedf6},
+ {0xe1a63853bbd26451, 0x5e7873f8a0396973},
+ {0x8d07e33455637eb2, 0xdb0b487b6423e1e8},
+ {0xb049dc016abc5e5f, 0x91ce1a9a3d2cda62},
+ {0xdc5c5301c56b75f7, 0x7641a140cc7810fb},
+ {0x89b9b3e11b6329ba, 0xa9e904c87fcb0a9d},
+ {0xac2820d9623bf429, 0x546345fa9fbdcd44},
+ {0xd732290fbacaf133, 0xa97c177947ad4095},
+ {0x867f59a9d4bed6c0, 0x49ed8eabcccc485d},
+ {0xa81f301449ee8c70, 0x5c68f256bfff5a74},
+ {0xd226fc195c6a2f8c, 0x73832eec6fff3111},
+ {0x83585d8fd9c25db7, 0xc831fd53c5ff7eab},
+ {0xa42e74f3d032f525, 0xba3e7ca8b77f5e55},
+ {0xcd3a1230c43fb26f, 0x28ce1bd2e55f35eb},
+ {0x80444b5e7aa7cf85, 0x7980d163cf5b81b3},
+ {0xa0555e361951c366, 0xd7e105bcc332621f},
+ {0xc86ab5c39fa63440, 0x8dd9472bf3fefaa7},
+ {0xfa856334878fc150, 0xb14f98f6f0feb951},
+ {0x9c935e00d4b9d8d2, 0x6ed1bf9a569f33d3},
+ {0xc3b8358109e84f07, 0x0a862f80ec4700c8},
+ {0xf4a642e14c6262c8, 0xcd27bb612758c0fa},
+ {0x98e7e9cccfbd7dbd, 0x8038d51cb897789c},
+ {0xbf21e44003acdd2c, 0xe0470a63e6bd56c3},
+ {0xeeea5d5004981478, 0x1858ccfce06cac74},
+ {0x95527a5202df0ccb, 0x0f37801e0c43ebc8},
+ {0xbaa718e68396cffd, 0xd30560258f54e6ba},
+ {0xe950df20247c83fd, 0x47c6b82ef32a2069},
+ {0x91d28b7416cdd27e, 0x4cdc331d57fa5441},
+ {0xb6472e511c81471d, 0xe0133fe4adf8e952},
+ {0xe3d8f9e563a198e5, 0x58180fddd97723a6},
+ {0x8e679c2f5e44ff8f, 0x570f09eaa7ea7648},
+ {0xb201833b35d63f73, 0x2cd2cc6551e513da},
+ {0xde81e40a034bcf4f, 0xf8077f7ea65e58d1},
+ {0x8b112e86420f6191, 0xfb04afaf27faf782},
+ {0xadd57a27d29339f6, 0x79c5db9af1f9b563},
+ {0xd94ad8b1c7380874, 0x18375281ae7822bc},
+ {0x87cec76f1c830548, 0x8f2293910d0b15b5},
+ {0xa9c2794ae3a3c69a, 0xb2eb3875504ddb22},
+ {0xd433179d9c8cb841, 0x5fa60692a46151eb},
+ {0x849feec281d7f328, 0xdbc7c41ba6bcd333},
+ {0xa5c7ea73224deff3, 0x12b9b522906c0800},
+ {0xcf39e50feae16bef, 0xd768226b34870a00},
+ {0x81842f29f2cce375, 0xe6a1158300d46640},
+ {0xa1e53af46f801c53, 0x60495ae3c1097fd0},
+ {0xca5e89b18b602368, 0x385bb19cb14bdfc4},
+ {0xfcf62c1dee382c42, 0x46729e03dd9ed7b5},
+ {0x9e19db92b4e31ba9, 0x6c07a2c26a8346d1},
+ {0xc5a05277621be293, 0xc7098b7305241885},
+ {0xf70867153aa2db38, 0xb8cbee4fc66d1ea7}
+#else
+ {0xff77b1fcbebcdc4f, 0x25e8e89c13bb0f7b},
+ {0xce5d73ff402d98e3, 0xfb0a3d212dc81290},
+ {0xa6b34ad8c9dfc06f, 0xf42faa48c0ea481f},
+ {0x86a8d39ef77164bc, 0xae5dff9c02033198},
+ {0xd98ddaee19068c76, 0x3badd624dd9b0958},
+ {0xafbd2350644eeacf, 0xe5d1929ef90898fb},
+ {0x8df5efabc5979c8f, 0xca8d3ffa1ef463c2},
+ {0xe55990879ddcaabd, 0xcc420a6a101d0516},
+ {0xb94470938fa89bce, 0xf808e40e8d5b3e6a},
+ {0x95a8637627989aad, 0xdde7001379a44aa9},
+ {0xf1c90080baf72cb1, 0x5324c68b12dd6339},
+ {0xc350000000000000, 0x0000000000000000},
+ {0x9dc5ada82b70b59d, 0xf020000000000000},
+ {0xfee50b7025c36a08, 0x02f236d04753d5b4},
+ {0xcde6fd5e09abcf26, 0xed4c0226b55e6f86},
+ {0xa6539930bf6bff45, 0x84db8346b786151c},
+ {0x865b86925b9bc5c2, 0x0b8a2392ba45a9b2},
+ {0xd910f7ff28069da4, 0x1b2ba1518094da04},
+ {0xaf58416654a6babb, 0x387ac8d1970027b2},
+ {0x8da471a9de737e24, 0x5ceaecfed289e5d2},
+ {0xe4d5e82392a40515, 0x0fabaf3feaa5334a},
+ {0xb8da1662e7b00a17, 0x3d6a751f3b936243},
+ {0x95527a5202df0ccb, 0x0f37801e0c43ebc8}
+#endif
+};
+
+#if !FMT_USE_FULL_CACHE_DRAGONBOX
+template <typename T>
+const uint64_t basic_data<T>::powers_of_5_64[] = {
+ 0x0000000000000001, 0x0000000000000005, 0x0000000000000019,
+ 0x000000000000007d, 0x0000000000000271, 0x0000000000000c35,
+ 0x0000000000003d09, 0x000000000001312d, 0x000000000005f5e1,
+ 0x00000000001dcd65, 0x00000000009502f9, 0x0000000002e90edd,
+ 0x000000000e8d4a51, 0x0000000048c27395, 0x000000016bcc41e9,
+ 0x000000071afd498d, 0x0000002386f26fc1, 0x000000b1a2bc2ec5,
+ 0x000003782dace9d9, 0x00001158e460913d, 0x000056bc75e2d631,
+ 0x0001b1ae4d6e2ef5, 0x000878678326eac9, 0x002a5a058fc295ed,
+ 0x00d3c21bcecceda1, 0x0422ca8b0a00a425, 0x14adf4b7320334b9};
+
+template <typename T>
+const uint32_t basic_data<T>::dragonbox_pow10_recovery_errors[] = {
+ 0x50001400, 0x54044100, 0x54014555, 0x55954415, 0x54115555, 0x00000001,
+ 0x50000000, 0x00104000, 0x54010004, 0x05004001, 0x55555544, 0x41545555,
+ 0x54040551, 0x15445545, 0x51555514, 0x10000015, 0x00101100, 0x01100015,
+ 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x04450514, 0x45414110,
+ 0x55555145, 0x50544050, 0x15040155, 0x11054140, 0x50111514, 0x11451454,
+ 0x00400541, 0x00000000, 0x55555450, 0x10056551, 0x10054011, 0x55551014,
+ 0x69514555, 0x05151109, 0x00155555};
+#endif
+
+template <typename T>
+const char basic_data<T>::foreground_color[] = "\x1b[38;2;";
+template <typename T>
+const char basic_data<T>::background_color[] = "\x1b[48;2;";
+template <typename T> const char basic_data<T>::reset_color[] = "\x1b[0m";
+template <typename T> const wchar_t basic_data<T>::wreset_color[] = L"\x1b[0m";
+template <typename T> const char basic_data<T>::signs[] = {0, '-', '+', ' '};
+template <typename T>
+const char basic_data<T>::left_padding_shifts[] = {31, 31, 0, 1, 0};
+template <typename T>
+const char basic_data<T>::right_padding_shifts[] = {0, 31, 0, 1, 0};
+
+template <typename T> struct bits {
+ static FMT_CONSTEXPR_DECL const int value =
+ static_cast<int>(sizeof(T) * std::numeric_limits<unsigned char>::digits);
+};
+
+class fp;
+template <int SHIFT = 0> fp normalize(fp value);
+
+// Lower (upper) boundary is a value half way between a floating-point value
+// and its predecessor (successor). Boundaries have the same exponent as the
+// value so only significands are stored.
+struct boundaries {
+ uint64_t lower;
+ uint64_t upper;
+};
+
+// A handmade floating-point number f * pow(2, e).
+class fp {
+ private:
+ using significand_type = uint64_t;
+
+ template <typename Float>
+ using is_supported_float = bool_constant<sizeof(Float) == sizeof(uint64_t) ||
+ sizeof(Float) == sizeof(uint32_t)>;
+
+ public:
+ significand_type f;
+ int e;
+
+ // All sizes are in bits.
+ // Subtract 1 to account for an implicit most significant bit in the
+ // normalized form.
+ static FMT_CONSTEXPR_DECL const int double_significand_size =
+ std::numeric_limits<double>::digits - 1;
+ static FMT_CONSTEXPR_DECL const uint64_t implicit_bit =
+ 1ULL << double_significand_size;
+ static FMT_CONSTEXPR_DECL const int significand_size =
+ bits<significand_type>::value;
+
+ fp() : f(0), e(0) {}
+ fp(uint64_t f_val, int e_val) : f(f_val), e(e_val) {}
+
+ // Constructs fp from an IEEE754 double. It is a template to prevent compile
+ // errors on platforms where double is not IEEE754.
+ template <typename Double> explicit fp(Double d) { assign(d); }
+
+ // Assigns d to this and return true iff predecessor is closer than successor.
+ template <typename Float, FMT_ENABLE_IF(is_supported_float<Float>::value)>
+ bool assign(Float d) {
+ // Assume float is in the format [sign][exponent][significand].
+ using limits = std::numeric_limits<Float>;
+ const int float_significand_size = limits::digits - 1;
+ const int exponent_size =
+ bits<Float>::value - float_significand_size - 1; // -1 for sign
+ const uint64_t float_implicit_bit = 1ULL << float_significand_size;
+ const uint64_t significand_mask = float_implicit_bit - 1;
+ const uint64_t exponent_mask = (~0ULL >> 1) & ~significand_mask;
+ const int exponent_bias = (1 << exponent_size) - limits::max_exponent - 1;
+ constexpr bool is_double = sizeof(Float) == sizeof(uint64_t);
+ auto u = bit_cast<conditional_t<is_double, uint64_t, uint32_t>>(d);
+ f = u & significand_mask;
+ int biased_e =
+ static_cast<int>((u & exponent_mask) >> float_significand_size);
+ // Predecessor is closer if d is a normalized power of 2 (f == 0) other than
+ // the smallest normalized number (biased_e > 1).
+ bool is_predecessor_closer = f == 0 && biased_e > 1;
+ if (biased_e != 0)
+ f += float_implicit_bit;
+ else
+ biased_e = 1; // Subnormals use biased exponent 1 (min exponent).
+ e = biased_e - exponent_bias - float_significand_size;
+ return is_predecessor_closer;
+ }
+
+ template <typename Float, FMT_ENABLE_IF(!is_supported_float<Float>::value)>
+ bool assign(Float) {
+ *this = fp();
+ return false;
+ }
+};
+
+// Normalizes the value converted from double and multiplied by (1 << SHIFT).
+template <int SHIFT> fp normalize(fp value) {
+ // Handle subnormals.
+ const auto shifted_implicit_bit = fp::implicit_bit << SHIFT;
+ while ((value.f & shifted_implicit_bit) == 0) {
+ value.f <<= 1;
+ --value.e;
+ }
+ // Subtract 1 to account for hidden bit.
+ const auto offset =
+ fp::significand_size - fp::double_significand_size - SHIFT - 1;
+ value.f <<= offset;
+ value.e -= offset;
+ return value;
+}
+
+inline bool operator==(fp x, fp y) { return x.f == y.f && x.e == y.e; }
+
+// Computes lhs * rhs / pow(2, 64) rounded to nearest with half-up tie breaking.
+inline uint64_t multiply(uint64_t lhs, uint64_t rhs) {
+#if FMT_USE_INT128
+ auto product = static_cast<__uint128_t>(lhs) * rhs;
+ auto f = static_cast<uint64_t>(product >> 64);
+ return (static_cast<uint64_t>(product) & (1ULL << 63)) != 0 ? f + 1 : f;
+#else
+ // Multiply 32-bit parts of significands.
+ uint64_t mask = (1ULL << 32) - 1;
+ uint64_t a = lhs >> 32, b = lhs & mask;
+ uint64_t c = rhs >> 32, d = rhs & mask;
+ uint64_t ac = a * c, bc = b * c, ad = a * d, bd = b * d;
+ // Compute mid 64-bit of result and round.
+ uint64_t mid = (bd >> 32) + (ad & mask) + (bc & mask) + (1U << 31);
+ return ac + (ad >> 32) + (bc >> 32) + (mid >> 32);
+#endif
+}
+
+inline fp operator*(fp x, fp y) { return {multiply(x.f, y.f), x.e + y.e + 64}; }
+
+// Returns a cached power of 10 `c_k = c_k.f * pow(2, c_k.e)` such that its
+// (binary) exponent satisfies `min_exponent <= c_k.e <= min_exponent + 28`.
+inline fp get_cached_power(int min_exponent, int& pow10_exponent) {
+ const int shift = 32;
+ const auto significand = static_cast<int64_t>(data::log10_2_significand);
+ int index = static_cast<int>(
+ ((min_exponent + fp::significand_size - 1) * (significand >> shift) +
+ ((int64_t(1) << shift) - 1)) // ceil
+ >> 32 // arithmetic shift
+ );
+ // Decimal exponent of the first (smallest) cached power of 10.
+ const int first_dec_exp = -348;
+ // Difference between 2 consecutive decimal exponents in cached powers of 10.
+ const int dec_exp_step = 8;
+ index = (index - first_dec_exp - 1) / dec_exp_step + 1;
+ pow10_exponent = first_dec_exp + index * dec_exp_step;
+ return {data::grisu_pow10_significands[index],
+ data::grisu_pow10_exponents[index]};
+}
+
+// A simple accumulator to hold the sums of terms in bigint::square if uint128_t
+// is not available.
+struct accumulator {
+ uint64_t lower;
+ uint64_t upper;
+
+ accumulator() : lower(0), upper(0) {}
+ explicit operator uint32_t() const { return static_cast<uint32_t>(lower); }
+
+ void operator+=(uint64_t n) {
+ lower += n;
+ if (lower < n) ++upper;
+ }
+ void operator>>=(int shift) {
+ assert(shift == 32);
+ (void)shift;
+ lower = (upper << 32) | (lower >> 32);
+ upper >>= 32;
+ }
+};
+
+class bigint {
+ private:
+ // A bigint is stored as an array of bigits (big digits), with bigit at index
+ // 0 being the least significant one.
+ using bigit = uint32_t;
+ using double_bigit = uint64_t;
+ enum { bigits_capacity = 32 };
+ basic_memory_buffer<bigit, bigits_capacity> bigits_;
+ int exp_;
+
+ bigit operator[](int index) const { return bigits_[to_unsigned(index)]; }
+ bigit& operator[](int index) { return bigits_[to_unsigned(index)]; }
+
+ static FMT_CONSTEXPR_DECL const int bigit_bits = bits<bigit>::value;
+
+ friend struct formatter<bigint>;
+
+ void subtract_bigits(int index, bigit other, bigit& borrow) {
+ auto result = static_cast<double_bigit>((*this)[index]) - other - borrow;
+ (*this)[index] = static_cast<bigit>(result);
+ borrow = static_cast<bigit>(result >> (bigit_bits * 2 - 1));
+ }
+
+ void remove_leading_zeros() {
+ int num_bigits = static_cast<int>(bigits_.size()) - 1;
+ while (num_bigits > 0 && (*this)[num_bigits] == 0) --num_bigits;
+ bigits_.resize(to_unsigned(num_bigits + 1));
+ }
+
+ // Computes *this -= other assuming aligned bigints and *this >= other.
+ void subtract_aligned(const bigint& other) {
+ FMT_ASSERT(other.exp_ >= exp_, "unaligned bigints");
+ FMT_ASSERT(compare(*this, other) >= 0, "");
+ bigit borrow = 0;
+ int i = other.exp_ - exp_;
+ for (size_t j = 0, n = other.bigits_.size(); j != n; ++i, ++j)
+ subtract_bigits(i, other.bigits_[j], borrow);
+ while (borrow > 0) subtract_bigits(i, 0, borrow);
+ remove_leading_zeros();
+ }
+
+ void multiply(uint32_t value) {
+ const double_bigit wide_value = value;
+ bigit carry = 0;
+ for (size_t i = 0, n = bigits_.size(); i < n; ++i) {
+ double_bigit result = bigits_[i] * wide_value + carry;
+ bigits_[i] = static_cast<bigit>(result);
+ carry = static_cast<bigit>(result >> bigit_bits);
+ }
+ if (carry != 0) bigits_.push_back(carry);
+ }
+
+ void multiply(uint64_t value) {
+ const bigit mask = ~bigit(0);
+ const double_bigit lower = value & mask;
+ const double_bigit upper = value >> bigit_bits;
+ double_bigit carry = 0;
+ for (size_t i = 0, n = bigits_.size(); i < n; ++i) {
+ double_bigit result = bigits_[i] * lower + (carry & mask);
+ carry =
+ bigits_[i] * upper + (result >> bigit_bits) + (carry >> bigit_bits);
+ bigits_[i] = static_cast<bigit>(result);
+ }
+ while (carry != 0) {
+ bigits_.push_back(carry & mask);
+ carry >>= bigit_bits;
+ }
+ }
+
+ public:
+ bigint() : exp_(0) {}
+ explicit bigint(uint64_t n) { assign(n); }
+ ~bigint() { assert(bigits_.capacity() <= bigits_capacity); }
+
+ bigint(const bigint&) = delete;
+ void operator=(const bigint&) = delete;
+
+ void assign(const bigint& other) {
+ auto size = other.bigits_.size();
+ bigits_.resize(size);
+ auto data = other.bigits_.data();
+ std::copy(data, data + size, make_checked(bigits_.data(), size));
+ exp_ = other.exp_;
+ }
+
+ void assign(uint64_t n) {
+ size_t num_bigits = 0;
+ do {
+ bigits_[num_bigits++] = n & ~bigit(0);
+ n >>= bigit_bits;
+ } while (n != 0);
+ bigits_.resize(num_bigits);
+ exp_ = 0;
+ }
+
+ int num_bigits() const { return static_cast<int>(bigits_.size()) + exp_; }
+
+ FMT_NOINLINE bigint& operator<<=(int shift) {
+ assert(shift >= 0);
+ exp_ += shift / bigit_bits;
+ shift %= bigit_bits;
+ if (shift == 0) return *this;
+ bigit carry = 0;
+ for (size_t i = 0, n = bigits_.size(); i < n; ++i) {
+ bigit c = bigits_[i] >> (bigit_bits - shift);
+ bigits_[i] = (bigits_[i] << shift) + carry;
+ carry = c;
+ }
+ if (carry != 0) bigits_.push_back(carry);
+ return *this;
+ }
+
+ template <typename Int> bigint& operator*=(Int value) {
+ FMT_ASSERT(value > 0, "");
+ multiply(uint32_or_64_or_128_t<Int>(value));
+ return *this;
+ }
+
+ friend int compare(const bigint& lhs, const bigint& rhs) {
+ int num_lhs_bigits = lhs.num_bigits(), num_rhs_bigits = rhs.num_bigits();
+ if (num_lhs_bigits != num_rhs_bigits)
+ return num_lhs_bigits > num_rhs_bigits ? 1 : -1;
+ int i = static_cast<int>(lhs.bigits_.size()) - 1;
+ int j = static_cast<int>(rhs.bigits_.size()) - 1;
+ int end = i - j;
+ if (end < 0) end = 0;
+ for (; i >= end; --i, --j) {
+ bigit lhs_bigit = lhs[i], rhs_bigit = rhs[j];
+ if (lhs_bigit != rhs_bigit) return lhs_bigit > rhs_bigit ? 1 : -1;
+ }
+ if (i != j) return i > j ? 1 : -1;
+ return 0;
+ }
+
+ // Returns compare(lhs1 + lhs2, rhs).
+ friend int add_compare(const bigint& lhs1, const bigint& lhs2,
+ const bigint& rhs) {
+ int max_lhs_bigits = (std::max)(lhs1.num_bigits(), lhs2.num_bigits());
+ int num_rhs_bigits = rhs.num_bigits();
+ if (max_lhs_bigits + 1 < num_rhs_bigits) return -1;
+ if (max_lhs_bigits > num_rhs_bigits) return 1;
+ auto get_bigit = [](const bigint& n, int i) -> bigit {
+ return i >= n.exp_ && i < n.num_bigits() ? n[i - n.exp_] : 0;
+ };
+ double_bigit borrow = 0;
+ int min_exp = (std::min)((std::min)(lhs1.exp_, lhs2.exp_), rhs.exp_);
+ for (int i = num_rhs_bigits - 1; i >= min_exp; --i) {
+ double_bigit sum =
+ static_cast<double_bigit>(get_bigit(lhs1, i)) + get_bigit(lhs2, i);
+ bigit rhs_bigit = get_bigit(rhs, i);
+ if (sum > rhs_bigit + borrow) return 1;
+ borrow = rhs_bigit + borrow - sum;
+ if (borrow > 1) return -1;
+ borrow <<= bigit_bits;
+ }
+ return borrow != 0 ? -1 : 0;
+ }
+
+ // Assigns pow(10, exp) to this bigint.
+ void assign_pow10(int exp) {
+ assert(exp >= 0);
+ if (exp == 0) return assign(1);
+ // Find the top bit.
+ int bitmask = 1;
+ while (exp >= bitmask) bitmask <<= 1;
+ bitmask >>= 1;
+ // pow(10, exp) = pow(5, exp) * pow(2, exp). First compute pow(5, exp) by
+ // repeated squaring and multiplication.
+ assign(5);
+ bitmask >>= 1;
+ while (bitmask != 0) {
+ square();
+ if ((exp & bitmask) != 0) *this *= 5;
+ bitmask >>= 1;
+ }
+ *this <<= exp; // Multiply by pow(2, exp) by shifting.
+ }
+
+ void square() {
+ basic_memory_buffer<bigit, bigits_capacity> n(std::move(bigits_));
+ int num_bigits = static_cast<int>(bigits_.size());
+ int num_result_bigits = 2 * num_bigits;
+ bigits_.resize(to_unsigned(num_result_bigits));
+ using accumulator_t = conditional_t<FMT_USE_INT128, uint128_t, accumulator>;
+ auto sum = accumulator_t();
+ for (int bigit_index = 0; bigit_index < num_bigits; ++bigit_index) {
+ // Compute bigit at position bigit_index of the result by adding
+ // cross-product terms n[i] * n[j] such that i + j == bigit_index.
+ for (int i = 0, j = bigit_index; j >= 0; ++i, --j) {
+ // Most terms are multiplied twice which can be optimized in the future.
+ sum += static_cast<double_bigit>(n[i]) * n[j];
+ }
+ (*this)[bigit_index] = static_cast<bigit>(sum);
+ sum >>= bits<bigit>::value; // Compute the carry.
+ }
+ // Do the same for the top half.
+ for (int bigit_index = num_bigits; bigit_index < num_result_bigits;
+ ++bigit_index) {
+ for (int j = num_bigits - 1, i = bigit_index - j; i < num_bigits;)
+ sum += static_cast<double_bigit>(n[i++]) * n[j--];
+ (*this)[bigit_index] = static_cast<bigit>(sum);
+ sum >>= bits<bigit>::value;
+ }
+ --num_result_bigits;
+ remove_leading_zeros();
+ exp_ *= 2;
+ }
+
+ // If this bigint has a bigger exponent than other, adds trailing zero to make
+ // exponents equal. This simplifies some operations such as subtraction.
+ void align(const bigint& other) {
+ int exp_difference = exp_ - other.exp_;
+ if (exp_difference <= 0) return;
+ int num_bigits = static_cast<int>(bigits_.size());
+ bigits_.resize(to_unsigned(num_bigits + exp_difference));
+ for (int i = num_bigits - 1, j = i + exp_difference; i >= 0; --i, --j)
+ bigits_[j] = bigits_[i];
+ std::uninitialized_fill_n(bigits_.data(), exp_difference, 0);
+ exp_ -= exp_difference;
+ }
+
+ // Divides this bignum by divisor, assigning the remainder to this and
+ // returning the quotient.
+ int divmod_assign(const bigint& divisor) {
+ FMT_ASSERT(this != &divisor, "");
+ if (compare(*this, divisor) < 0) return 0;
+ FMT_ASSERT(divisor.bigits_[divisor.bigits_.size() - 1u] != 0, "");
+ align(divisor);
+ int quotient = 0;
+ do {
+ subtract_aligned(divisor);
+ ++quotient;
+ } while (compare(*this, divisor) >= 0);
+ return quotient;
+ }
+};
+
+enum class round_direction { unknown, up, down };
+
+// Given the divisor (normally a power of 10), the remainder = v % divisor for
+// some number v and the error, returns whether v should be rounded up, down, or
+// whether the rounding direction can't be determined due to error.
+// error should be less than divisor / 2.
+inline round_direction get_round_direction(uint64_t divisor, uint64_t remainder,
+ uint64_t error) {
+ FMT_ASSERT(remainder < divisor, ""); // divisor - remainder won't overflow.
+ FMT_ASSERT(error < divisor, ""); // divisor - error won't overflow.
+ FMT_ASSERT(error < divisor - error, ""); // error * 2 won't overflow.
+ // Round down if (remainder + error) * 2 <= divisor.
+ if (remainder <= divisor - remainder && error * 2 <= divisor - remainder * 2)
+ return round_direction::down;
+ // Round up if (remainder - error) * 2 >= divisor.
+ if (remainder >= error &&
+ remainder - error >= divisor - (remainder - error)) {
+ return round_direction::up;
+ }
+ return round_direction::unknown;
+}
+
+namespace digits {
+enum result {
+ more, // Generate more digits.
+ done, // Done generating digits.
+ error // Digit generation cancelled due to an error.
+};
+}
+
+// Generates output using the Grisu digit-gen algorithm.
+// error: the size of the region (lower, upper) outside of which numbers
+// definitely do not round to value (Delta in Grisu3).
+template <typename Handler>
+FMT_ALWAYS_INLINE digits::result grisu_gen_digits(fp value, uint64_t error,
+ int& exp, Handler& handler) {
+ const fp one(1ULL << -value.e, value.e);
+ // The integral part of scaled value (p1 in Grisu) = value / one. It cannot be
+ // zero because it contains a product of two 64-bit numbers with MSB set (due
+ // to normalization) - 1, shifted right by at most 60 bits.
+ auto integral = static_cast<uint32_t>(value.f >> -one.e);
+ FMT_ASSERT(integral != 0, "");
+ FMT_ASSERT(integral == value.f >> -one.e, "");
+ // The fractional part of scaled value (p2 in Grisu) c = value % one.
+ uint64_t fractional = value.f & (one.f - 1);
+ exp = count_digits(integral); // kappa in Grisu.
+ // Divide by 10 to prevent overflow.
+ auto result = handler.on_start(data::powers_of_10_64[exp - 1] << -one.e,
+ value.f / 10, error * 10, exp);
+ if (result != digits::more) return result;
+ // Generate digits for the integral part. This can produce up to 10 digits.
+ do {
+ uint32_t digit = 0;
+ auto divmod_integral = [&](uint32_t divisor) {
+ digit = integral / divisor;
+ integral %= divisor;
+ };
+ // This optimization by Milo Yip reduces the number of integer divisions by
+ // one per iteration.
+ switch (exp) {
+ case 10:
+ divmod_integral(1000000000);
+ break;
+ case 9:
+ divmod_integral(100000000);
+ break;
+ case 8:
+ divmod_integral(10000000);
+ break;
+ case 7:
+ divmod_integral(1000000);
+ break;
+ case 6:
+ divmod_integral(100000);
+ break;
+ case 5:
+ divmod_integral(10000);
+ break;
+ case 4:
+ divmod_integral(1000);
+ break;
+ case 3:
+ divmod_integral(100);
+ break;
+ case 2:
+ divmod_integral(10);
+ break;
+ case 1:
+ digit = integral;
+ integral = 0;
+ break;
+ default:
+ FMT_ASSERT(false, "invalid number of digits");
+ }
+ --exp;
+ auto remainder = (static_cast<uint64_t>(integral) << -one.e) + fractional;
+ result = handler.on_digit(static_cast<char>('0' + digit),
+ data::powers_of_10_64[exp] << -one.e, remainder,
+ error, exp, true);
+ if (result != digits::more) return result;
+ } while (exp > 0);
+ // Generate digits for the fractional part.
+ for (;;) {
+ fractional *= 10;
+ error *= 10;
+ char digit = static_cast<char>('0' + (fractional >> -one.e));
+ fractional &= one.f - 1;
+ --exp;
+ result = handler.on_digit(digit, one.f, fractional, error, exp, false);
+ if (result != digits::more) return result;
+ }
+}
+
+// The fixed precision digit handler.
+struct fixed_handler {
+ char* buf;
+ int size;
+ int precision;
+ int exp10;
+ bool fixed;
+
+ digits::result on_start(uint64_t divisor, uint64_t remainder, uint64_t error,
+ int& exp) {
+ // Non-fixed formats require at least one digit and no precision adjustment.
+ if (!fixed) return digits::more;
+ // Adjust fixed precision by exponent because it is relative to decimal
+ // point.
+ precision += exp + exp10;
+ // Check if precision is satisfied just by leading zeros, e.g.
+ // format("{:.2f}", 0.001) gives "0.00" without generating any digits.
+ if (precision > 0) return digits::more;
+ if (precision < 0) return digits::done;
+ auto dir = get_round_direction(divisor, remainder, error);
+ if (dir == round_direction::unknown) return digits::error;
+ buf[size++] = dir == round_direction::up ? '1' : '0';
+ return digits::done;
+ }
+
+ digits::result on_digit(char digit, uint64_t divisor, uint64_t remainder,
+ uint64_t error, int, bool integral) {
+ FMT_ASSERT(remainder < divisor, "");
+ buf[size++] = digit;
+ if (!integral && error >= remainder) return digits::error;
+ if (size < precision) return digits::more;
+ if (!integral) {
+ // Check if error * 2 < divisor with overflow prevention.
+ // The check is not needed for the integral part because error = 1
+ // and divisor > (1 << 32) there.
+ if (error >= divisor || error >= divisor - error) return digits::error;
+ } else {
+ FMT_ASSERT(error == 1 && divisor > 2, "");
+ }
+ auto dir = get_round_direction(divisor, remainder, error);
+ if (dir != round_direction::up)
+ return dir == round_direction::down ? digits::done : digits::error;
+ ++buf[size - 1];
+ for (int i = size - 1; i > 0 && buf[i] > '9'; --i) {
+ buf[i] = '0';
+ ++buf[i - 1];
+ }
+ if (buf[0] > '9') {
+ buf[0] = '1';
+ if (fixed)
+ buf[size++] = '0';
+ else
+ ++exp10;
+ }
+ return digits::done;
+ }
+};
+
+// Implementation of Dragonbox algorithm: https://github.com/jk-jeon/dragonbox.
+namespace dragonbox {
+// Computes 128-bit result of multiplication of two 64-bit unsigned integers.
+FMT_SAFEBUFFERS inline uint128_wrapper umul128(uint64_t x,
+ uint64_t y) FMT_NOEXCEPT {
+#if FMT_USE_INT128
+ return static_cast<uint128_t>(x) * static_cast<uint128_t>(y);
+#elif defined(_MSC_VER) && defined(_M_X64)
+ uint128_wrapper result;
+ result.low_ = _umul128(x, y, &result.high_);
+ return result;
+#else
+ const uint64_t mask = (uint64_t(1) << 32) - uint64_t(1);
+
+ uint64_t a = x >> 32;
+ uint64_t b = x & mask;
+ uint64_t c = y >> 32;
+ uint64_t d = y & mask;
+
+ uint64_t ac = a * c;
+ uint64_t bc = b * c;
+ uint64_t ad = a * d;
+ uint64_t bd = b * d;
+
+ uint64_t intermediate = (bd >> 32) + (ad & mask) + (bc & mask);
+
+ return {ac + (intermediate >> 32) + (ad >> 32) + (bc >> 32),
+ (intermediate << 32) + (bd & mask)};
+#endif
+}
+
+// Computes upper 64 bits of multiplication of two 64-bit unsigned integers.
+FMT_SAFEBUFFERS inline uint64_t umul128_upper64(uint64_t x,
+ uint64_t y) FMT_NOEXCEPT {
+#if FMT_USE_INT128
+ auto p = static_cast<uint128_t>(x) * static_cast<uint128_t>(y);
+ return static_cast<uint64_t>(p >> 64);
+#elif defined(_MSC_VER) && defined(_M_X64)
+ return __umulh(x, y);
+#else
+ return umul128(x, y).high();
+#endif
+}
+
+// Computes upper 64 bits of multiplication of a 64-bit unsigned integer and a
+// 128-bit unsigned integer.
+FMT_SAFEBUFFERS inline uint64_t umul192_upper64(uint64_t x, uint128_wrapper y)
+ FMT_NOEXCEPT {
+ uint128_wrapper g0 = umul128(x, y.high());
+ g0 += umul128_upper64(x, y.low());
+ return g0.high();
+}
+
+// Computes upper 32 bits of multiplication of a 32-bit unsigned integer and a
+// 64-bit unsigned integer.
+inline uint32_t umul96_upper32(uint32_t x, uint64_t y) FMT_NOEXCEPT {
+ return static_cast<uint32_t>(umul128_upper64(x, y));
+}
+
+// Computes middle 64 bits of multiplication of a 64-bit unsigned integer and a
+// 128-bit unsigned integer.
+FMT_SAFEBUFFERS inline uint64_t umul192_middle64(uint64_t x, uint128_wrapper y)
+ FMT_NOEXCEPT {
+ uint64_t g01 = x * y.high();
+ uint64_t g10 = umul128_upper64(x, y.low());
+ return g01 + g10;
+}
+
+// Computes lower 64 bits of multiplication of a 32-bit unsigned integer and a
+// 64-bit unsigned integer.
+inline uint64_t umul96_lower64(uint32_t x, uint64_t y) FMT_NOEXCEPT {
+ return x * y;
+}
+
+// Computes floor(log10(pow(2, e))) for e in [-1700, 1700] using the method from
+// https://fmt.dev/papers/Grisu-Exact.pdf#page=5, section 3.4.
+inline int floor_log10_pow2(int e) FMT_NOEXCEPT {
+ FMT_ASSERT(e <= 1700 && e >= -1700, "too large exponent");
+ const int shift = 22;
+ return (e * static_cast<int>(data::log10_2_significand >> (64 - shift))) >>
+ shift;
+}
+
+// Various fast log computations.
+inline int floor_log2_pow10(int e) FMT_NOEXCEPT {
+ FMT_ASSERT(e <= 1233 && e >= -1233, "too large exponent");
+ const uint64_t log2_10_integer_part = 3;
+ const uint64_t log2_10_fractional_digits = 0x5269e12f346e2bf9;
+ const int shift_amount = 19;
+ return (e * static_cast<int>(
+ (log2_10_integer_part << shift_amount) |
+ (log2_10_fractional_digits >> (64 - shift_amount)))) >>
+ shift_amount;
+}
+inline int floor_log10_pow2_minus_log10_4_over_3(int e) FMT_NOEXCEPT {
+ FMT_ASSERT(e <= 1700 && e >= -1700, "too large exponent");
+ const uint64_t log10_4_over_3_fractional_digits = 0x1ffbfc2bbc780375;
+ const int shift_amount = 22;
+ return (e * static_cast<int>(data::log10_2_significand >>
+ (64 - shift_amount)) -
+ static_cast<int>(log10_4_over_3_fractional_digits >>
+ (64 - shift_amount))) >>
+ shift_amount;
+}
+
+// Returns true iff x is divisible by pow(2, exp).
+inline bool divisible_by_power_of_2(uint32_t x, int exp) FMT_NOEXCEPT {
+ FMT_ASSERT(exp >= 1, "");
+ FMT_ASSERT(x != 0, "");
+#ifdef FMT_BUILTIN_CTZ
+ return FMT_BUILTIN_CTZ(x) >= exp;
+#else
+ return exp < num_bits<uint32_t>() && x == ((x >> exp) << exp);
+#endif
+}
+inline bool divisible_by_power_of_2(uint64_t x, int exp) FMT_NOEXCEPT {
+ FMT_ASSERT(exp >= 1, "");
+ FMT_ASSERT(x != 0, "");
+#ifdef FMT_BUILTIN_CTZLL
+ return FMT_BUILTIN_CTZLL(x) >= exp;
+#else
+ return exp < num_bits<uint64_t>() && x == ((x >> exp) << exp);
+#endif
+}
+
+// Returns true iff x is divisible by pow(5, exp).
+inline bool divisible_by_power_of_5(uint32_t x, int exp) FMT_NOEXCEPT {
+ FMT_ASSERT(exp <= 10, "too large exponent");
+ return x * data::divtest_table_for_pow5_32[exp].mod_inv <=
+ data::divtest_table_for_pow5_32[exp].max_quotient;
+}
+inline bool divisible_by_power_of_5(uint64_t x, int exp) FMT_NOEXCEPT {
+ FMT_ASSERT(exp <= 23, "too large exponent");
+ return x * data::divtest_table_for_pow5_64[exp].mod_inv <=
+ data::divtest_table_for_pow5_64[exp].max_quotient;
+}
+
+// Replaces n by floor(n / pow(5, N)) returning true if and only if n is
+// divisible by pow(5, N).
+// Precondition: n <= 2 * pow(5, N + 1).
+template <int N>
+bool check_divisibility_and_divide_by_pow5(uint32_t& n) FMT_NOEXCEPT {
+ static constexpr struct {
+ uint32_t magic_number;
+ int bits_for_comparison;
+ uint32_t threshold;
+ int shift_amount;
+ } infos[] = {{0xcccd, 16, 0x3333, 18}, {0xa429, 8, 0x0a, 20}};
+ constexpr auto info = infos[N - 1];
+ n *= info.magic_number;
+ const uint32_t comparison_mask = (1u << info.bits_for_comparison) - 1;
+ bool result = (n & comparison_mask) <= info.threshold;
+ n >>= info.shift_amount;
+ return result;
+}
+
+// Computes floor(n / pow(10, N)) for small n and N.
+// Precondition: n <= pow(10, N + 1).
+template <int N> uint32_t small_division_by_pow10(uint32_t n) FMT_NOEXCEPT {
+ static constexpr struct {
+ uint32_t magic_number;
+ int shift_amount;
+ uint32_t divisor_times_10;
+ } infos[] = {{0xcccd, 19, 100}, {0xa3d8, 22, 1000}};
+ constexpr auto info = infos[N - 1];
+ FMT_ASSERT(n <= info.divisor_times_10, "n is too large");
+ return n * info.magic_number >> info.shift_amount;
+}
+
+// Computes floor(n / 10^(kappa + 1)) (float)
+inline uint32_t divide_by_10_to_kappa_plus_1(uint32_t n) FMT_NOEXCEPT {
+ return n / float_info<float>::big_divisor;
+}
+// Computes floor(n / 10^(kappa + 1)) (double)
+inline uint64_t divide_by_10_to_kappa_plus_1(uint64_t n) FMT_NOEXCEPT {
+ return umul128_upper64(n, 0x83126e978d4fdf3c) >> 9;
+}
+
+// Various subroutines using pow10 cache
+template <class T> struct cache_accessor;
+
+template <> struct cache_accessor<float> {
+ using carrier_uint = float_info<float>::carrier_uint;
+ using cache_entry_type = uint64_t;
+
+ static uint64_t get_cached_power(int k) FMT_NOEXCEPT {
+ FMT_ASSERT(k >= float_info<float>::min_k && k <= float_info<float>::max_k,
+ "k is out of range");
+ return data::dragonbox_pow10_significands_64[k - float_info<float>::min_k];
+ }
+
+ static carrier_uint compute_mul(carrier_uint u,
+ const cache_entry_type& cache) FMT_NOEXCEPT {
+ return umul96_upper32(u, cache);
+ }
+
+ static uint32_t compute_delta(const cache_entry_type& cache,
+ int beta_minus_1) FMT_NOEXCEPT {
+ return static_cast<uint32_t>(cache >> (64 - 1 - beta_minus_1));
+ }
+
+ static bool compute_mul_parity(carrier_uint two_f,
+ const cache_entry_type& cache,
+ int beta_minus_1) FMT_NOEXCEPT {
+ FMT_ASSERT(beta_minus_1 >= 1, "");
+ FMT_ASSERT(beta_minus_1 < 64, "");
+
+ return ((umul96_lower64(two_f, cache) >> (64 - beta_minus_1)) & 1) != 0;
+ }
+
+ static carrier_uint compute_left_endpoint_for_shorter_interval_case(
+ const cache_entry_type& cache, int beta_minus_1) FMT_NOEXCEPT {
+ return static_cast<carrier_uint>(
+ (cache - (cache >> (float_info<float>::significand_bits + 2))) >>
+ (64 - float_info<float>::significand_bits - 1 - beta_minus_1));
+ }
+
+ static carrier_uint compute_right_endpoint_for_shorter_interval_case(
+ const cache_entry_type& cache, int beta_minus_1) FMT_NOEXCEPT {
+ return static_cast<carrier_uint>(
+ (cache + (cache >> (float_info<float>::significand_bits + 1))) >>
+ (64 - float_info<float>::significand_bits - 1 - beta_minus_1));
+ }
+
+ static carrier_uint compute_round_up_for_shorter_interval_case(
+ const cache_entry_type& cache, int beta_minus_1) FMT_NOEXCEPT {
+ return (static_cast<carrier_uint>(
+ cache >>
+ (64 - float_info<float>::significand_bits - 2 - beta_minus_1)) +
+ 1) /
+ 2;
+ }
+};
+
+template <> struct cache_accessor<double> {
+ using carrier_uint = float_info<double>::carrier_uint;
+ using cache_entry_type = uint128_wrapper;
+
+ static uint128_wrapper get_cached_power(int k) FMT_NOEXCEPT {
+ FMT_ASSERT(k >= float_info<double>::min_k && k <= float_info<double>::max_k,
+ "k is out of range");
+
+#if FMT_USE_FULL_CACHE_DRAGONBOX
+ return data::dragonbox_pow10_significands_128[k -
+ float_info<double>::min_k];
+#else
+ static const int compression_ratio = 27;
+
+ // Compute base index.
+ int cache_index = (k - float_info<double>::min_k) / compression_ratio;
+ int kb = cache_index * compression_ratio + float_info<double>::min_k;
+ int offset = k - kb;
+
+ // Get base cache.
+ uint128_wrapper base_cache =
+ data::dragonbox_pow10_significands_128[cache_index];
+ if (offset == 0) return base_cache;
+
+ // Compute the required amount of bit-shift.
+ int alpha = floor_log2_pow10(kb + offset) - floor_log2_pow10(kb) - offset;
+ FMT_ASSERT(alpha > 0 && alpha < 64, "shifting error detected");
+
+ // Try to recover the real cache.
+ uint64_t pow5 = data::powers_of_5_64[offset];
+ uint128_wrapper recovered_cache = umul128(base_cache.high(), pow5);
+ uint128_wrapper middle_low =
+ umul128(base_cache.low() - (kb < 0 ? 1u : 0u), pow5);
+
+ recovered_cache += middle_low.high();
+
+ uint64_t high_to_middle = recovered_cache.high() << (64 - alpha);
+ uint64_t middle_to_low = recovered_cache.low() << (64 - alpha);
+
+ recovered_cache =
+ uint128_wrapper{(recovered_cache.low() >> alpha) | high_to_middle,
+ ((middle_low.low() >> alpha) | middle_to_low)};
+
+ if (kb < 0) recovered_cache += 1;
+
+ // Get error.
+ int error_idx = (k - float_info<double>::min_k) / 16;
+ uint32_t error = (data::dragonbox_pow10_recovery_errors[error_idx] >>
+ ((k - float_info<double>::min_k) % 16) * 2) &
+ 0x3;
+
+ // Add the error back.
+ FMT_ASSERT(recovered_cache.low() + error >= recovered_cache.low(), "");
+ return {recovered_cache.high(), recovered_cache.low() + error};
+#endif
+ }
+
+ static carrier_uint compute_mul(carrier_uint u,
+ const cache_entry_type& cache) FMT_NOEXCEPT {
+ return umul192_upper64(u, cache);
+ }
+
+ static uint32_t compute_delta(cache_entry_type const& cache,
+ int beta_minus_1) FMT_NOEXCEPT {
+ return static_cast<uint32_t>(cache.high() >> (64 - 1 - beta_minus_1));
+ }
+
+ static bool compute_mul_parity(carrier_uint two_f,
+ const cache_entry_type& cache,
+ int beta_minus_1) FMT_NOEXCEPT {
+ FMT_ASSERT(beta_minus_1 >= 1, "");
+ FMT_ASSERT(beta_minus_1 < 64, "");
+
+ return ((umul192_middle64(two_f, cache) >> (64 - beta_minus_1)) & 1) != 0;
+ }
+
+ static carrier_uint compute_left_endpoint_for_shorter_interval_case(
+ const cache_entry_type& cache, int beta_minus_1) FMT_NOEXCEPT {
+ return (cache.high() -
+ (cache.high() >> (float_info<double>::significand_bits + 2))) >>
+ (64 - float_info<double>::significand_bits - 1 - beta_minus_1);
+ }
+
+ static carrier_uint compute_right_endpoint_for_shorter_interval_case(
+ const cache_entry_type& cache, int beta_minus_1) FMT_NOEXCEPT {
+ return (cache.high() +
+ (cache.high() >> (float_info<double>::significand_bits + 1))) >>
+ (64 - float_info<double>::significand_bits - 1 - beta_minus_1);
+ }
+
+ static carrier_uint compute_round_up_for_shorter_interval_case(
+ const cache_entry_type& cache, int beta_minus_1) FMT_NOEXCEPT {
+ return ((cache.high() >>
+ (64 - float_info<double>::significand_bits - 2 - beta_minus_1)) +
+ 1) /
+ 2;
+ }
+};
+
+// Various integer checks
+template <class T>
+bool is_left_endpoint_integer_shorter_interval(int exponent) FMT_NOEXCEPT {
+ return exponent >=
+ float_info<
+ T>::case_shorter_interval_left_endpoint_lower_threshold &&
+ exponent <=
+ float_info<T>::case_shorter_interval_left_endpoint_upper_threshold;
+}
+template <class T>
+bool is_endpoint_integer(typename float_info<T>::carrier_uint two_f,
+ int exponent, int minus_k) FMT_NOEXCEPT {
+ if (exponent < float_info<T>::case_fc_pm_half_lower_threshold) return false;
+ // For k >= 0.
+ if (exponent <= float_info<T>::case_fc_pm_half_upper_threshold) return true;
+ // For k < 0.
+ if (exponent > float_info<T>::divisibility_check_by_5_threshold) return false;
+ return divisible_by_power_of_5(two_f, minus_k);
+}
+
+template <class T>
+bool is_center_integer(typename float_info<T>::carrier_uint two_f, int exponent,
+ int minus_k) FMT_NOEXCEPT {
+ // Exponent for 5 is negative.
+ if (exponent > float_info<T>::divisibility_check_by_5_threshold) return false;
+ if (exponent > float_info<T>::case_fc_upper_threshold)
+ return divisible_by_power_of_5(two_f, minus_k);
+ // Both exponents are nonnegative.
+ if (exponent >= float_info<T>::case_fc_lower_threshold) return true;
+ // Exponent for 2 is negative.
+ return divisible_by_power_of_2(two_f, minus_k - exponent + 1);
+}
+
+// Remove trailing zeros from n and return the number of zeros removed (float)
+FMT_ALWAYS_INLINE int remove_trailing_zeros(uint32_t& n) FMT_NOEXCEPT {
+#ifdef FMT_BUILTIN_CTZ
+ int t = FMT_BUILTIN_CTZ(n);
+#else
+ int t = ctz(n);
+#endif
+ if (t > float_info<float>::max_trailing_zeros)
+ t = float_info<float>::max_trailing_zeros;
+
+ const uint32_t mod_inv1 = 0xcccccccd;
+ const uint32_t max_quotient1 = 0x33333333;
+ const uint32_t mod_inv2 = 0xc28f5c29;
+ const uint32_t max_quotient2 = 0x0a3d70a3;
+
+ int s = 0;
+ for (; s < t - 1; s += 2) {
+ if (n * mod_inv2 > max_quotient2) break;
+ n *= mod_inv2;
+ }
+ if (s < t && n * mod_inv1 <= max_quotient1) {
+ n *= mod_inv1;
+ ++s;
+ }
+ n >>= s;
+ return s;
+}
+
+// Removes trailing zeros and returns the number of zeros removed (double)
+FMT_ALWAYS_INLINE int remove_trailing_zeros(uint64_t& n) FMT_NOEXCEPT {
+#ifdef FMT_BUILTIN_CTZLL
+ int t = FMT_BUILTIN_CTZLL(n);
+#else
+ int t = ctzll(n);
+#endif
+ if (t > float_info<double>::max_trailing_zeros)
+ t = float_info<double>::max_trailing_zeros;
+ // Divide by 10^8 and reduce to 32-bits
+ // Since ret_value.significand <= (2^64 - 1) / 1000 < 10^17,
+ // both of the quotient and the r should fit in 32-bits
+
+ const uint32_t mod_inv1 = 0xcccccccd;
+ const uint32_t max_quotient1 = 0x33333333;
+ const uint64_t mod_inv8 = 0xc767074b22e90e21;
+ const uint64_t max_quotient8 = 0x00002af31dc46118;
+
+ // If the number is divisible by 1'0000'0000, work with the quotient
+ if (t >= 8) {
+ auto quotient_candidate = n * mod_inv8;
+
+ if (quotient_candidate <= max_quotient8) {
+ auto quotient = static_cast<uint32_t>(quotient_candidate >> 8);
+
+ int s = 8;
+ for (; s < t; ++s) {
+ if (quotient * mod_inv1 > max_quotient1) break;
+ quotient *= mod_inv1;
+ }
+ quotient >>= (s - 8);
+ n = quotient;
+ return s;
+ }
+ }
+
+ // Otherwise, work with the remainder
+ auto quotient = static_cast<uint32_t>(n / 100000000);
+ auto remainder = static_cast<uint32_t>(n - 100000000 * quotient);
+
+ if (t == 0 || remainder * mod_inv1 > max_quotient1) {
+ return 0;
+ }
+ remainder *= mod_inv1;
+
+ if (t == 1 || remainder * mod_inv1 > max_quotient1) {
+ n = (remainder >> 1) + quotient * 10000000ull;
+ return 1;
+ }
+ remainder *= mod_inv1;
+
+ if (t == 2 || remainder * mod_inv1 > max_quotient1) {
+ n = (remainder >> 2) + quotient * 1000000ull;
+ return 2;
+ }
+ remainder *= mod_inv1;
+
+ if (t == 3 || remainder * mod_inv1 > max_quotient1) {
+ n = (remainder >> 3) + quotient * 100000ull;
+ return 3;
+ }
+ remainder *= mod_inv1;
+
+ if (t == 4 || remainder * mod_inv1 > max_quotient1) {
+ n = (remainder >> 4) + quotient * 10000ull;
+ return 4;
+ }
+ remainder *= mod_inv1;
+
+ if (t == 5 || remainder * mod_inv1 > max_quotient1) {
+ n = (remainder >> 5) + quotient * 1000ull;
+ return 5;
+ }
+ remainder *= mod_inv1;
+
+ if (t == 6 || remainder * mod_inv1 > max_quotient1) {
+ n = (remainder >> 6) + quotient * 100ull;
+ return 6;
+ }
+ remainder *= mod_inv1;
+
+ n = (remainder >> 7) + quotient * 10ull;
+ return 7;
+}
+
+// The main algorithm for shorter interval case
+template <class T>
+FMT_ALWAYS_INLINE FMT_SAFEBUFFERS decimal_fp<T> shorter_interval_case(
+ int exponent) FMT_NOEXCEPT {
+ decimal_fp<T> ret_value;
+ // Compute k and beta
+ const int minus_k = floor_log10_pow2_minus_log10_4_over_3(exponent);
+ const int beta_minus_1 = exponent + floor_log2_pow10(-minus_k);
+
+ // Compute xi and zi
+ using cache_entry_type = typename cache_accessor<T>::cache_entry_type;
+ const cache_entry_type cache = cache_accessor<T>::get_cached_power(-minus_k);
+
+ auto xi = cache_accessor<T>::compute_left_endpoint_for_shorter_interval_case(
+ cache, beta_minus_1);
+ auto zi = cache_accessor<T>::compute_right_endpoint_for_shorter_interval_case(
+ cache, beta_minus_1);
+
+ // If the left endpoint is not an integer, increase it
+ if (!is_left_endpoint_integer_shorter_interval<T>(exponent)) ++xi;
+
+ // Try bigger divisor
+ ret_value.significand = zi / 10;
+
+ // If succeed, remove trailing zeros if necessary and return
+ if (ret_value.significand * 10 >= xi) {
+ ret_value.exponent = minus_k + 1;
+ ret_value.exponent += remove_trailing_zeros(ret_value.significand);
+ return ret_value;
+ }
+
+ // Otherwise, compute the round-up of y
+ ret_value.significand =
+ cache_accessor<T>::compute_round_up_for_shorter_interval_case(
+ cache, beta_minus_1);
+ ret_value.exponent = minus_k;
+
+ // When tie occurs, choose one of them according to the rule
+ if (exponent >= float_info<T>::shorter_interval_tie_lower_threshold &&
+ exponent <= float_info<T>::shorter_interval_tie_upper_threshold) {
+ ret_value.significand = ret_value.significand % 2 == 0
+ ? ret_value.significand
+ : ret_value.significand - 1;
+ } else if (ret_value.significand < xi) {
+ ++ret_value.significand;
+ }
+ return ret_value;
+}
+
+template <typename T>
+FMT_SAFEBUFFERS decimal_fp<T> to_decimal(T x) FMT_NOEXCEPT {
+ // Step 1: integer promotion & Schubfach multiplier calculation.
+
+ using carrier_uint = typename float_info<T>::carrier_uint;
+ using cache_entry_type = typename cache_accessor<T>::cache_entry_type;
+ auto br = bit_cast<carrier_uint>(x);
+
+ // Extract significand bits and exponent bits.
+ const carrier_uint significand_mask =
+ (static_cast<carrier_uint>(1) << float_info<T>::significand_bits) - 1;
+ carrier_uint significand = (br & significand_mask);
+ int exponent = static_cast<int>((br & exponent_mask<T>()) >>
+ float_info<T>::significand_bits);
+
+ if (exponent != 0) { // Check if normal.
+ exponent += float_info<T>::exponent_bias - float_info<T>::significand_bits;
+
+ // Shorter interval case; proceed like Schubfach.
+ if (significand == 0) return shorter_interval_case<T>(exponent);
+
+ significand |=
+ (static_cast<carrier_uint>(1) << float_info<T>::significand_bits);
+ } else {
+ // Subnormal case; the interval is always regular.
+ if (significand == 0) return {0, 0};
+ exponent = float_info<T>::min_exponent - float_info<T>::significand_bits;
+ }
+
+ const bool include_left_endpoint = (significand % 2 == 0);
+ const bool include_right_endpoint = include_left_endpoint;
+
+ // Compute k and beta.
+ const int minus_k = floor_log10_pow2(exponent) - float_info<T>::kappa;
+ const cache_entry_type cache = cache_accessor<T>::get_cached_power(-minus_k);
+ const int beta_minus_1 = exponent + floor_log2_pow10(-minus_k);
+
+ // Compute zi and deltai
+ // 10^kappa <= deltai < 10^(kappa + 1)
+ const uint32_t deltai = cache_accessor<T>::compute_delta(cache, beta_minus_1);
+ const carrier_uint two_fc = significand << 1;
+ const carrier_uint two_fr = two_fc | 1;
+ const carrier_uint zi =
+ cache_accessor<T>::compute_mul(two_fr << beta_minus_1, cache);
+
+ // Step 2: Try larger divisor; remove trailing zeros if necessary
+
+ // Using an upper bound on zi, we might be able to optimize the division
+ // better than the compiler; we are computing zi / big_divisor here
+ decimal_fp<T> ret_value;
+ ret_value.significand = divide_by_10_to_kappa_plus_1(zi);
+ uint32_t r = static_cast<uint32_t>(zi - float_info<T>::big_divisor *
+ ret_value.significand);
+
+ if (r > deltai) {
+ goto small_divisor_case_label;
+ } else if (r < deltai) {
+ // Exclude the right endpoint if necessary
+ if (r == 0 && !include_right_endpoint &&
+ is_endpoint_integer<T>(two_fr, exponent, minus_k)) {
+ --ret_value.significand;
+ r = float_info<T>::big_divisor;
+ goto small_divisor_case_label;
+ }
+ } else {
+ // r == deltai; compare fractional parts
+ // Check conditions in the order different from the paper
+ // to take advantage of short-circuiting
+ const carrier_uint two_fl = two_fc - 1;
+ if ((!include_left_endpoint ||
+ !is_endpoint_integer<T>(two_fl, exponent, minus_k)) &&
+ !cache_accessor<T>::compute_mul_parity(two_fl, cache, beta_minus_1)) {
+ goto small_divisor_case_label;
+ }
+ }
+ ret_value.exponent = minus_k + float_info<T>::kappa + 1;
+
+ // We may need to remove trailing zeros
+ ret_value.exponent += remove_trailing_zeros(ret_value.significand);
+ return ret_value;
+
+ // Step 3: Find the significand with the smaller divisor
+
+small_divisor_case_label:
+ ret_value.significand *= 10;
+ ret_value.exponent = minus_k + float_info<T>::kappa;
+
+ const uint32_t mask = (1u << float_info<T>::kappa) - 1;
+ auto dist = r - (deltai / 2) + (float_info<T>::small_divisor / 2);
+
+ // Is dist divisible by 2^kappa?
+ if ((dist & mask) == 0) {
+ const bool approx_y_parity =
+ ((dist ^ (float_info<T>::small_divisor / 2)) & 1) != 0;
+ dist >>= float_info<T>::kappa;
+
+ // Is dist divisible by 5^kappa?
+ if (check_divisibility_and_divide_by_pow5<float_info<T>::kappa>(dist)) {
+ ret_value.significand += dist;
+
+ // Check z^(f) >= epsilon^(f)
+ // We have either yi == zi - epsiloni or yi == (zi - epsiloni) - 1,
+ // where yi == zi - epsiloni if and only if z^(f) >= epsilon^(f)
+ // Since there are only 2 possibilities, we only need to care about the
+ // parity. Also, zi and r should have the same parity since the divisor
+ // is an even number
+ if (cache_accessor<T>::compute_mul_parity(two_fc, cache, beta_minus_1) !=
+ approx_y_parity) {
+ --ret_value.significand;
+ } else {
+ // If z^(f) >= epsilon^(f), we might have a tie
+ // when z^(f) == epsilon^(f), or equivalently, when y is an integer
+ if (is_center_integer<T>(two_fc, exponent, minus_k)) {
+ ret_value.significand = ret_value.significand % 2 == 0
+ ? ret_value.significand
+ : ret_value.significand - 1;
+ }
+ }
+ }
+ // Is dist not divisible by 5^kappa?
+ else {
+ ret_value.significand += dist;
+ }
+ }
+ // Is dist not divisible by 2^kappa?
+ else {
+ // Since we know dist is small, we might be able to optimize the division
+ // better than the compiler; we are computing dist / small_divisor here
+ ret_value.significand +=
+ small_division_by_pow10<float_info<T>::kappa>(dist);
+ }
+ return ret_value;
+}
+} // namespace dragonbox
+
+// Formats value using a variation of the Fixed-Precision Positive
+// Floating-Point Printout ((FPP)^2) algorithm by Steele & White:
+// https://fmt.dev/p372-steele.pdf.
+template <typename Double>
+void fallback_format(Double d, int num_digits, bool binary32, buffer<char>& buf,
+ int& exp10) {
+ bigint numerator; // 2 * R in (FPP)^2.
+ bigint denominator; // 2 * S in (FPP)^2.
+ // lower and upper are differences between value and corresponding boundaries.
+ bigint lower; // (M^- in (FPP)^2).
+ bigint upper_store; // upper's value if different from lower.
+ bigint* upper = nullptr; // (M^+ in (FPP)^2).
+ fp value;
+ // Shift numerator and denominator by an extra bit or two (if lower boundary
+ // is closer) to make lower and upper integers. This eliminates multiplication
+ // by 2 during later computations.
+ const bool is_predecessor_closer =
+ binary32 ? value.assign(static_cast<float>(d)) : value.assign(d);
+ int shift = is_predecessor_closer ? 2 : 1;
+ uint64_t significand = value.f << shift;
+ if (value.e >= 0) {
+ numerator.assign(significand);
+ numerator <<= value.e;
+ lower.assign(1);
+ lower <<= value.e;
+ if (shift != 1) {
+ upper_store.assign(1);
+ upper_store <<= value.e + 1;
+ upper = &upper_store;
+ }
+ denominator.assign_pow10(exp10);
+ denominator <<= shift;
+ } else if (exp10 < 0) {
+ numerator.assign_pow10(-exp10);
+ lower.assign(numerator);
+ if (shift != 1) {
+ upper_store.assign(numerator);
+ upper_store <<= 1;
+ upper = &upper_store;
+ }
+ numerator *= significand;
+ denominator.assign(1);
+ denominator <<= shift - value.e;
+ } else {
+ numerator.assign(significand);
+ denominator.assign_pow10(exp10);
+ denominator <<= shift - value.e;
+ lower.assign(1);
+ if (shift != 1) {
+ upper_store.assign(1ULL << 1);
+ upper = &upper_store;
+ }
+ }
+ // Invariant: value == (numerator / denominator) * pow(10, exp10).
+ if (num_digits < 0) {
+ // Generate the shortest representation.
+ if (!upper) upper = &lower;
+ bool even = (value.f & 1) == 0;
+ num_digits = 0;
+ char* data = buf.data();
+ for (;;) {
+ int digit = numerator.divmod_assign(denominator);
+ bool low = compare(numerator, lower) - even < 0; // numerator <[=] lower.
+ // numerator + upper >[=] pow10:
+ bool high = add_compare(numerator, *upper, denominator) + even > 0;
+ data[num_digits++] = static_cast<char>('0' + digit);
+ if (low || high) {
+ if (!low) {
+ ++data[num_digits - 1];
+ } else if (high) {
+ int result = add_compare(numerator, numerator, denominator);
+ // Round half to even.
+ if (result > 0 || (result == 0 && (digit % 2) != 0))
+ ++data[num_digits - 1];
+ }
+ buf.try_resize(to_unsigned(num_digits));
+ exp10 -= num_digits - 1;
+ return;
+ }
+ numerator *= 10;
+ lower *= 10;
+ if (upper != &lower) *upper *= 10;
+ }
+ }
+ // Generate the given number of digits.
+ exp10 -= num_digits - 1;
+ if (num_digits == 0) {
+ buf.try_resize(1);
+ denominator *= 10;
+ buf[0] = add_compare(numerator, numerator, denominator) > 0 ? '1' : '0';
+ return;
+ }
+ buf.try_resize(to_unsigned(num_digits));
+ for (int i = 0; i < num_digits - 1; ++i) {
+ int digit = numerator.divmod_assign(denominator);
+ buf[i] = static_cast<char>('0' + digit);
+ numerator *= 10;
+ }
+ int digit = numerator.divmod_assign(denominator);
+ auto result = add_compare(numerator, numerator, denominator);
+ if (result > 0 || (result == 0 && (digit % 2) != 0)) {
+ if (digit == 9) {
+ const auto overflow = '0' + 10;
+ buf[num_digits - 1] = overflow;
+ // Propagate the carry.
+ for (int i = num_digits - 1; i > 0 && buf[i] == overflow; --i) {
+ buf[i] = '0';
+ ++buf[i - 1];
+ }
+ if (buf[0] == overflow) {
+ buf[0] = '1';
+ ++exp10;
+ }
+ return;
+ }
+ ++digit;
+ }
+ buf[num_digits - 1] = static_cast<char>('0' + digit);
+}
+
+template <typename T>
+int format_float(T value, int precision, float_specs specs, buffer<char>& buf) {
+ static_assert(!std::is_same<T, float>::value, "");
+ FMT_ASSERT(value >= 0, "value is negative");
+
+ const bool fixed = specs.format == float_format::fixed;
+ if (value <= 0) { // <= instead of == to silence a warning.
+ if (precision <= 0 || !fixed) {
+ buf.push_back('0');
+ return 0;
+ }
+ buf.try_resize(to_unsigned(precision));
+ std::uninitialized_fill_n(buf.data(), precision, '0');
+ return -precision;
+ }
+
+ if (!specs.use_grisu) return snprintf_float(value, precision, specs, buf);
+
+ if (precision < 0) {
+ // Use Dragonbox for the shortest format.
+ if (specs.binary32) {
+ auto dec = dragonbox::to_decimal(static_cast<float>(value));
+ write<char>(buffer_appender<char>(buf), dec.significand);
+ return dec.exponent;
+ }
+ auto dec = dragonbox::to_decimal(static_cast<double>(value));
+ write<char>(buffer_appender<char>(buf), dec.significand);
+ return dec.exponent;
+ }
+
+ // Use Grisu + Dragon4 for the given precision:
+ // https://www.cs.tufts.edu/~nr/cs257/archive/florian-loitsch/printf.pdf.
+ int exp = 0;
+ const int min_exp = -60; // alpha in Grisu.
+ int cached_exp10 = 0; // K in Grisu.
+ fp normalized = normalize(fp(value));
+ const auto cached_pow = get_cached_power(
+ min_exp - (normalized.e + fp::significand_size), cached_exp10);
+ normalized = normalized * cached_pow;
+ // Limit precision to the maximum possible number of significant digits in an
+ // IEEE754 double because we don't need to generate zeros.
+ const int max_double_digits = 767;
+ if (precision > max_double_digits) precision = max_double_digits;
+ fixed_handler handler{buf.data(), 0, precision, -cached_exp10, fixed};
+ if (grisu_gen_digits(normalized, 1, exp, handler) == digits::error) {
+ exp += handler.size - cached_exp10 - 1;
+ fallback_format(value, handler.precision, specs.binary32, buf, exp);
+ } else {
+ exp += handler.exp10;
+ buf.try_resize(to_unsigned(handler.size));
+ }
+ if (!fixed && !specs.showpoint) {
+ // Remove trailing zeros.
+ auto num_digits = buf.size();
+ while (num_digits > 0 && buf[num_digits - 1] == '0') {
+ --num_digits;
+ ++exp;
+ }
+ buf.try_resize(num_digits);
+ }
+ return exp;
+} // namespace detail
+
+template <typename T>
+int snprintf_float(T value, int precision, float_specs specs,
+ buffer<char>& buf) {
+ // Buffer capacity must be non-zero, otherwise MSVC's vsnprintf_s will fail.
+ FMT_ASSERT(buf.capacity() > buf.size(), "empty buffer");
+ static_assert(!std::is_same<T, float>::value, "");
+
+ // Subtract 1 to account for the difference in precision since we use %e for
+ // both general and exponent format.
+ if (specs.format == float_format::general ||
+ specs.format == float_format::exp)
+ precision = (precision >= 0 ? precision : 6) - 1;
+
+ // Build the format string.
+ enum { max_format_size = 7 }; // The longest format is "%#.*Le".
+ char format[max_format_size];
+ char* format_ptr = format;
+ *format_ptr++ = '%';
+ if (specs.showpoint && specs.format == float_format::hex) *format_ptr++ = '#';
+ if (precision >= 0) {
+ *format_ptr++ = '.';
+ *format_ptr++ = '*';
+ }
+ if (std::is_same<T, long double>()) *format_ptr++ = 'L';
+ *format_ptr++ = specs.format != float_format::hex
+ ? (specs.format == float_format::fixed ? 'f' : 'e')
+ : (specs.upper ? 'A' : 'a');
+ *format_ptr = '\0';
+
+ // Format using snprintf.
+ auto offset = buf.size();
+ for (;;) {
+ auto begin = buf.data() + offset;
+ auto capacity = buf.capacity() - offset;
+#ifdef FMT_FUZZ
+ if (precision > 100000)
+ throw std::runtime_error(
+ "fuzz mode - avoid large allocation inside snprintf");
+#endif
+ // Suppress the warning about a nonliteral format string.
+ // Cannot use auto because of a bug in MinGW (#1532).
+ int (*snprintf_ptr)(char*, size_t, const char*, ...) = FMT_SNPRINTF;
+ int result = precision >= 0
+ ? snprintf_ptr(begin, capacity, format, precision, value)
+ : snprintf_ptr(begin, capacity, format, value);
+ if (result < 0) {
+ // The buffer will grow exponentially.
+ buf.try_reserve(buf.capacity() + 1);
+ continue;
+ }
+ auto size = to_unsigned(result);
+ // Size equal to capacity means that the last character was truncated.
+ if (size >= capacity) {
+ buf.try_reserve(size + offset + 1); // Add 1 for the terminating '\0'.
+ continue;
+ }
+ auto is_digit = [](char c) { return c >= '0' && c <= '9'; };
+ if (specs.format == float_format::fixed) {
+ if (precision == 0) {
+ buf.try_resize(size);
+ return 0;
+ }
+ // Find and remove the decimal point.
+ auto end = begin + size, p = end;
+ do {
+ --p;
+ } while (is_digit(*p));
+ int fraction_size = static_cast<int>(end - p - 1);
+ std::memmove(p, p + 1, to_unsigned(fraction_size));
+ buf.try_resize(size - 1);
+ return -fraction_size;
+ }
+ if (specs.format == float_format::hex) {
+ buf.try_resize(size + offset);
+ return 0;
+ }
+ // Find and parse the exponent.
+ auto end = begin + size, exp_pos = end;
+ do {
+ --exp_pos;
+ } while (*exp_pos != 'e');
+ char sign = exp_pos[1];
+ assert(sign == '+' || sign == '-');
+ int exp = 0;
+ auto p = exp_pos + 2; // Skip 'e' and sign.
+ do {
+ assert(is_digit(*p));
+ exp = exp * 10 + (*p++ - '0');
+ } while (p != end);
+ if (sign == '-') exp = -exp;
+ int fraction_size = 0;
+ if (exp_pos != begin + 1) {
+ // Remove trailing zeros.
+ auto fraction_end = exp_pos - 1;
+ while (*fraction_end == '0') --fraction_end;
+ // Move the fractional part left to get rid of the decimal point.
+ fraction_size = static_cast<int>(fraction_end - begin - 1);
+ std::memmove(begin + 1, begin + 2, to_unsigned(fraction_size));
+ }
+ buf.try_resize(to_unsigned(fraction_size) + offset + 1);
+ return exp - fraction_size;
+ }
+}
+
+// A public domain branchless UTF-8 decoder by Christopher Wellons:
+// https://github.com/skeeto/branchless-utf8
+/* Decode the next character, c, from buf, reporting errors in e.
+ *
+ * Since this is a branchless decoder, four bytes will be read from the
+ * buffer regardless of the actual length of the next character. This
+ * means the buffer _must_ have at least three bytes of zero padding
+ * following the end of the data stream.
+ *
+ * Errors are reported in e, which will be non-zero if the parsed
+ * character was somehow invalid: invalid byte sequence, non-canonical
+ * encoding, or a surrogate half.
+ *
+ * The function returns a pointer to the next character. When an error
+ * occurs, this pointer will be a guess that depends on the particular
+ * error, but it will always advance at least one byte.
+ */
+inline const char* utf8_decode(const char* buf, uint32_t* c, int* e) {
+ static const int masks[] = {0x00, 0x7f, 0x1f, 0x0f, 0x07};
+ static const uint32_t mins[] = {4194304, 0, 128, 2048, 65536};
+ static const int shiftc[] = {0, 18, 12, 6, 0};
+ static const int shifte[] = {0, 6, 4, 2, 0};
+
+ int len = code_point_length(buf);
+ const char* next = buf + len;
+
+ // Assume a four-byte character and load four bytes. Unused bits are
+ // shifted out.
+ auto s = reinterpret_cast<const unsigned char*>(buf);
+ *c = uint32_t(s[0] & masks[len]) << 18;
+ *c |= uint32_t(s[1] & 0x3f) << 12;
+ *c |= uint32_t(s[2] & 0x3f) << 6;
+ *c |= uint32_t(s[3] & 0x3f) << 0;
+ *c >>= shiftc[len];
+
+ // Accumulate the various error conditions.
+ *e = (*c < mins[len]) << 6; // non-canonical encoding
+ *e |= ((*c >> 11) == 0x1b) << 7; // surrogate half?
+ *e |= (*c > 0x10FFFF) << 8; // out of range?
+ *e |= (s[1] & 0xc0) >> 2;
+ *e |= (s[2] & 0xc0) >> 4;
+ *e |= (s[3]) >> 6;
+ *e ^= 0x2a; // top two bits of each tail byte correct?
+ *e >>= shifte[len];
+
+ return next;
+}
+
+struct stringifier {
+ template <typename T> FMT_INLINE std::string operator()(T value) const {
+ return to_string(value);
+ }
+ std::string operator()(basic_format_arg<format_context>::handle h) const {
+ memory_buffer buf;
+ format_parse_context parse_ctx({});
+ format_context format_ctx(buffer_appender<char>(buf), {}, {});
+ h.format(parse_ctx, format_ctx);
+ return to_string(buf);
+ }
+};
+} // namespace detail
+
+template <> struct formatter<detail::bigint> {
+ format_parse_context::iterator parse(format_parse_context& ctx) {
+ return ctx.begin();
+ }
+
+ format_context::iterator format(const detail::bigint& n,
+ format_context& ctx) {
+ auto out = ctx.out();
+ bool first = true;
+ for (auto i = n.bigits_.size(); i > 0; --i) {
+ auto value = n.bigits_[i - 1u];
+ if (first) {
+ out = format_to(out, "{:x}", value);
+ first = false;
+ continue;
+ }
+ out = format_to(out, "{:08x}", value);
+ }
+ if (n.exp_ > 0)
+ out = format_to(out, "p{}", n.exp_ * detail::bigint::bigit_bits);
+ return out;
+ }
+};
+
+FMT_FUNC detail::utf8_to_utf16::utf8_to_utf16(string_view s) {
+ auto transcode = [this](const char* p) {
+ auto cp = uint32_t();
+ auto error = 0;
+ p = utf8_decode(p, &cp, &error);
+ if (error != 0) FMT_THROW(std::runtime_error("invalid utf8"));
+ if (cp <= 0xFFFF) {
+ buffer_.push_back(static_cast<wchar_t>(cp));
+ } else {
+ cp -= 0x10000;
+ buffer_.push_back(static_cast<wchar_t>(0xD800 + (cp >> 10)));
+ buffer_.push_back(static_cast<wchar_t>(0xDC00 + (cp & 0x3FF)));
+ }
+ return p;
+ };
+ auto p = s.data();
+ const size_t block_size = 4; // utf8_decode always reads blocks of 4 chars.
+ if (s.size() >= block_size) {
+ for (auto end = p + s.size() - block_size + 1; p < end;) p = transcode(p);
+ }
+ if (auto num_chars_left = s.data() + s.size() - p) {
+ char buf[2 * block_size - 1] = {};
+ memcpy(buf, p, to_unsigned(num_chars_left));
+ p = buf;
+ do {
+ p = transcode(p);
+ } while (p - buf < num_chars_left);
+ }
+ buffer_.push_back(0);
+}
+
+FMT_FUNC void format_system_error(detail::buffer<char>& out, int error_code,
+ string_view message) FMT_NOEXCEPT {
+ FMT_TRY {
+ memory_buffer buf;
+ buf.resize(inline_buffer_size);
+ for (;;) {
+ char* system_message = &buf[0];
+ int result =
+ detail::safe_strerror(error_code, system_message, buf.size());
+ if (result == 0) {
+ format_to(detail::buffer_appender<char>(out), "{}: {}", message,
+ system_message);
+ return;
+ }
+ if (result != ERANGE)
+ break; // Can't get error message, report error code instead.
+ buf.resize(buf.size() * 2);
+ }
+ }
+ FMT_CATCH(...) {}
+ format_error_code(out, error_code, message);
+}
+
+FMT_FUNC void detail::error_handler::on_error(const char* message) {
+ FMT_THROW(format_error(message));
+}
+
+FMT_FUNC void report_system_error(int error_code,
+ fmt::string_view message) FMT_NOEXCEPT {
+ report_error(format_system_error, error_code, message);
+}
+
+FMT_FUNC std::string detail::vformat(string_view format_str, format_args args) {
+ if (format_str.size() == 2 && equal2(format_str.data(), "{}")) {
+ auto arg = args.get(0);
+ if (!arg) error_handler().on_error("argument not found");
+ return visit_format_arg(stringifier(), arg);
+ }
+ memory_buffer buffer;
+ detail::vformat_to(buffer, format_str, args);
+ return to_string(buffer);
+}
+
+#ifdef _WIN32
+namespace detail {
+using dword = conditional_t<sizeof(long) == 4, unsigned long, unsigned>;
+extern "C" __declspec(dllimport) int __stdcall WriteConsoleW( //
+ void*, const void*, dword, dword*, void*);
+} // namespace detail
+#endif
+
+FMT_FUNC void vprint(std::FILE* f, string_view format_str, format_args args) {
+ memory_buffer buffer;
+ detail::vformat_to(buffer, format_str,
+ basic_format_args<buffer_context<char>>(args));
+#ifdef _WIN32
+ auto fd = _fileno(f);
+ if (_isatty(fd)) {
+ detail::utf8_to_utf16 u16(string_view(buffer.data(), buffer.size()));
+ auto written = detail::dword();
+ if (!detail::WriteConsoleW(reinterpret_cast<void*>(_get_osfhandle(fd)),
+ u16.c_str(), static_cast<uint32_t>(u16.size()),
+ &written, nullptr)) {
+ FMT_THROW(format_error("failed to write to console"));
+ }
+ return;
+ }
+#endif
+ detail::fwrite_fully(buffer.data(), 1, buffer.size(), f);
+}
+
+#ifdef _WIN32
+// Print assuming legacy (non-Unicode) encoding.
+FMT_FUNC void detail::vprint_mojibake(std::FILE* f, string_view format_str,
+ format_args args) {
+ memory_buffer buffer;
+ detail::vformat_to(buffer, format_str,
+ basic_format_args<buffer_context<char>>(args));
+ fwrite_fully(buffer.data(), 1, buffer.size(), f);
+}
+#endif
+
+FMT_FUNC void vprint(string_view format_str, format_args args) {
+ vprint(stdout, format_str, args);
+}
+
+FMT_END_NAMESPACE
+
+#endif // FMT_FORMAT_INL_H_